Pilot Exploratory Analysis of Serum Gonadal Hormones, Inflammatory Proteins, and Intracerebral Hemorrhage Outcomes
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Participants
4.3. Imaging
4.4. Neurological Outcome
4.5. Blood Sampling
4.6. Measurement of Serum Gonadal Hormone Concentrations
4.7. Measurement of Serum Inflammatory Protein Concentrations
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feigin, V.L.; Lawes, C.M.M.; Bennett, D.A.; Barker-Collo, S.L.; Parag, V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: A systematic review. Lancet Neurol. 2009, 8, 355–369. [Google Scholar] [CrossRef]
- Flaherty, M.L.; Haverbusch, M.; Sekar, P.; Kissela, B.; Kleindorfer, D.; Moomaw, C.J. Long-term mortality after intracerebral hemorrhage. Neurology 2006, 66, 1182–1186. [Google Scholar] [CrossRef]
- Abulhasan, Y.B.; Teitelbaum, J.; Al-Ramadhani, K.; Morrison, K.T.; Angle, M.R. Functional Outcomes and Mortality in Patients With Intracerebral Hemorrhage After Intensive Medical and Surgical Support. Neurology 2023, 100, E1985–E1995. [Google Scholar] [CrossRef]
- Lusk, J.B.; Troy, J.; Nowacki, N.; Kranz, P.G.; Maughan, M.; Laskowitz, D.T. An Exploratory Analysis of Biomarkers of Perihematomal Edema in the CN-105 in Participants with Acute Supratentorial Intracerebral Hemorrhage (CATCH) Trial. J. Stroke Cerebrovasc. Dis. 2022, 31, 106600. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, Y.J.; Lei, B.; Kernagis, D.; Liu, W.W.; Bennett, E.R.; Venkatraman, T.; Lascola, C.D.; Laskowitz, D.T.; Warner, D.S.; et al. Sex Differences in Gene and Protein Expression After Intracerebral Hemorrhage in Mice. Transl. Stroke Res. 2019, 10, 231–239. [Google Scholar] [CrossRef]
- Lusk, J.B.; Quinones, Q.J.; Staats, J.S.; Weinhold, K.J.; Grossi, P.M.; Nimjee, S.M.; Laskowitz, D.T.; James, M.L. Coupling Hematoma Evacuation with Immune Profiling for Analysis of Neuroinflammation After Primary Intracerebral Hemorrhage: A Pilot Study. World Neurosurg. 2022, 161, 162–168. [Google Scholar] [CrossRef]
- Lei, B.; Ho Kim, Y.; Qi, W.; Berta, T.; Covington, A.; Lusk, J.B.; Warner, D.S.; Ji, R.R.; James, M.L. In vivo single microglial cell isolation after intracerebral hemorrhage in mice. Neurosci. Lett. 2022, 787, 136822. [Google Scholar] [CrossRef]
- Rost, N.S.; Greenberg, S.M.; Rosand, J. The genetic architecture of intracerebral hemorrhage. Stroke 2008, 39, 2166–2173. [Google Scholar] [CrossRef]
- Brouwers, H.B.; Greenberg, S.M. Hematoma expansion following acute intracerebral hemorrhage. Cerebrovasc. Dis. 2013, 35, 195–201. [Google Scholar] [CrossRef]
- Tschoe, C.; Bushell, C.D.; Duncan, P.W.; Alexander-Miller, M.A.; Wolfe, S.Q. Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. J. Stroke 2020, 22, 29–46. [Google Scholar] [CrossRef]
- Castillo, J.; Dávalos, A.; Alvarez-Sabín, J.; Pumar, J.M.; Leira, R.; Silva, Y. Molecular signatures of brain injury after intracerebral hemorrhage. Neurology 2002, 58, 624–629. [Google Scholar] [CrossRef]
- Silva, Y.; Leira, R.; Tejada, J.; Lainez, J.M.; Castillo, J.; Dávalos, A. Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke 2005, 36, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Murthy, S.B.; Urday, S.; Beslow, L.A.; Dawson, J.; Lees, K.; Kimberly, W.T. Rate of Perihaematomal Oedema Expansion is Associated with Poor Clinical Outcomes in Intracerebral Haemorrhage. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1169–1173. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.Y.; Sharma, G.; Strbian, D.; Putaala, J.; Desmond, P.M.; Tatlisumak, T. Natural History of Perihematomal Edema and Impact on Outcome After Intracerebral Hemorrhage. Stroke 2017, 48, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Boehl, G.; Raguindin, P.F.; Valido, E.; Bertolo, A.; Itodo, O.A.; Minder, B.; Lampart, P.; Scheel-Sailer, A.; Leichtle, A.; Glisic, M.; et al. Endocrinological and inflammatory markers in individuals with spinal cord injury: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2022, 23, 1035–1050. [Google Scholar] [CrossRef]
- Wagner, A.K.; McCullough, E.H.; Niyonkuru, C.; Ozawa, H.; Loucks, T.L.; Dobos, J.A.; Brett, C.A.; Santarsieri, M.; Dixon, C.E.; Berga, S.L.; et al. Acute serum hormone levels: Characterization and prognosis after severe traumatic brain injury. J. Neurotrauma 2011, 28, 871–888. [Google Scholar] [CrossRef]
- Skolnick, B.E.; Maas, A.I.; Narayan, R.K.; Hoop, R.G.; MacAllister, T.; Ward, J.D. A clinical trial of progesterone for severe traumatic brain injury. N. Engl. J. Med. 2014, 371, 2467–2476. [Google Scholar] [CrossRef]
- Viscoli, C.M.; Brass, L.M.; Kernan, W.N.; Sarrel, P.M.; Suissa, S.; Horwitz, R.I. A clinical trial of estrogen-replacement therapy after ischemic stroke. N. Engl. J. Med. 2001, 345, 1243–1249. [Google Scholar] [CrossRef]
- Rivier, C.A.; Renedo, D.; Marini, S.; Magid-Bernstein, J.R.; de Havenon, A.; Rosand, J.; Hanley, D.F.; Ziai, W.C.; Mayer, S.A.; Woo, D.; et al. Sex Modifies the Severity and Outcome of Spontaneous Intracerebral Hemorrhage. Ann. Neurol. 2024, 97, 232–241. [Google Scholar] [CrossRef]
- Yang, L.; Han, J.; Qin, C.; Shou, W. Sex-Based Differences in the Outcomes of Intracerebral Haemorrhage: A Systematic Review and Meta-Analysis. Cerebrovasc. Dis. 2024, 53, 753–766. [Google Scholar] [CrossRef]
- Bader, E.R.; Pana, T.A.; Barlas, R.S.; Metcalf, A.K.; Potter, J.F.; Myint, P.K. Elevated inflammatory biomarkers and poor outcomes in intracerebral hemorrhage. J. Neurol. 2022, 269, 6330–6341. [Google Scholar] [CrossRef] [PubMed]
- Sasongko, A.B.; Wahjoepramono, P.O.P.; Halim, D.; Aviani, J.K.; Adam, A.; Tsai, Y.T.; Wahjoepramono, E.J.; July, J.; Achmad, T.H.; Polilli, E. Potential blood biomarkers that can be used as prognosticators of spontaneous intracerebral hemorrhage: A systematic review and meta-analysis. PLoS ONE 2025, 20, e0315333. [Google Scholar] [CrossRef]
- James, M.L.; Blessing, R.; Bennett, E.; Laskowitz, D.T. Apolipoprotein E modifies neurological outcome by affecting cerebral edema but not hematoma size after intracerebral hemorrhage in humans. J. Stroke Cerebrovasc. Dis. 2009, 18, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, A.; Leibowitz, A.; Gurevich, B.; Ohayon, S.; Boyko, M.; Klein, M. Effect of estrogens on blood glutamate levels in relation to neurological outcome after TBI in male rats. Intensiv. Care Med. 2011, 38, 137–144. [Google Scholar] [CrossRef]
- Myserlis, E.P.; Ray, A.; Anderson, C.D.; Georgakis, M.K. Genetically proxied IL-6 signaling and risk of Alzheimer’s disease and lobar intracerebral hemorrhage: A drug target Mendelian randomization study. Alzheimers Dement. 2024, 10, e70000. [Google Scholar] [CrossRef]
- Schob, S.; Schicht, M.; Sel, S.; Stiller, D.; Kekulé, A.; Paulsen, F.; Maronde, E.; Bräuer, L.; Coles, J.A. The Detection of Surfactant Proteins A, B, C and D in the Human Brain and Their Regulation in Cerebral Infarction, Autoimmune Conditions and Infections of the CNS. PLoS ONE 2013, 8, e74412. [Google Scholar] [CrossRef]
- Schaible, E.V.; Windschugl, J.; Bobkiewicz, W.; Kaburov, Y.; Dangel, L.; Kramer, T. 2-Methoxyestradiol confers neuroprotection and inhibits a maladaptive HIF-1alpha response after traumatic brain injury in mice. J. Neurochem. 2014, 129, 940–954. [Google Scholar] [CrossRef]
- Shamim, A.; Abdul Aziz, M.; Saeed, F.; Kumari, R.; Joseph, A.M.; Ponnachan, P.; Kishore, U.; Masmoudi, K. Revisiting surfactant protein D: An immune surveillance molecule bridging innate and adaptive immunity. Front. Immunol. 2024, 15, 1491175. [Google Scholar] [CrossRef]
- Li, J.; Siegel, M.; Yuan, M.; Zeng, Z.; Finnucan, L.; Persky, R. Estrogen enhances neurogenesis and behavioral recovery after stroke. J. Cereb. Blood Flow Metab. 2011, 31, 413–425. [Google Scholar] [CrossRef]
- Scheffzük, C.; Biedziak, D.; Gisch, N.; Goldmann, T.; Stamme, C. Surfactant protein A modulates neuroinflammation in adult mice upon pulmonary infection. Brain Res. 2024, 1840, 149108. [Google Scholar] [CrossRef]
- Engür, D.; Kumral, A. Surfactant Protein D as a Novel Therapy for Periventricular Leukomalacia: Is It the Missing Piece of the Puzzle? ACS Chem. Neurosci. 2012, 3, 990. [Google Scholar] [CrossRef]
- Nayak, A.; Dodagatta-Marri, E.; Tsolaki, A.G.; Kishore, U. An Insight into the Diverse Roles of Surfactant Proteins, SP-A and SP-D in Innate and Adaptive Immunity. Front. Immunol. 2012, 3, 131. [Google Scholar] [CrossRef]
- Guo, C.J.; Atochina-Vasserman, E.N.; Abramova, E.; Foley, J.P.; Zaman, A.; Crouch, E.; Beers, M.F.; Savani, R.C.; Gow, A.J.; Stamler, J. S-Nitrosylation of Surfactant Protein-D Controls Inflammatory Function. PLoS Biol. 2008, 6, e266. [Google Scholar] [CrossRef] [PubMed]
- Quillinan, N.; Deng, G.; Grewal, H.; Herson, P.S. Androgens and stroke: Good, bad or indifferent? Exp. Neurol. 2014, 259, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Zup, S.L.; Edwards, N.S.; McCarthy, M.M. Sex- and age-dependent effects of androgens on glutamate-induced cell death and intracellular calcium regulation in the developing hippocampus. Neuroscience 2014, 281, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Harman, S.M.; Metter, E.J.; Tobin, J.D.; Pearson, J.; Blackman, M.R.; BLSo, A. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J. Clin. Endocrinol. Metab. 2001, 86, 724–731. [Google Scholar] [CrossRef]
- Nakamura, T.; Xi, G.; Keep, R.F.; Wang, M.; Nagao, S.; Hoff, J.T. Effects of endogenous and exogenous estrogen on intracerebral hemorrhage-induced brain damage in rats. Acta Neurochir. Suppl. 2006, 96, 218–221. [Google Scholar]
- Bruno, A.; Akinwuntan, A.E.; Lin, C.; Close, B.; Davis, K.; Baute, V.; Aryal, T.; Brooks, D.; Hess, D.C.; Switzer, J.A.; et al. Simplified modified rankin scale questionnaire: Reproducibility over the telephone and validation with quality of life. Stroke 2011, 42, 2276–2279. [Google Scholar] [CrossRef]
- Luo, J.; Chen, D.; Mei, Y.; Li, H.; Qin, B.; Lin, X.; Chan, T.F.; Lai, K.P.; Kong, D. Comparative transcriptome findings reveal the neuroinflammatory network and potential biomarkers to early detection of ischemic stroke. J. Biol. Eng. 2023, 17, 50. [Google Scholar] [CrossRef]
- Hua, Y.; Xi, G.; Keep, R.F.; Wu, J.; Jiang, Y.; Hoff, J.T. Plasminogen Activator Inhibitor-1 Induction after Experimental Intracerebral Hemorrhage. J. Cereb Blood Flow Metab. 2002, 22, 55–61. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Z.; Zhang, J.H.; Tang, J.; Liu, X.; Tan, L.; Huang, Q.Y.; Feng, H. Receptor for Advanced Glycation End-Product Antagonist Reduces Blood–Brain Barrier Damage After Intracerebral Hemorrhage. Stroke 2015, 46, 1328–1336. [Google Scholar] [CrossRef]
- Lattanzi, S.; Di Napoli, M.; Ricci, S.; Divani, A.A. Matrix Metalloproteinases in Acute Intracerebral Hemorrhage. Neurotherapeutics 2020, 17, 484–496. [Google Scholar] [CrossRef]
- Gu, T.; Pan, J.; Chen, L.; Li, K.; Wang, L.; Zou, Z.; Shi, Q. Association of inflammatory cytokines expression in cerebrospinal fluid with the severity and prognosis of spontaneous intracerebral hemorrhage. BMC Neurol. 2024, 24, 7. [Google Scholar] [CrossRef] [PubMed]
- Rendevski, V.; Aleksovski, B.; Stojanov, D.; Aleksovski, V.; Rendevska, A.M.; Kolevska, M.; Stojanoski, K.; Gjorgoski, I. Peripheral glutamate and TNF-α levels in patients with intracerebral hemorrhage: Their prognostic values and interactions toward the formation of the edemal volume. Neurol. I Neurochir. Pol. 2018, 52, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Shao, G.F. Elevated serum IL-11, TNF α, and VEGF expressions contribute to the pathophysiology of hypertensive intracerebral hemorrhage (HICH). Neurol. Sci. 2016, 37, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Crocker, C.E.; Sharmeen, R.; Tran, T.T.; Khan, A.M.; Li, W.; Alcorn, J.L. Surfactant protein a attenuates generalized and localized neuroinflammation in neonatal mice. Brain Res. 2023, 1807, 148308. [Google Scholar] [CrossRef]
mRS 0~3 | mRS 4~6 | |
---|---|---|
Age, years, mean (SD) | 61.40 (12.42) | 63.15 (12.79) |
BMI, mean (SD) | 30.04 (8.07) | 29.17 (7.97) |
Hematoma volume, cm3, mean (SD) | 14.72 (16.28) | 43.70 (33.19) |
Past medical history of hypertension, N (%) | 14 | 17 |
Intraventricular bleeding, N (%) | 6 | 7 |
Lobar ICH, N (%) | 10 | 10 |
Non-lobar ICH, N (%) | 10 | 10 |
Day 1 | Day 2 | |||||
---|---|---|---|---|---|---|
mRS 0~3 | mRS 4~6 | p-Value | mRS 0~3 | mRS 4~6 | p-Value | |
Estrogen | 39.67 (62.80) | 37.90 (21.26) | 0.112 | 30.00 (34.74) | 34.97 (25.74) | 0.160 |
Progesterone | 0.37 (0.50) | 0.72 (0.51) | 0.014 | 0.26 (0.41) | 0.47 (0.47) | 0.02 |
Testosterone | 1.71 (1.76) | 1.97 (1.83) | 0.402 | 1.32 (1.23) | 1.57 (1.40) | 0.695 |
Ang-2 | 418.17 (309.67) | 619.21 (702.89) | 0.409 | 425.76 (261.81) | 784.73 (764.90) | 0.091 |
Pai-1 active | 12,436.83 (16,690.28) | 17,272.00 (16,639.43) | 0.12 | 8861.78 (6522.37) | 11,010.15 (7451.09) | 0.285 |
Pai-1 total | 28,682.40 (13,281.28) | 31,645.50 (23,096.07) | 0.882 | 26,032.70 (14,221.70) | 23,096.07 (14,121.35) | 0.925 |
RAGE | 382.65 (788.33) | 496.87 (580.41) | 0.06 | 662.02 (1610.11) | 725.16 (724.25) | 0.19 |
CRP Mean (SD) | 2.44 (4.38) | 2.96 (1.95) | 0.012 | 3.51 (5.35) | 9.7 (8.11) | <0.001 |
MMP-1 | 5.14 (4.02) | 6.43 (5.81) | 0.715 | 5.28 (4.81) | 6.28 (4.36) | 0.337 |
MMP-3 | 19.43 (16.77) | 21.69 (15.32) | 0.457 | 35.1 (46.53) | 35.8 (29.14) | 0.273 |
MMP-9 | 147.97 (121.8) | 137.39 (81.53.) | 0.839 | 121.25 (80.34) | 132.08 (60.68) | 0.508 |
IL-6 | 4.40 (5.00) | 17.83 (24.66) | <0.001 | 4.93 (4.45) | 10.55 (12.10) | 0.005 |
IL-8 | 7.72 (6.41) | 9.99 (5.31) | 0.039 | 6.79 (6.41) | 9.11 (5.28) | 0.12 |
TNF-α | 2.45 (1.86) | 2.77 (1.97) | 0.285 | 2.38 (1.62) | 2.91 (2.02) | 0.351 |
VEGF | 50.99 (22.29) | 63.95 (30.67) | 0.135 | 53.63 (22.45) | 57.83 (26.64) | 0.593 |
Surfprotd | 9.38 (6.84) | 7.59 (4.60) | 0.607 | 9.39 (6.61) | 6.56 (3.76) | 0.107 |
Log Ratio | Fold Change | |||||
---|---|---|---|---|---|---|
mRS 0~3 | mRS 4~6 | p-Value | mRS 0~3 | mRS 4~6 | p-Value | |
Estrogen | −0.30 (1.27) | −0.23 (0.65) | 0.825 | 1.15 (1.02) | 0.89 (0.48) | 0.922 |
Progesterone | −0.96 (1.68) | −0.73 (1.54) | 0.66 | 0.89 (0.87) | 0.98 (1.03) | 0.684 |
Testosterone | −0.10 (1.01) | −0.41 (0.82) | 0.294 | 1.18 (0.86) | 0.87 (0.49) | 0.409 |
Ang-2 | 0.13 (0.44) | 0.39 (0.62) | 0.13 | 1.15 (0.4) | 1.43 (0.6) | 0.19 |
Pai-1 active | −0.07 (1.23) | −0.48 (1.42) | 0.331 | 1.32 (1.17) | 1.23 (1.98) | 0.239 |
Pai-1 total | −0.23 (0.6) | −0.07 (0.78) | 0.675 | 0.92 (0.36) | 1.14 (0.99) | 0.675 |
RAGE | 0.56 (0.68) | 0.54 (1.11) | 0.947 | 1.67 (1.01) | 1.91 (1.45) | 0.882 |
CRP | 0.68 (1.12) | 1.72 (1.39) | 0.013 | 2.16 (1.83) | 5.24 (5.53) | 0.022 |
MMP-1 | −0.09 (0.72) | 0.12 (0.69) | 0.882 | 1.04 (0.45) | 1.265 (0.83) | 0.882 |
MMP-3 | 0.61 (1.65) | 0.70 (0.75) | 0.561 | 1.9 (1.65) | 1.85 (0.98) | 0.561 |
MMP-9 | −0.15 (0.73) | 0.01 (1.12) | 0.6 | 1.01 (0.48) | 1.35 (1.19) | 0.756 |
IL-6 | 0.4 (1.2) | −0.49 (1.23) | 0.026 | 1.81 (1.65) | 0.93 (0.61) | 0.026 |
IL-8 | −0.02 (0.85) | −0.14 (0.8) | 0.715 | 1.17 (0.84) | 1.02 (0.41) | 0.715 |
TNF-α | 0.02 (0.18) | 0.04 (0.5) | 0.913 | 1.03 (0.18) | 1.09 (0.46) | 0.882 |
VEGF | 0.08 (0.51) | −0.14 (0.46) | 0.156 | 1.12 (0.35) | 0.95 (0.29) | 0.108 |
Surfprotd | 0.04 (0.36) | −0.20 (0.31) | 0.036 | 1.06 (0.28) | 0.89 (0.19) | 0.027 |
Log Ratio | Fold Change | |||||
---|---|---|---|---|---|---|
Point Estimate | 95% CI | p-Value | Point Estimate | 95% CI | p-Value | |
Estrogen | 1.051 | (0.527, 2.095) | 0.888 | 0.606 | (0.236, 1.557) | 0.298 |
Progesterone | 1.095 | (0.732, 1.639) | 0.659 | 1.134 | (0.569, 2.257) | 0.721 |
Testosterone | 0.642 | (0.300, 1.376) | 0.717 | 0.446 | (0.152, 1.309) | 0.141 |
Ang-2 | 2.651 | (0.759, 9.264) | 0.127 | 3.205 | (0.819, 12.536) | 0.094 |
Pai-1 active | 0.775 | (0.470, 1.278) | 0.319 | 0.963 | (0.640, 1.447) | 0.854 |
Pai-1 total | 1.501 | (0.550, 4.095) | 0.428 | 1.776 | (0.501, 6.298) | 0.374 |
RAGE | 0.976 | (0.487, 1.956) | 0.945 | 1.189 | (0.695, 2.036) | 0.527 |
CRP | 2.037 | (1.118, 3.711) | 0.02 | 1.297 | (0.987, 1.706) | 0.062 |
MMP-1 | 1.615 | (0.624, 4.176) | 0.323 | 1.739 | (0.568, 5.323) | 0.333 |
MMP-3 | 1.181 | (0.528, 2.640) | 0.686 | 0.974 | (0.604, 1.573) | 0.916 |
MMP-9 | 1.308 | (0.576, 2.967) | 0.521 | 1.857 | (0.705, 4.889) | 0.21 |
IL-6 | 0.490 | (0.253, 0.950) | 0.035 | 0.365 | (0.136, 0.979) | 0.045 |
IL-8 | 0.830 | (0.372, 1.848) | 0.648 | 0.657 | (0.226, 1.911) | 0.441 |
TNF-α | 1.099 | (0.215, 5.620) | 0.909 | 1.737 | (0.248, 12.182) | 0.579 |
VEGF | 0.372 | (0.095, 1.465) | 0.158 | 0.184 | (0.023, 1.481) | 0.112 |
Surfprotd | 0.073 | (0.006, 0.894) | 0.041 | 0.016 | (<0.001, 0.822) | 0.04 |
Intercept (p-Value) | Estimate | Chi-Squared | p-Value | BH Adjusted p-Value | |
---|---|---|---|---|---|
IL-6, Day 1 | 1.61 (0.011) | −0.388 | 5.237 | 0.022 | 0.013 |
CRP, Day 2 | 1.19 (0.028) | <−0.001 | 4.884 | 0.027 | 0.025 |
CRP, Day 1 | 1.102 (0.065) | −0.15 | 3.654 | 0.065 | 0.038 |
Surfprotd, Day 2 | 1.048 (0.082) | −0.12 | 3.01 | 0.083 | 0.05 |
VEGF, Day 1 | 0.992 (0.116) | −0.1 | 2.49 | 0.114 | 0.063 |
Ang-2, Day 2 | 0.956 (0.147) | −0.08 | 2.1 | 0.147 | 0.075 |
TNF-α, Day 1 | 0.931 (0.169) | −0.07 | 1.87 | 0.169 | 0.088 |
MMP-1, Day 2 | 0.902 (0.189) | −0.06 | 1.75 | 0.189 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, Y.; Qi, W.; Covington, A.; Boone, B., IV; Kuhn, C.; Nixon, A.B.; King, N.K.K.; Kranz, P.F.; Christianson, T.; Thakkar, R.; et al. Pilot Exploratory Analysis of Serum Gonadal Hormones, Inflammatory Proteins, and Intracerebral Hemorrhage Outcomes. Int. J. Mol. Sci. 2025, 26, 8334. https://doi.org/10.3390/ijms26178334
Ng Y, Qi W, Covington A, Boone B IV, Kuhn C, Nixon AB, King NKK, Kranz PF, Christianson T, Thakkar R, et al. Pilot Exploratory Analysis of Serum Gonadal Hormones, Inflammatory Proteins, and Intracerebral Hemorrhage Outcomes. International Journal of Molecular Sciences. 2025; 26(17):8334. https://doi.org/10.3390/ijms26178334
Chicago/Turabian StyleNg, Yisi, Wenjing Qi, Anna Covington, Bobby Boone, IV, Cynthia Kuhn, Andrew B. Nixon, Nicolas Kon Kam King, Peter F. Kranz, Thomas Christianson, Roshni Thakkar, and et al. 2025. "Pilot Exploratory Analysis of Serum Gonadal Hormones, Inflammatory Proteins, and Intracerebral Hemorrhage Outcomes" International Journal of Molecular Sciences 26, no. 17: 8334. https://doi.org/10.3390/ijms26178334
APA StyleNg, Y., Qi, W., Covington, A., Boone, B., IV, Kuhn, C., Nixon, A. B., King, N. K. K., Kranz, P. F., Christianson, T., Thakkar, R., Laskowitz, D. T., Sasannejad, C., Bhima, M., Krishnamoorthy, V., Shah, S., Wagner, A. K., & James, M. L. (2025). Pilot Exploratory Analysis of Serum Gonadal Hormones, Inflammatory Proteins, and Intracerebral Hemorrhage Outcomes. International Journal of Molecular Sciences, 26(17), 8334. https://doi.org/10.3390/ijms26178334