A Multi-Omics Perspective on Tritrichomonas foetus: From Genomics to Future Directions
Abstract
1. Introduction
2. From Drafts to Chromosomes: The Evolving Landscape of Tritrichomonas foetus Genomics
2.1. Genome Assembly and Structure: Navigating a Labyrinth of Repeats
2.2. Comparative Genomics and Genetic Divergence
2.3. Metagenomics and Microbiome Interactions: The Parasite Within a Complex Ecosystem
3. Decoding the Transcriptome: From ESTs to Host-Specific Virulence Mechanisms of Tritrichomonas foetus
3.1. Pioneering Analyses Using Expressed Sequence Tags (ESTs)
3.2. Transcriptional Reprogramming as a Cornerstone of Adaptation and Virulence
3.3. Regulatory Architecture and Environmental Plasticity
4. Proteomics: From Functional Insights to Novel Therapeutic Targets
4.1. Global Proteome Profiles
4.2. Molecular Mechanisms of Virulence and Host-Interaction
4.3. Proteomics as a Driver for Drug Discovery
4.4. Subcellular Proteomics: Uncovering Unique Structural Markers
4.5. Metaproteomics: Interrogating In Situ Interactions
5. Future Directions: Charting the Next Decade of T. foetus Research
5.1. Advancements in Genomics: From Complete Genomes to Population-Level Insights
5.2. Expanding Transcriptomic Analyses: From Bulk RNA-Seq to Single-Cell and In Vivo Insights
5.3. Advancing Proteomics: From In Vivo Profiling to Functional Validation
5.4. Integrative Multi-Omics and Systems Biology: A Holistic Future
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuehner, K.A.; Marks, S.L.; Kass, P.H.; Sauter-Louis, C.; Grahn, R.A.; Barutzki, D.; Hartmann, K. Tritrichomonas foetus Infection in Purebred Cats in Germany: Prevalence of Clinical Signs and the Role of Co-Infection with Other Enteroparasites. J. Feline Med. Surg. 2011, 13, 251–258. [Google Scholar] [CrossRef]
- Dąbrowska, J.; Keller, I.; Karamon, J.; Kochanowski, M.; Gottstein, B.; Cencek, T.; Frey, C.F.; Müller, N. Whole Genome Sequencing of a Feline Strain of Tritrichomonas foetus Reveals Massive Genetic Differences to Bovine and Porcine Isolates. Int. J. Parasitol. 2020, 50, 227–233. [Google Scholar] [CrossRef]
- Voyich, J.M.; Ansotegui, R.; Swenson, C.; Bailey, J.; Burgess, D.E. Antibody Responses of Cattle Immunized with the Tf190 Adhesin of Tritrichomonas foetus. Clin. Diagn. Lab. Immunol. 2001, 8, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Chitimia-Dobler, L.; Langguth, J.; Pfeffer, M.; Kattner, S.; Küpper, T.; Friese, D.; Dobler, G.; Guglielmone, A.A.; Nava, S. Genetic Analysis of Rhipicephalus sanguineus Sensu Lato Ticks Parasites of Dogs in Africa North of the Sahara Based on Mitochondrial DNA Sequences. Vet. Parasitol. 2017, 239, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Shen, L. Advances and Trends in Omics Technology Development. Front. Med. 2022, 9, 911861. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.M.; Schcolnicov, N.; Diambra, L.; Cóceres, V.M. In-Depth Comparative Analysis of Tritrichomonas foetus Transcriptomics Reveals Novel Genes Linked with Adaptation to Feline Host. Sci. Rep. 2022, 12, 10057. [Google Scholar] [CrossRef]
- Abdel-Glil, M.Y.; Solle, J.; Wibberg, D.; Neubauer, H.; Sprague, L.D. Chromosome-Level Genome Assembly of Tritrichomonas foetus, the Causative Agent of Bovine Trichomonosis. Sci. Data 2024, 11, 1030. [Google Scholar] [CrossRef]
- Carlton, J.M.; Hirt, R.P.; Silva, J.C.; Delcher, A.L.; Schatz, M.; Zhao, Q.; Wortman, J.R.; Bidwell, S.L.; Alsmark, U.C.M.; Besteiro, S.; et al. Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis. Science 2007, 315, 207–212. [Google Scholar] [CrossRef]
- Benchimol, M.; de Almeida, L.G.P.; Vasconcelos, A.T.; de Andrade Rosa, I.; Reis Bogo, M.; Kist, L.W.; de Souza, W. Draft Genome Sequence of Tritrichomonas foetus Strain K. Genome Announc. 2017, 5, e00195-17. [Google Scholar] [CrossRef]
- Siezen, R.J.; Van Hijum, S.A.F.T. Genome (Re-)Annotation and Open-source Annotation Pipelines. Microb. Biotechnol. 2010, 3, 362–369. [Google Scholar] [CrossRef]
- Girardini, K.N.; Olthof, A.M.; Kanadia, R.N. Introns: The “Dark Matter” of the Eukaryotic Genome. Front. Genet. 2023, 14, 1150212. [Google Scholar] [CrossRef] [PubMed]
- Alkan, C.; Sajjadian, S.; Eichler, E.E. Limitations of Next-Generation Genome Sequence Assembly. Nat. Methods 2011, 8, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Pinney, J.W.; Papp, B.; Hyland, C.; Wambua, L.; Westhead, D.R.; McConkey, G.A. Metabolic Reconstruction and Analysis for Parasite Genomes. Trends Parasitol. 2007, 23, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Rivero, M.B.; Alonso, A.M.; Abdala, M.E.; Luque, M.E.; Carranza, P.G.; Coceres, V.M.; Rivero, F.D. Comparative Membrane Proteomic Analysis of Tritrichomonas foetus Isolates. Sci. Rep. 2024, 14, 17033. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global Patterns of 16S rRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4516–4522. [Google Scholar] [CrossRef]
- Boggan, S.; Awosile, B.; Koziol, J. Describing the Reproductive Microbiome of Tritrichomonas foetus Chronically Infected Bulls and Diagnostic Collection Device Performance. Animals 2024, 14, 2689. [Google Scholar] [CrossRef]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A.; Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; et al. A Survey of Best Practices for RNA-Seq Data Analysis. Genome Biol. 2016, 17, 13. [Google Scholar] [CrossRef]
- Huang, K.-Y.; Shin, J.-W.; Huang, P.-J.; Ku, F.-M.; Lin, W.-C.; Lin, R.; Hsu, W.-M.; Tang, P. Functional Profiling of the Tritrichomonas foetus Transcriptome and Proteome. Mol. Biochem. Parasitol. 2013, 187, 60–71. [Google Scholar] [CrossRef]
- Oyhenart, J.; Breccia, J.D. Evidence for Repeated Gene Duplications in Tritrichomonas foetus Supported by EST Analysis and Comparison with the Trichomonas vaginalis Genome. Vet. Parasitol. 2014, 206, 267–276. [Google Scholar] [CrossRef]
- Morin-Adeline, V.; Lomas, R.; O’Meally, D.; Stack, C.; Conesa, A.; Šlapeta, J. Comparative Transcriptomics Reveals Striking Similarities between the Bovine and Feline Isolates of Tritrichomonas foetus: Consequences for in Silico Drug-Target Identification. BMC Genomics 2014, 15, 955. [Google Scholar] [CrossRef]
- Morin-Adeline, V.; Mueller, K.; Conesa, A.; Šlapeta, J. Comparative RNA-Seq Analysis of the Tritrichomonas foetus PIG30/1 Isolate from Pigs Reveals Close Association with Tritrichomonas foetus BP-4 Isolate ‘Bovine Genotype’. Vet. Parasitol. 2015, 212, 111–117. [Google Scholar] [CrossRef]
- Thompson, F.J.; Mitreva, M.; Barker, G.L.A.; Martin, J.; Waterston, R.H.; McCarter, J.P.; Viney, M.E. An Expressed Sequence Tag Analysis of the Life-Cycle of the Parasitic Nematode Strongyloides Ratti. Mol. Biochem. Parasitol. 2005, 142, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Slapeta, J.; Müller, N.; Stack, C.M.; Walker, G.; Lew-Tabor, A.; Tachezy, J.; Frey, C.F. Comparative Analysis of Tritrichomonas foetus (Riedmüller, 1928) Cat Genotype, T. foetus (Riedmüller, 1928) Cattle Genotype and Tritrichomonas suis (Davaine, 1875) at 10 DNA Loci. Int. J. Parasitol. 2012, 42, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Callejas-Hernández, F.; Shiratori, M.; Sullivan, S.A.; Blow, F.; Carlton, J.M. Redefining the Spliceosomal Introns of the Sexually Transmitted Parasite Trichomonas vaginalis and Its Close Relatives in Columbid Birds. BioRxiv 2025. [Google Scholar] [CrossRef] [PubMed]
- Jaini, S.; Lyubetskaya, A.; Gomes, A.; Peterson, M.; Tae Park, S.; Raman, S.; Schoolnik, G.; Galagan, J. Transcription Factor Binding Site Mapping Using ChIP-Seq. Microbiol. Spectr. 2014, 2, 161–181. [Google Scholar] [CrossRef]
- Kenarkoohi, A.; Abdoli, A.; Rostamzad, A.; Rashnavadi, M.; Naserifar, R.; Abdi, J.; Shams, M.; Bozorgomid, A.; Saeb, S.; Al-Fahad, D.; et al. Presence of CRISPR CAS-Like Sequences as a Proposed Mechanism for Horizontal Genetic Exchanges between Trichomonas vaginalis and Its Associated Virus: A Comparative Genomic Analysis with the First Report of a Putative CRISPR CAS Structures in Eukaryotic Cells. BioMed Res. Int. 2023, 2023, 8069559. [Google Scholar] [CrossRef]
- Iriarte, L.S.; Martinez, C.I.; de Miguel, N.; Coceres, V.M. Tritrichomonas foetus Cell Division Involves DNA Endoreplication and Multiple Fissions. Microbiol. Spectr. 2023, 11, e03251-22. [Google Scholar] [CrossRef]
- Xie, Y.; Zhong, P.; Guan, W.; Zhao, Y.; Yang, S.; Shao, Y.; Li, J. Transcriptional Profile of Trichomonas vaginalis in Response to Metronidazole. BMC Genom. 2023, 24, 318. [Google Scholar] [CrossRef]
- Stroud, L.J.; Šlapeta, J.; Padula, M.P.; Druery, D.; Tsiotsioras, G.; Coorssen, J.R.; Stack, C.M. Comparative Proteomic Analysis of Two Pathogenic Tritrichomonas foetus Genotypes: There Is More to the Proteome than Meets the Eye. Int. J. Parasitol. 2017, 47, 203–213. [Google Scholar] [CrossRef]
- Abdala, M.E.; Rivero, M.B.; Luque, M.E.; Di Lullo, D.; Luna, B.E.; Carranza, P.G.; Volta, B.J.; Rivero, F.D. Proteomic Analysis of Proteins Released by Tritrichomonas foetus: Identification of Potential Targets for the Development of New Diagnostic Methods. Vet. Parasitol. 2023, 316, 109890. [Google Scholar] [CrossRef]
- Ma’ayeh, S.Y.; Liu, J.; Peirasmaki, D.; Hörnaeus, K.; Bergström Lind, S.; Grabherr, M.; Bergquist, J.; Svärd, S.G. Characterization of the Giardia Intestinalis Secretome during Interaction with Human Intestinal Epithelial Cells: The Impact on Host Cells. PLoS Negl. Trop. Dis. 2017, 11, e0006120. [Google Scholar] [CrossRef]
- F30Tolbert, M.K.; Stauffer, S.H.; Brand, M.D.; Gookin, J.L. Cysteine Protease Activity of Feline Tritrichomonas foetus Promotes Adhesion-Dependent Cytotoxicity to Intestinal Epithelial Cells. Infect. Immun. 2014, 82, 2851–2859. [Google Scholar] [CrossRef]
- Gould, E.N.; Giannone, R.; Kania, S.A.; Tolbert, M.K. Cysteine Protease 30 (CP30) Contributes to Adhesion and Cytopathogenicity in Feline Tritrichomonas foetus. Vet. Parasitol. 2017, 244, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Nievas, Y.R.; Lizarraga, A.; Salas, N.; Cóceres, V.M.; de Miguel, N. Extracellular Vesicles Released by Anaerobic Protozoan Parasites: Current Situation. Cell. Microbiol. 2020, 22, e13257. [Google Scholar] [CrossRef] [PubMed]
- Kochanowsky, J.A.; Mira, P.M.; Elikaee, S.; Muratore, K.; Rai, A.K.; Riestra, A.M.; Johnson, P.J. Trichomonas vaginalis Extracellular Vesicles Up-Regulate and Directly Transfer Adherence Factors Promoting Host Cell Colonization. Proc. Natl. Acad. Sci. USA 2024, 121, e2401159121. [Google Scholar] [CrossRef] [PubMed]
- Cobo, E.R.; Reed, S.L.; Corbeil, L.B. Effect of Vinyl Sulfone Inhibitors of Cysteine Proteinases on Tritrichomonas foetus Infection. Int. J. Antimicrob. Agents 2012, 39, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Kerr, I.D.; Lee, J.H.; Farady, C.J.; Marion, R.; Rickert, M.; Sajid, M.; Pandey, K.C.; Caffrey, C.R.; Legac, J.; Hansell, E.; et al. Vinyl Sulfones as Antiparasitic Agents and a Structural Basis for Drug Design. J. Biol. Chem. 2009, 284, 25697–25703. [Google Scholar] [CrossRef]
- Bandeira, P.T.; Ortiz, S.F.d.N.; Benchimol, M.; de Souza, W. Expansion Microscopy of Trichomonads. Exp. Parasitol. 2023, 255, 108629. [Google Scholar] [CrossRef] [PubMed]
- Prosise, G.L.; Luecke, H. Crystal Structures of Tritrichomonas foetus Inosine Monophosphate Dehydrogenase in Complex with Substrate, Cofactor and Analogs: A Structural Basis for the Random-in Ordered-out Kinetic Mechanism. J. Mol. Biol. 2003, 326, 517–527. [Google Scholar] [CrossRef]
- Gan, L.; Petsko, G.A.; Hedstrom, L. Crystal Structure of a Ternary Complex of Tritrichomonas foetus Inosine 5′-Monophosphate Dehydrogenase: NAD+ Orients the Active Site Loop for Catalysis. Biochemistry 2002, 41, 13309–13317. [Google Scholar] [CrossRef]
- Hedstrom, L.; Liechti, G.; Goldberg, J.B.; Gollapalli, D.R. The Antibiotic Potential of Prokaryotic IMP Dehydrogenase Inhibitors. Curr. Med. Chem. 2011, 18, 1909–1918. [Google Scholar] [CrossRef]
- Mayr, A.-L.; Paunkov, A.; Hummel, K.; Razzazi-Fazeli, E.; Leitsch, D. Comparative Proteomic Analysis of Metronidazole-Sensitive and Resistant Trichomonas vaginalis Suggests a Novel Mode of Metronidazole Action and Resistance. Int. J. Parasitol. Drugs Drug Resist. 2024, 26, 100566. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, P.T.; Chaves, C.R.; Monteiro Torres, P.H.; de Souza, W. Immunolocalization and 3D Modeling of Three Unique Proteins Belonging to the Costa of Tritrichomonas foetus. Parasitol. Res. 2025, 124, 30. [Google Scholar] [CrossRef]
- Bandeira, P.T.; de Souza, W. Costain 1 (ARM19800.1)—The First Identified Protein of the Costa of the Pathogenic Protozoan Tritrichomonas foetus. Exp. Parasitol. 2022, 232, 108177. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Du, A.; Yao, C. Clinical Isolates of Tritrichomonas foetus in Bulls in Wyoming, South Dakota and Montana, USA. BMC Vet. Res. 2020, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Oehler, J.B.; Wright, H.; Stark, Z.; Mallett, A.J.; Schmitz, U. The Application of Long-Read Sequencing in Clinical Settings. Hum. Genom. 2023, 17, 73. [Google Scholar] [CrossRef]
Strain(s) | Main Achievement | Genomic Parameters | Biological Conclusions | Study (Year) |
---|---|---|---|---|
K (bovine) | First draft genome assembly |
|
| Benchimol et al. (2017) [9] |
TF1 (bovine) TF2 (feline) TF3 (porcine) | First comparative WGS analysis of three host strains |
|
| Dąbrowska et al. (2020) [2] |
KV-1 (bovine) | First chromosome-level genome assembly |
|
| Abdel-Glil et al. (2024) [7] |
Isolate(s) (Host) | Main Focus/Achievement | Main Virulence/Functional Gene Families Identified | Key Biological Insights | Study (Year) |
---|---|---|---|---|
KV-1 (bovine) | First large-scale EST and proteome profiling and functional annotation |
|
| Huang et al. (2013) [18] |
K1 (bovine) | Proteomic and transcriptomic analysis of hydrogenosome-enriched fractions |
|
| Oyhenart et al. (2014) [19] |
BP-4 (bovine), G10/1 (feline) | Comparative transcriptomics and in silico drug-target identification |
|
| Morin-Adeline et al. (2014) [20] |
BP-4 (bovine), G10/1 (feline), PIG30/1 (porcine) | Comparative RNA-seq of three isolates and host-specific gene expression |
|
| Morin-Adeline et al. (2015) [21] |
BP-4 (bovine), G10/1 (feline), PIG30/1 (porcine) | Comparative transcriptomics, feline adaptation, and virulence factors |
|
| Alonso et al. (2022) [6] |
Isolate(s) (Host) | Proteomic Focus | Key Findings | Biological/Clinical Implications | Study (Year) |
---|---|---|---|---|
Bovine (KV-1) | Global proteome profiling | 68 abundant proteins (2-DE/MS); dominant: glycolytic enzymes (GAPDH, PEPCK), cysteine proteases (15 isoforms, TfCP8 most abundant), adhesins (AP65-1) | Chemotherapeutic targets; reference proteome map | Huang et al. (2013) [18] |
Bovine vs. feline | Comparative proteomics | 24 proteins with ≥4-fold differential expression; clear differences in cysteine protease (CP) profiles; higher CP activity in feline isolates | CPs as key virulence determinants; basis for vaccine/drug development | Stroud et al. (2017) [29] |
6 bovine isolates | Secretome (secreted proteins) | 662 proteins in supernatant; 121 core proteins (all isolates); Ap65 and Grp78: immunodominant antigens; 32.9% “hypothetical” proteins | Candidates for diagnostics/subunit vaccines; immunomodulatory potential | Abdala et al. (2023) [30] |
Various bovine isolates | Membrane proteomics | 85 core membrane proteins; enrichment in sialidases, transmembrane proteins, hydrolases; high antigenic potential | New diagnostic and vaccine targets; sialidases as virulence factors | Rivero et al. (2024) [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbrowska, J.; Sroka, J. A Multi-Omics Perspective on Tritrichomonas foetus: From Genomics to Future Directions. Int. J. Mol. Sci. 2025, 26, 8343. https://doi.org/10.3390/ijms26178343
Dąbrowska J, Sroka J. A Multi-Omics Perspective on Tritrichomonas foetus: From Genomics to Future Directions. International Journal of Molecular Sciences. 2025; 26(17):8343. https://doi.org/10.3390/ijms26178343
Chicago/Turabian StyleDąbrowska, Joanna, and Jacek Sroka. 2025. "A Multi-Omics Perspective on Tritrichomonas foetus: From Genomics to Future Directions" International Journal of Molecular Sciences 26, no. 17: 8343. https://doi.org/10.3390/ijms26178343
APA StyleDąbrowska, J., & Sroka, J. (2025). A Multi-Omics Perspective on Tritrichomonas foetus: From Genomics to Future Directions. International Journal of Molecular Sciences, 26(17), 8343. https://doi.org/10.3390/ijms26178343