Neurotrophins in Neurodevelopmental Disorders: A Narrative Review of the Literature
Abstract
1. Introduction
2. Materials and Methods
3. Neurotrophins: Biology and Function
4. Neurotrophins During Pregnancy and Early Perinatal Life
5. Neurotrophins Across Postnatal Development
6. Neurotrophins in ADHD
7. Neurotrophins in ASD
8. Neurotrophins in Non-Syndromic Intellectual Disability
9. Neurotrophins in Tic Disorders
10. Potential Therapeutic Role of Neurotrophins and Other Neurotrophic Factors
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
NDDs | Neurodevelopmental disorders |
DSM-5-TR | Statistical manual of mental disorders, fifth edition, text revision |
ADHD | Attention-deficit/hyperactivity disorder |
ASD | Autism spectrum disorder |
ID | Intellectual disability |
MeSH | Medical subject headings |
NGF | Nerve growth factor |
BDNF | Brain-derived neurotrophic factor |
NT-3 | Neurotrophin-3 |
NT-4/5 | Neurotrophin-4/5 |
GDNF | Glial-derived neurotrophic factor |
p75NTR | p75 neurotrophin receptor |
Trk receptors | Tyrosine receptor kinases |
CNS | Central nervous system |
Ras/MAPK/ERK | Rat sarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase |
PI3K/Akt | Phosphoinositide 3-kinase/protein kinase B |
PLCγ | Phospholipase C gamma |
VEGF | Vascular endothelial growth factor |
DRG | Dorsal root ganglia |
PNS | Peripheral nervous system |
EEG | Electroencephalogram |
SNPs | Single nucleotide polymorphisms |
NSID | Non-syndromic intellectual disability |
IQ | Intelligence quotient |
LTP | Long-term potentiation |
IL-1β | Interleukin-1β |
IL-6 | Interleukin-6 |
TNF-α | Tumor necrosis factor-α |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
Omega-3 FAs | Omega-3 fatty acids |
SVZ | Subventricular zone |
FGF | Fibroblast growth factor |
EGF | Epidermal growth factor |
IGF-1 | Insulin-like growth factor |
HGF | Hepatocyte growth factor |
References
- Thapar, A.; Cooper, M.; Rutter, M. Neurodevelopmental Disorders. Lancet Psychiatry 2017, 4, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Morris-Rosendahl, D.J.; Crocq, M.-A. Neurodevelopmental Disorders—The History and Future of a Diagnostic concept. Dialogues Clin. Neurosci. 2020, 22, 65–72. [Google Scholar] [CrossRef]
- Solmi, M.; Radua, J.; Olivola, M.; Croce, E.; Soardo, L.; Salazar De Pablo, G.; Il Shin, J.; Kirkbride, J.B.; Jones, P.; Kim, J.H.; et al. Age at Onset of Mental Disorders Worldwide: Large-Scale Meta-Analysis of 192 Epidemiological Studies. Mol. Psychiatry 2022, 27, 281–295. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; APA: Washington, DC, USA, 2013; pp. 59–66. [Google Scholar]
- Cortese, S.; Solmi, M.; Michelini, G.; Bellato, A.; Blanner, C.; Canozzi, A.; Eudave, L.; Farhat, L.C.; Højlund, M.; Köhler-Forsberg, O.; et al. Candidate Diagnostic Biomarkers for Neurodevelopmental Disorders in Children and Adolescents: A Systematic Review. World Psychiatry 2023, 22, 129–149. [Google Scholar] [CrossRef] [PubMed]
- Parenti, I.; Rabaneda, L.G.; Schoen, H.; Novarino, G. Neurodevelopmental Disorders: From Genetics to Functional Pathways. Trends Neurosci. 2020, 43, 608–621. [Google Scholar] [CrossRef]
- Scattolin, M.A.D.A.; Resegue, R.M.; Rosário, M.C.D. The Impact of the Environment on Neurodevelopmental Disorders in Early Childhood. J. Pediatr. 2022, 98, S66–S72. [Google Scholar] [CrossRef]
- Pejhan, S.; Siu, V.M.; Ang, L.C.; Del Bigio, M.R.; Rastegar, M. Differential Brain Region-specific Expression of MeCP2 and BDNF in Rett Syndrome Patients: A Distinct Grey-white Matter Variation. Neuropathol. Appl. Neurobiol. 2020, 46, 735–750. [Google Scholar] [CrossRef]
- Hu, Y.; Russek, S.J. BDNF and the Diseased Nervous System: A Delicate Balance between Adaptive and Pathological Processes of Gene Regulation. J. Neurochem. 2008, 105, 1–17. [Google Scholar] [CrossRef]
- Gumus, C.; Yazici, I.P.; Yazici, K.U.; Ustundag, B. Increased Serum Brain-Derived Neurotrophic Factor, Nerve Growth Factor, Glial-Derived Neurotrophic Factor and Galanin Levels in Children with Attention Deficit Hyperactivity Disorder, and the Effect of 10 Weeks Methylphenidate Treatment. Clin. Psychopharmacol. Neurosci. 2022, 20, 635–648. [Google Scholar] [CrossRef]
- Sgritta, M.; Vignoli, B.; Pimpinella, D.; Griguoli, M.; Santi, S.; Bialowas, A.; Wiera, G.; Zacchi, P.; Malerba, F.; Marchetti, C.; et al. Impaired Synaptic Plasticity in an Animal Model of Autism Exhibiting Early Hippocampal GABAergic-BDNF/TrkB Signaling Alterations. iScience 2023, 26, 105728. [Google Scholar] [CrossRef] [PubMed]
- Bothwell, M. NGF, BDNF, NT3, and NT4. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–15. ISBN 978-3-642-45105-8. [Google Scholar]
- Allen, S.J.; Dawbarn, D. Clinical Relevance of the Neurotrophins and Their Receptors. Clin. Sci. 2006, 110, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Sahay, A.; Kale, A.; Joshi, S. Role of Neurotrophins in Pregnancy and Offspring Brain Development. Neuropeptides 2020, 83, 102075. [Google Scholar] [CrossRef] [PubMed]
- Chaldakov, G.N.; Fiore, M.; Stankulov, I.S.; Manni, L.; Hristova, M.G.; Antonelli, A.; Ghenev, P.I.; Aloe, L. Neurotrophin Presence in Human Coronary Atherosclerosis and Metabolic Syndrome: A Role for NGF and BDNF in Cardiovascular Disease? Prog. Brain Res. 2004, 146, 279–289. [Google Scholar] [CrossRef]
- D’Angelo, A.; Ceccanti, M.; Petrella, C.; Greco, A.; Tirassa, P.; Rosso, P.; Ralli, M.; Ferraguti, G.; Fiore, M.; Messina, M.P. Role of Neurotrophins in Pregnancy, Delivery and Postpartum. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 247, 32–41. [Google Scholar] [CrossRef]
- Kim, S.-M.; Kim, J.-S. A Review of Mechanisms of Implantation. Dev. Reprod. 2017, 21, 351–359. [Google Scholar] [CrossRef]
- Kawamura, K.; Kawamura, N.; Sato, W.; Fukuda, J.; Kumagai, J.; Tanaka, T. Brain-Derived Neurotrophic Factor Promotes Implantation and Subsequent Placental Development by Stimulating Trophoblast Cell Growth and Survival. Endocrinology 2009, 150, 3774–3782. [Google Scholar] [CrossRef]
- Bernd, P. The Role of Neurotrophins During Early Development. Gene Expr. 2008, 14, 241–250. [Google Scholar] [CrossRef]
- Kermani, P.; Hempstead, B. Brain-Derived Neurotrophic Factor: A Newly Described Mediator of Angiogenesis. Trends Cardiovasc. Med. 2007, 17, 140–143. [Google Scholar] [CrossRef]
- Mayeur, S.; Lukaszewski, M.A.; Breton, C.; Storme, L.; Vieau, D.; Lesage, J. Do Neurotrophins Regulate the Feto-Placental Development? Med. Hypotheses 2011, 76, 726–728. [Google Scholar] [CrossRef]
- Stiles, J.; Jernigan, T.L. The Basics of Brain Development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef] [PubMed]
- Tometten, M.; Blois, S.; Arkk, P. Nerve Growth Factor in Reproductive Biology: Link between the Immune, Endocrine and Nervous System? In Chemical Immunology and Allergy; KARGER: Basel, Switzerland, 2005; pp. 135–148. ISBN 978-3-8055-7970-4. [Google Scholar]
- Garcés, M.F.; Sanchez, E.; Torres-Sierra, A.L.; Ruíz-Parra, A.I.; Angel-Müller, E.; Alzate, J.P.; Sánchez, Á.Y.; Gomez, M.A.; Romero, X.C.; Castañeda, Z.E.; et al. Brain-derived Neurotrophic Factor Is Expressed in Rat and Human Placenta and Its Serum Levels Are Similarly Regulated throughout Pregnancy in Both Species. Clin. Endocrinol. 2014, 81, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Bathina, S.; Das, U.N. Brain-Derived Neurotrophic Factor and Its Clinical Implications. Arch. Med. Sci. 2015, 6, 1164–1178. [Google Scholar] [CrossRef] [PubMed]
- Hempstead, B. The Many Faces of p75NTR. Curr. Opin. Neurobiol. 2002, 12, 260–267. [Google Scholar] [CrossRef]
- Manti, S.; Xerra, F.; Spoto, G.; Butera, A.; Gitto, E.; Di Rosa, G.; Nicotera, A.G. Neurotrophins: Expression of Brain–Lung Axis Development. Int. J. Mol. Sci. 2023, 24, 7089. [Google Scholar] [CrossRef]
- Segal, R.A. SELECTIVITY IN NEUROTROPHIN SIGNALING: Theme and Variations. Annu. Rev. Neurosci. 2003, 26, 299–330. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, C.; Feng, K.; Guo, S.; Huang, Z.; Wang, Y.; Jian, C. p75NTR Enhances Cognitive Dysfunction in a Mouse Alzheimer’s Disease Model by Inhibiting microRNA-210-3p-Mediated PCYT2 through Activation of NF-κB. Int. J. Biol. Macromol. 2023, 225, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Fudalej, E.; Justyniarska, M.; Kasarełło, K.; Dziedziak, J.; Szaflik, J.P.; Cudnoch-Jędrzejewska, A. Neuroprotective Factors of the Retina and Their Role in Promoting Survival of Retinal Ganglion Cells: A Review. Ophthalmic Res. 2021, 64, 345–355. [Google Scholar] [CrossRef]
- Fiore, M.; Talamini, L.; Angelucci, F.; Koch, T.; Aloe, L.; Korf, J. Prenatal Methylazoxymethanol Acetate Alters Behavior and Brain NGF Levels in Young Rats: A Possible Correlation with the Development of Schizophrenia-like Deficits. Neuropharmacology 1999, 38, 857–869. [Google Scholar] [CrossRef]
- Fiore, M.; Korf, J.; Antonelli, A.; Talamini, L.; Aloe, L. Long-Lasting Effects of Prenatal MAM Treatment on Water Maze Performance in Rats: Associations with Altered Brain Development and Neurotrophin Levels. Neurotoxicol. Teratol. 2002, 24, 179–191. [Google Scholar] [CrossRef]
- Sankorrakul, K.; Qian, L.; Thangnipon, W.; Coulson, E.J. Is There a Role for the P75 Neurotrophin Receptor in Mediating Degeneration during Oxidative Stress and after Hypoxia? J. Neurochem. 2021, 158, 1292–1306. [Google Scholar] [CrossRef]
- Numakawa, T.; Kajihara, R. The Role of Brain-Derived Neurotrophic Factor as an Essential Mediator in Neuronal Functions and the Therapeutic Potential of Its Mimetics for Neuroprotection in Neurologic and Psychiatric Disorders. Molecules 2025, 30, 848. [Google Scholar] [CrossRef]
- Walker, J.M. (Ed.) Neurotrophic Factors: An Overview. In Methods in Molecular Biology; Springer: New York, NY, USA, 2018; pp. 1–17. ISBN 978-1-4939-7570-9. [Google Scholar]
- Castelli, V.; Alfonsetti, M.; d’Angelo, M. Neurotrophic Factor-Based Pharmacological Approaches in Neurological Disorders. Neural Regen. Res. 2023, 18, 1220. [Google Scholar] [CrossRef]
- Kasemeier-Kulesa, J.C.; Morrison, J.A.; Lefcort, F.; Kulesa, P.M. TrkB/BDNF Signalling Patterns the Sympathetic Nervous System. Nat. Commun. 2015, 6, 8281. [Google Scholar] [CrossRef]
- Greenberg, M.E.; Xu, B.; Lu, B.; Hempstead, B.L. New Insights in the Biology of BDNF Synthesis and Release: Implications in CNS Function. J. Neurosci. 2009, 29, 12764–12767. [Google Scholar] [CrossRef]
- Wang, J.; Wen, Y.; Zhang, Q.; Yu, S.; Chen, Y.; Wu, X.; Zhang, Y.; Bao, X. Gene Mutational Analysis in a Cohort of Chinese Children with Unexplained Epilepsy: Identification of a New KCND3 Phenotype and Novel Genes Causing Dravet Syndrome. Seizure 2019, 66, 26–30. [Google Scholar] [CrossRef]
- Ali, N.H.; Al-kuraishy, H.M.; Al-Gareeb, A.I.; Alnaaim, S.A.; Saad, H.M.; Batiha, G.E.-S. The Molecular Pathway of P75 Neurotrophin Receptor (p75NTR) in Parkinson’s Disease: The Way of New Inroads. Mol. Neurobiol. 2024, 61, 2469–2480. [Google Scholar] [CrossRef]
- Muragaki, Y.; Timothy, N.; Leight, S.; Hempstead, B.L.; Chao, M.V.; Trojanowski, J.Q.; Lee, V.M.-Y. Expression of Trk Receptors in the Developing and Adult Human Central and Peripheral Nervous System. J. Comp. Neurol. 1995, 356, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Guzeloglu-Kayisli, O.; Kayisli, U.; Taylor, H. The Role of Growth Factors and Cytokines during Implantation: Endocrine and Paracrine Interactions. Semin. Reprod. Med. 2009, 27, 062–079. [Google Scholar] [CrossRef] [PubMed]
- Whitman, M.; Melton, D.A. Growth Factors in Early Embryogenesis. Annu. Rev. Cell Biol. 1989, 5, 93–117. [Google Scholar] [CrossRef]
- Armant, D.R.; Wang, J.; Liu, Z. Intracellular Signaling in the Developing Blastocyst as a Consequence of the Maternal-Embryonic Dialogue. Semin. Reprod. Med. 2000, 18, 273–288. [Google Scholar] [CrossRef]
- D’Amico, F.; Lugarà, C.; Luppino, G.; Giuffrida, C.; Giorgianni, Y.; Patanè, E.M.; Manti, S.; Gambadauro, A.; La Rocca, M.; Abbate, T. The Influence of Neurotrophins on the Brain–Lung Axis: Conception, Pregnancy, and Neonatal Period. Curr. Issues Mol. Biol. 2024, 46, 2528–2543. [Google Scholar] [CrossRef]
- Bienertova-Vasku, J.; Bienert, P.; Zlamal, F.; Splichal, Z.; Tomandl, J.; Tomandlova, M.; Hodicka, Z.; Ventruba, P.; Vasku, A. Brain-Derived Neurotrophic Factor and Ciliary Neurotrophic Factor in Maternal Plasma and Umbilical Cord Blood from Pre-Eclamptic and Physiological Pregnancies. J. Obstet. Gynaecol. J. Inst. Obstet. Gynaecol. 2013, 33, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Frank, P.; Barrientos, G.; Tirado-González, I.; Cohen, M.; Moschansky, P.; Peters, E.M.; Klapp, B.F.; Rose, M.; Tometten, M.; Blois, S.M. Balanced Levels of Nerve Growth Factor Are Required for Normal Pregnancy Progression. Reproduction 2014, 148, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Nico, B.; Mangieri, D.; Benagiano, V.; Crivellato, E.; Ribatti, D. Nerve Growth Factor as an Angiogenic Factor. Microvasc. Res. 2008, 75, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Zacchigna, S.; Lambrechts, D.; Carmeliet, P. Neurovascular Signalling Defects in Neurodegeneration. Nat. Rev. Neurosci. 2008, 9, 169–181. [Google Scholar] [CrossRef]
- Noga, O.; Englmann, C.; Hanf, G.; Grützkau, A.; Guhl, S.; Kunkel, G. Activation of the Specific Neurotrophin Receptors TrkA, TrkB and TrkC Influences the Function of Eosinophils. Clin. Exp. Allergy 2002, 32, 1348–1354. [Google Scholar] [CrossRef]
- Kobayashi, H.; Gleich, G.J.; Butterfield, J.H.; Kita, H. Human Eosinophils Produce Neurotrophins and Secrete Nerve Growth Factor on Immunologic Stimuli. Blood 2002, 99, 2214–2220. [Google Scholar] [CrossRef]
- Gilmore, J.H.; Jarskog, L.F.; Vadlamudi, S. Maternal Infection Regulates BDNF and NGF Expression in Fetal and Neonatal Brain and Maternal–Fetal Unit of the Rat. J. Neuroimmunol. 2003, 138, 49–55. [Google Scholar] [CrossRef]
- D’Souza, V.A.; Kilari, A.S.; Joshi, A.A.; Mehendale, S.S.; Pisal, H.M.; Joshi, S.R. Differential Regulation of Brain-Derived Neurotrophic Factor in Term and Preterm Preeclampsia. Reprod. Sci. 2014, 21, 230–235. [Google Scholar] [CrossRef]
- Tan, C.M.J.; Green, P.; Tapoulal, N.; Lewandowski, A.J.; Leeson, P.; Herring, N. The Role of Neuropeptide Y in Cardiovascular Health and Disease. Front. Physiol. 2018, 9, 1281. [Google Scholar] [CrossRef]
- Rathod, R.S.; Khaire, A.A.; Kale, A.A.; Joshi, S.R. Beneficial Effects of Omega-3 Fatty Acids and Vitamin B12 Supplementation on Brain Docosahexaenoic Acid, Brain Derived Neurotrophic Factor, and Cognitive Performance in the Second-generation WIstar Rats. BioFactors 2015, 41, 261–272. [Google Scholar] [CrossRef]
- Rathod, R.; Khaire, A.; Kale, A.; Joshi, S. A Combined Supplementation of Vitamin B12 and N-3 Polyunsaturated Fatty Acids across Two Generations Improves Nerve Growth Factor and Vascular Endothelial Growth Factor Levels in the Rat Hippocampus. Neuroscience 2016, 339, 376–384. [Google Scholar] [CrossRef]
- Sable, P.; Dangat, K.; Kale, A.; Joshi, S. Altered Brain Neurotrophins at Birth: Consequence of Imbalance in Maternal Folic Acid and Vitamin B12 Metabolism. Neuroscience 2011, 190, 127–134. [Google Scholar] [CrossRef]
- Sable, P.S.; Dangat, K.D.; Joshi, A.A.; Joshi, S.R. Maternal Omega 3 Fatty Acid Supplementation during Pregnancy to a Micronutrient-Imbalanced Diet Protects Postnatal Reduction of Brain Neurotrophins in the Rat Offspring. Neuroscience 2012, 217, 46–55. [Google Scholar] [CrossRef]
- Sable, P.S.; Kale, A.A.; Joshi, S.R. Prenatal Omega 3 Fatty Acid Supplementation to a Micronutrient Imbalanced Diet Protects Brain Neurotrophins in Both the Cortex and Hippocampus in the Adult Rat Offspring. Metabolism 2013, 62, 1607–1622. [Google Scholar] [CrossRef]
- Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Tirassa, P.; Iannitelli, A.; Ralli, M.; Vitali, M.; Ceccanti, M.; Chaldakov, G.N.; et al. Nerve Growth Factor, Stress and Diseases. Curr. Med. Chem. 2020, 28, 2943–2959. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Zhuang, Y.; Gomez-Pinilla, F. High-Fat Diet Transition Reduces Brain DHA Levels Associated with Altered Brain Plasticity and Behaviour. Sci. Rep. 2012, 2, 431. [Google Scholar] [CrossRef]
- Fiore, M.; Amendola, T.; Triaca, V.; Tirassa, P.; Alleva, E.; Aloe, L. Agonistic Encounters in Aged Male Mouse Potentiate the Expression of Endogenous Brain NGF and BDNF: Possible Implication for Brain Progenitor Cells’ Activation. Eur. J. Neurosci. 2003, 17, 1455–1464. [Google Scholar] [CrossRef] [PubMed]
- Von Bohlen Und Halbach, O.; Klausch, M. The Neurotrophin System in the Postnatal Brain—An Introduction. Biology 2024, 13, 558. [Google Scholar] [CrossRef] [PubMed]
- Aloe, L.; Iannitelli, A.; Angelucci, F.; Bersani, G.; Fiore, M. Studies in Animal Models and Humans Suggesting a Role of Nerve Growth Factor in Schizophrenia-like Disorders. Behav. Pharmacol. 2000, 11, 235–242. [Google Scholar] [CrossRef]
- Bersani, G.; Iannitelli, A.; Fiore, M.; Angelucci, F.; Aloe, L. Data and Hypotheses on the Role of Nerve Growth Factor and Other Neurotrophins in Psychiatric Disorders. Med. Hypotheses 2000, 55, 199–207. [Google Scholar] [CrossRef]
- Ciafrè, S.; Ferraguti, G.; Tirassa, P.; Iannitelli, A.; Ralli, M.; Greco, A.; Chaldakov, G.N.; Rosso, P.; Fico, E.; Messina, M.P.; et al. Nerve Growth Factor in the Psychiatric Brain. Riv. Psichiatr. 2020, 55, 4–15. [Google Scholar] [CrossRef]
- Galter, D.; Unsicker, K. Brain-Derived Neurotrophic Factor and trkB Are Essential for cAMP-Mediated Induction of the Serotonergic Neuronal Phenotype. J. Neurosci. Res. 2000, 61, 295–301. [Google Scholar] [CrossRef]
- Galter, D.; Unsicker, K. Sequential Activation of the 5-HT1A Serotonin Receptor and TrkB Induces the Serotonergic Neuronal Phenotype. Mol. Cell Neurosci. 2000, 15, 446–455. [Google Scholar] [CrossRef]
- Hyman, C.; Hofer, M.; Barde, Y.-A.; Juhasz, M.; Yancopoulos, G.D.; Squinto, S.P.; Lindsay, R.M. BDNF Is a Neurotrophic Factor for Dopaminergic Neurons of the Substantia Nigra. Nature 1991, 350, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Hagg, T. Neurotrophins Prevent Death and Differentially Affect Tyrosine Hydroxylase of Adult Rat Nigrostriatal Neuronsin Vivo. Exp. Neurol. 1998, 149, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.A.; Mobley, W.C.; Cho, J.; Wiegand, S.J.; Lindsay, R.M.; Mufson, E.J.; Kordower, J.H. Loss of Developing Cholinergic Basal Forebrain Neurons Following Excitotoxic Lesions of the Hippocampus: Rescue by Neurotrophins. Exp. Neurol. 1994, 130, 178–195. [Google Scholar] [CrossRef] [PubMed]
- Von Bohlen Und Halbach, O.; Krause, S.; Medina, D.; Sciarretta, C.; Minichiello, L.; Unsicker, K. Regional- and Age-Dependent Reduction in trkB Receptor Expression in the Hippocampus Is Associated with Altered Spine Morphologies. Biol. Psychiatry 2006, 59, 793–800. [Google Scholar] [CrossRef]
- Von Bohlen Und Halbach, O. Dendritic Spine Abnormalities in Mental Retardation. Cell Tissue Res. 2010, 342, 317–323. [Google Scholar] [CrossRef]
- Zhu, S.-W.; Codita, A.; Bogdanovic, N.; Hjerling-Leffler, J.; Ernfors, P.; Winblad, B.; Dickins, D.W.; Mohammed, A.H. Influence of Environmental Manipulation on Exploratory Behaviour in Male BDNF Knockout Mice. Behav. Brain Res. 2009, 197, 339–346. [Google Scholar] [CrossRef]
- Elhadidy, M.E.; Kilany, A.; Gebril, O.H.; Nashaat, N.H.; Zeidan, H.M.; Elsaied, A.; Hashish, A.F.; Abdelraouf, E.R. BDNF Val66Met Polymorphism: Suggested Genetic Involvement in Some Children with Learning Disorder. J. Mol. Neurosci. 2023, 73, 39–46. [Google Scholar] [CrossRef]
- Rovný, R.; Marko, M.; Michalko, D.; Mitka, M.; Cimrová, B.; Vančová, Z.; Jarčušková, D.; Dragašek, J.; Minárik, G.; Riečanský, I. BDNF Val66Met Polymorphism Is Associated with Consolidation of Episodic Memory during Sleep. Biol. Psychol. 2023, 179, 108568. [Google Scholar] [CrossRef]
- Giza, J.I.; Kim, J.; Meyer, H.C.; Anastasia, A.; Dincheva, I.; Zheng, C.I.; Lopez, K.; Bains, H.; Yang, J.; Bracken, C.; et al. The BDNF Val66Met Prodomain Disassembles Dendritic Spines Altering Fear Extinction Circuitry and Behavior. Neuron 2018, 99, 163–178.e6. [Google Scholar] [CrossRef]
- Lee, J.; Duan, W.; Mattson, M.P. Evidence That Brain-derived Neurotrophic Factor Is Required for Basal Neurogenesis and Mediates, in Part, the Enhancement of Neurogenesis by Dietary Restriction in the Hippocampus of Adult Mice. J. Neurochem. 2002, 82, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Frielingsdorf, H.; Simpson, D.R.; Thal, L.J.; Pizzo, D.P. Nerve Growth Factor Promotes Survival of New Neurons in the Adult Hippocampus. Neurobiol. Dis. 2007, 26, 47–55. [Google Scholar] [CrossRef]
- Scharfman, H.; Goodman, J.; Macleod, A.; Phani, S.; Antonelli, C.; Croll, S. Increased Neurogenesis and the Ectopic Granule Cells after Intrahippocampal BDNF Infusion in Adult Rats. Exp. Neurol. 2005, 192, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, K.; Zhao, M.; Sakata, K.; Akbarian, S.; Bates, B.; Jaenisch, R.; Lu, B. NT-3 Facilitates Hippocampal Plasticity and Learning and Memory by Regulating Neurogenesis. Learn. Mem. 2006, 13, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Camuso, S.; La Rosa, P.; Fiorenza, M.T.; Canterini, S. Pleiotropic Effects of BDNF on the Cerebellum and Hippocampus: Implications for Neurodevelopmental Disorders. Neurobiol. Dis. 2022, 163, 105606. [Google Scholar] [CrossRef]
- Hernández-del Caño, C.; Varela-Andrés, N.; Cebrián-León, A.; Deogracias, R. Neurotrophins and Their Receptors: BDNF’s Role in GABAergic Neurodevelopment and Disease. Int. J. Mol. Sci. 2024, 25, 8312. [Google Scholar] [CrossRef]
- Ferraguti, G.; Terracina, S.; Micangeli, G.; Lucarelli, M.; Tarani, L.; Ceccanti, M.; Spaziani, M.; D’Orazi, V.; Petrella, C.; Fiore, M. NGF and BDNF in Pediatrics Syndromes. Neurosci. Biobehav. Rev. 2023, 145, 105015. [Google Scholar] [CrossRef]
- Lorenzini, L.; Baldassarro, V.A.; Stanzani, A.; Giardino, L. Nerve Growth Factor: The First Molecule of the Neurotrophin Family. In Recent Advances in NGF and Related Molecules; Calzà, L., Aloe, L., Giardino, L., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Germany, 2021; Volume 1331, pp. 3–10. ISBN 978-3-030-74045-0. [Google Scholar]
- Omar, N.A.; Kumar, J.; Teoh, S.L. Neurotrophin-3 and Neurotrophin-4: The Unsung Heroes That Lies behind the Meninges. Neuropeptides 2022, 92, 102226. [Google Scholar] [CrossRef]
- Proenca, C.C.; Song, M.; Lee, F.S. Differential Effects of BDNF and Neurotrophin 4 (NT 4) on Endocytic Sorting of TrkB Receptors. J. Neurochem. 2016, 138, 397–406. [Google Scholar] [CrossRef]
- Ibáñez, C.F.; Andressoo, J.-O. Biology of GDNF and Its Receptors—Relevance for Disorders of the Central Nervous System. Neurobiol. Dis. 2017, 97, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-F.H.; Doherty, D.H.; Lile, J.D.; Bektesh, S.; Collins, F. GDNF: A Glial Cell Line-Derived Neurotrophic Factor for Midbrain Dopaminergic Neurons. Science 1993, 260, 1130–1132. [Google Scholar] [CrossRef]
- Webster, M.J.; Herman, M.M.; Kleinman, J.E.; Shannon Weickert, C. BDNF and trkB mRNA Expression in the Hippocampus and Temporal Cortex during the Human Lifespan. Gene Expr. Patterns 2006, 6, 941–951. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H.; Chen, C.; Li, S.; Zhang, Z.; Xu, H.; Zhu, F.; Liu, J.; Spencer, P.S.; Dai, Z.; et al. Proteomic Profile of Mouse Brain Aging Contributions to Mitochondrial Dysfunction, DNA Oxidative Damage, Loss of Neurotrophic Factor, and Synaptic and Ribosomal Proteins. Oxid. Med. Cell Longev. 2020, 2020, 1–21. [Google Scholar] [CrossRef]
- Tirassa, P.; Triaca, V.; Amendola, T.; Fiore, M.; Aloe, L. EGF and NGF Injected into the Brain of Old Mice Enhance BDNF and ChAT in Proliferating Subventricular Zone. J. Neurosci. Res. 2003, 72, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Sayal, K.; Prasad, V.; Daley, D.; Ford, T.; Coghill, D. ADHD in Children and Young People: Prevalence, Care Pathways, and Service Provision. Lancet Psychiatry 2018, 5, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Hart, E.L.; Lahey, B.B.; Loeber, R.; Applegate, B.; Frick, P.J. Developmental Change in Attention-Deficit Hyperactivity Disorder in Boys: A Four-Year Longitudinal Study. J. Abnorm. Child Psychol. 1995, 23, 729–749. [Google Scholar] [CrossRef]
- Lara, C.; Fayyad, J.; de Graaf, R.; Kessler, R.C.; Aguilar-Gaxiola, S.; Angermeyer, M.; Demytteneare, K.; de Girolamo, G.; Haro, J.M.; Jin, R.; et al. Childhood Predictors of Adult Attention-Deficit/Hyperactivity Disorder: Results from the World Health Organization World Mental Health Survey Initiative. Biol. Psychiatry 2009, 65, 46–54. [Google Scholar] [CrossRef]
- Biederman, J.; Petty, C.R.; Clarke, A.; Lomedico, A.; Faraone, S.V. Predictors of Persistent ADHD: An 11-Year Follow-up Study. J. Psychiatr. Res. 2011, 45, 150–155. [Google Scholar] [CrossRef]
- Kessler, R.C.; Green, J.G.; Adler, L.A.; Barkley, R.A.; Chatterji, S.; Faraone, S.V.; Finkelman, M.; Greenhill, L.L.; Gruber, M.J.; Jewell, M.; et al. Structure and Diagnosis of Adult Attention-Deficit/Hyperactivity Disorder: Analysis of Expanded Symptom Criteria from the Adult ADHD Clinical Diagnostic Scale. Arch. Gen. Psychiatry 2010, 67, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Amiri, A.; Torabi Parizi, G.; Kousha, M.; Saadat, F.; Modabbernia, M.-J.; Najafi, K.; Atrkar Roushan, Z. Changes in Plasma Brain-Derived Neurotrophic Factor (BDNF) Levels Induced by Methylphenidate in Children with Attention Deficit–Hyperactivity Disorder (ADHD). Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 47, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Sahin, S.; Yuce, M.; Alacam, H.; Karabekiroglu, K.; Say, G.N.; Salıs, O. Effect of Methylphenidate Treatment on Appetite and Levels of Leptin, Ghrelin, Adiponectin, and Brain-Derived Neurotrophic Factor in Children and Adolescents with Attention Deficit and Hyperactivity Disorder. Int. J. Psychiatry Clin. Pract. 2014, 18, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Akay, A.P.; Resmi, H.; Güney, S.A.; Erkuran, H.Ö.; Özyurt, G.; Sargin, E.; Topuzoglu, A.; Tufan, A.E. Serum Brain-Derived Neurotrophic Factor Levels in Treatment-Naïve Boys with Attention-Deficit/Hyperactivity Disorder Treated with Methylphenidate: An 8-Week, Observational Pretest–Posttest Study. Eur. Child Adolesc. Psychiatry 2018, 27, 127–135. [Google Scholar] [CrossRef]
- Shim, S.-H.; Hwangbo, Y.; Kwon, Y.-J.; Jeong, H.-Y.; Lee, B.-H.; Lee, H.-J.; Kim, Y.-K. Increased Levels of Plasma Brain-Derived Neurotrophic Factor (BDNF) in Children with Attention Deficit-Hyperactivity Disorder (ADHD). Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 1824–1828. [Google Scholar] [CrossRef]
- Sayyah, H. BDNF Plasma Level in ADHD Children: Correlation to Different Symptomatology. Curr. Psychiatry Egypt. 2009, 16, 284–294. [Google Scholar]
- Li, H.; Liu, L.; Tang, Y.; Ji, N.; Yang, L.; Qian, Q.; Wang, Y. Sex-Specific Association of Brain-Derived Neurotrophic Factor (BDNF) Val66Met Polymorphism and Plasma BDNF with Attention-Deficit/Hyperactivity Disorder in a Drug-Naïve Han Chinese Sample. Psychiatry Res. 2014, 217, 191–197. [Google Scholar] [CrossRef]
- Saadat, F.; Kosha, M.; Amiry, A.; Torabi, G. Brain-Derived Neurotrophic Factor as a Biomarker in Children with Attention Deficit-Hyperactivity Disorder. J. Krishna Inst. Med. Sci. Univ. 2015, 4, 10–17. [Google Scholar]
- Bilgiç, A.; Toker, A.; Işık, Ü.; Kılınç, İ. Serum Brain-Derived Neurotrophic Factor, Glial-Derived Neurotrophic Factor, Nerve Growth Factor, and Neurotrophin-3 Levels in Children with Attention-Deficit/Hyperactivity Disorder. Eur. Child Adolesc. Psychiatry 2017, 26, 355–363. [Google Scholar] [CrossRef]
- Taha, H.; Elsheshtawy, E.; Mohamed, S.; Al-Azazzy, O.; Elsayed, M.; Ibrahim, S.S. Correlates of Brain Derived Neurotrophic Factor in Children with Attention Deficit Hyperactivity Disorder: A Case-Control Study. Egypt. J. Psychiatry 2017, 38, 159. [Google Scholar] [CrossRef]
- Yurteri, N.; Şahin, İ.E.; Tufan, A.E. Altered Serum Levels of Vascular Endothelial Growth Factor and Glial-Derived Neurotrophic Factor but Not Fibroblast Growth Factor-2 in Treatment-Naive Children with Attention Deficit/Hyperactivity Disorder. Nord. J. Psychiatry 2019, 73, 302–307. [Google Scholar] [CrossRef]
- Chang, J.P.-C.; Mondelli, V.; Satyanarayanan, S.K.; Chiang, Y.-J.; Chen, H.-T.; Su, K.-P.; Pariante, C.M. Cortisol, Inflammatory Biomarkers and Neurotrophins in Children and Adolescents with Attention Deficit Hyperactivity Disorder (ADHD) in Taiwan. Brain. Behav. Immun. 2020, 88, 105–113. [Google Scholar] [CrossRef]
- El Ghamry, R.; El-Sheikh, M.; Abdel Meguid, M.; Nagib, S.; Aly El Gabry, D. Plasma Brain-Derived Neurotrophic Factor (BDNF) in Egyptian Children with Attention Deficit Hyperactivity Disorder. Middle East. Curr. Psychiatry 2021, 28, 22. [Google Scholar] [CrossRef]
- De Lucca, M.S.; Pimentel, M.E.O.; Raimundo, C.K.O.; Henriques, B.D.; Moreira, T.R.; Cardoso, S.A.; De Miranda, D.M. Brain-Derived Neurotrophic Factor (BDNF) Levels in Children and Adolescents before and after Stimulant Use a Systematic Review and Metanalysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 125, 110761. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Luo, W.; Li, Q.; Xu, R.; Wang, Q.; Huang, Q. Peripheral Brain-Derived Neurotrophic Factor in Attention-Deficit/Hyperactivity Disorder: A Comprehensive Systematic Review and Meta-Analysis. J. Affect. Disord. 2018, 227, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Polacchini, A.; Metelli, G.; Francavilla, R.; Baj, G.; Florean, M.; Mascaretti, L.G.; Tongiorgi, E. A Method for Reproducible Measurements of Serum BDNF: Comparison of the Performance of Six Commercial Assays. Sci. Rep. 2015, 5, 17989. [Google Scholar] [CrossRef]
- Polyakova, M.; Schlögl, H.; Sacher, J.; Schmidt-Kassow, M.; Kaiser, J.; Stumvoll, M.; Kratzsch, J.; Schroeter, M. Stability of BDNF in Human Samples Stored Up to 6 Months and Correlations of Serum and EDTA-Plasma Concentrations. Int. J. Mol. Sci. 2017, 18, 1189. [Google Scholar] [CrossRef]
- Liu, D.-Y.; Shen, X.-M.; Yuan, F.-F.; Guo, O.-Y.; Zhong, Y.; Chen, J.-G.; Zhu, L.-Q.; Wu, J. The Physiology of BDNF and Its Relationship with ADHD. Mol. Neurobiol. 2015, 52, 1467–1476. [Google Scholar] [CrossRef]
- Danhofer, P.; Pejčochová, J.; Dušek, L.; Rektor, I.; Ošlejšková, H. The Influence of EEG-Detected Nocturnal Centrotemporal Discharges on the Expression of Core Symptoms of ADHD in Children with Benign Childhood Epilepsy with Centrotemporal Spikes (BCECTS): A Prospective Study in a Tertiary Referral Center. Epilepsy Behav. 2018, 79, 75–81. [Google Scholar] [CrossRef]
- Gloss, D.; Varma, J.K.; Pringsheim, T.; Nuwer, M.R. Practice Advisory: The Utility of EEG Theta/Beta Power Ratio in ADHD Diagnosis: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2016, 87, 2375–2379. [Google Scholar] [CrossRef]
- Lee, E.H.; Choi, Y.S.; Yoon, H.S.; Bahn, G.H. Clinical Impact of Epileptiform Discharge in Children with Attention-Deficit/Hyperactivity Disorder (ADHD). J. Child Neurol. 2016, 31, 584–588. [Google Scholar] [CrossRef]
- El-Saied, M.M.; Afify, O.; Abdelraouf, E.R.; Oraby, A.; Hashish, A.F.; Zeidan, H.M. BDNF, proBDNF and proBDNF/BDNF Ratio with Electroencephalographic Abnormalities in Children with Attention Deficit Hyperactivity Disorder: Possible Relations to Cognition and Severity. Int. J. Dev. Neurosci. 2024, 84, 368–380. [Google Scholar] [CrossRef]
- Yeom, C.-W.; Park, Y.-J.; Choi, S.-W.; Bhang, S.-Y. Association of Peripheral BDNF Level with Cognition, Attention and Behavior in Preschool Children. Child Adolesc. Psychiatry Ment. Health 2016, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Borodinova, A.A.; Salozhin, S.V. Differences in the Biological Functions of BDNF and proBDNF in the Central Nervous System. Neurosci. Behav. Physiol. 2017, 47, 251–265. [Google Scholar] [CrossRef]
- Chen, N.-C.; Chuang, Y.-C.; Huang, C.-W.; Lui, C.-C.; Lee, C.-C.; Hsu, S.-W.; Lin, P.-H.; Lu, Y.-T.; Chang, Y.-T.; Hsu, C.-W.; et al. Interictal Serum Brain-Derived Neurotrophic Factor Level Reflects White Matter Integrity, Epilepsy Severity, and Cognitive Dysfunction in Chronic Temporal Lobe Epilepsy. Epilepsy Behav. 2016, 59, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Baxter, A.J.; Brugha, T.S.; Erskine, H.E.; Scheurer, R.W.; Vos, T.; Scott, J.G. The Epidemiology and Global Burden of Autism Spectrum Disorders. Psychol. Med. 2015, 45, 601–613. [Google Scholar] [CrossRef]
- Hazlett, H.C.; Poe, M.; Gerig, G.; Smith, R.G.; Provenzale, J.; Ross, A.; Gilmore, J.; Piven, J. Magnetic Resonance Imaging and Head Circumference Study of Brain Size in Autism: Birth Through Age 2 Years. Arch. Gen. Psychiatry 2005, 62, 1366. [Google Scholar] [CrossRef]
- Kates, W.R.; Burnette, C.P.; Eliez, S.; Strunge, L.A.; Kaplan, D.; Landa, R.; Reiss, A.L.; Pearlson, G.D. Neuroanatomic Variation in Monozygotic Twin Pairs Discordant for the Narrow Phenotype for Autism. Am. J. Psychiatry 2004, 161, 539–546. [Google Scholar] [CrossRef]
- Katoh-Semba, R.; Wakako, R.; Komori, T.; Shigemi, H.; Miyazaki, N.; Ito, H.; Kumagai, T.; Tsuzuki, M.; Shigemi, K.; Yoshida, F.; et al. Age-related Changes in BDNF Protein Levels in Human Serum: Differences between Autism Cases and Normal Controls. Int. J. Dev. Neurosci. 2007, 25, 367–372. [Google Scholar] [CrossRef]
- Lotrich, F.E.; Albusaysi, S.; Ferrell, R.E. Brain-Derived Neurotrophic Factor Serum Levels and Genotype: Association with Depression during Interferon-α Treatment. Neuropsychopharmacology 2013, 38, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Moy, S.S.; Nadler, J.J.; Perez, A.; Barbaro, R.P.; Johns, J.M.; Magnuson, T.R.; Piven, J.; Crawley, J.N. Sociability and Preference for Social Novelty in Five Inbred Strains: An Approach to Assess Autistic-like Behavior in Mice. Genes. Brain Behav. 2004, 3, 287–302. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Jing, D.; Bath, K.G.; Ieraci, A.; Khan, T.; Siao, C.-J.; Herrera, D.G.; Toth, M.; Yang, C.; McEwen, B.S.; et al. Genetic Variant BDNF (Val66Met) Polymorphism Alters Anxiety-Related Behavior. Science 2006, 314, 140–143. [Google Scholar] [CrossRef]
- Francis, K.; Dougali, A.; Sideri, K.; Kroupis, C.; Vasdekis, V.; Dima, K.; Douzenis, A. Brain-derived Neurotrophic Factor (BDNF) in Children with ASD and Their Parents: A 3-year Follow-up. Acta Psychiatr. Scand. 2018, 137, 433–441. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, L.; Zhu, T.; Huang, J.; Qu, Y.; Mu, D. Peripheral Brain-Derived Neurotrophic Factor in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Sci. Rep. 2016, 6, 31241. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.-Y.; Feng, J.-C.; Cao, C.; Wu, H.-T.; Loh, Y.P.; Cheng, Y. Association of Peripheral Blood Levels of Brain-Derived Neurotrophic Factor with Autism Spectrum Disorder in Children: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2016, 170, 1079. [Google Scholar] [CrossRef]
- Armeanu, R.; Mokkonen, M.; Crespi, B. Meta-Analysis of BDNF Levels in Autism. Cell Mol. Neurobiol. 2017, 37, 949–954. [Google Scholar] [CrossRef]
- Saghazadeh, A.; Rezaei, N. Brain-Derived Neurotrophic Factor Levels in Autism: A Systematic Review and Meta-Analysis. J. Autism Dev. Disord. 2017, 47, 1018–1029. [Google Scholar] [CrossRef]
- Cui, T.; Liu, Z.; Li, Z.; Han, Y.; Xiong, W.; Qu, Z.; Zhang, X. Serum Brain-Derived Neurotrophic Factor Concentration Is Different between Autism Spectrum Disorders and Intellectual Disability Children and Adolescents. J. Psychiatr. Res. 2024, 170, 355–360. [Google Scholar] [CrossRef]
- Xu, M.; Li, S.; Xing, Q.; Gao, R.; Feng, G.; Lin, Z.; St Clair, D.; He, L. Genetic Variants in the BDNF Gene and Therapeutic Response to Risperidone in Schizophrenia Patients: A Pharmacogenetic Study. Eur. J. Hum. Genet. 2010, 18, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.J.; Yang, S.Y.; Cho, I.H.; Park, M.; Kim, S.A. Polymorphisms of BDNF Gene and Autism Spectrum Disorders: Family Based Association Study with Korean Trios. Psychiatry Investig. 2014, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Omotosho, I.O.; Akinade, A.O.; Lagunju, I.A.; Yakubu, M.A. Oxidative Stress Indices in ASD Children in Sub-Sahara Africa. J. Neurodev. Disord. 2021, 13, 50. [Google Scholar] [CrossRef]
- Guindalini, C.; Mazzotti, D.R.; Castro, L.S.; D’Aurea, C.V.R.; Andersen, M.L.; Poyares, D.; Bittencourt, L.R.A.; Tufik, S. Brain-derived Neurotrophic Factor Gene Polymorphism Predicts Interindividual Variation in the Sleep Electroencephalogram. J. Neurosci. Res. 2014, 92, 1018–1023. [Google Scholar] [CrossRef]
- Ali Khan, Q.; Khan, R.; Verma, R.; Shah, S.D.; Vattikuti, B.; Khan, A.Z.; Shahzadi, A.; Abdi, P.; Anthony, M.; Farkouh, C.S.; et al. Non-Syndromic Intellectual Disability: An Experimental In-Depth Exploration of Inheritance Pattern, Phenotypic Presentation, and Genomic Composition. Cureus 2023, 15, e34085. [Google Scholar] [CrossRef]
- Dierssen, M.; Ramakers, G.J.A. Dendritic Pathology in Mental Retardation: From Molecular Genetics to Neurobiology. Genes. Brain Behav. 2006, 5, 48–60. [Google Scholar] [CrossRef]
- Weeber, E.J.; Sweatt, J.D. Molecular Neurobiology of Human Cognition. Neuron 2002, 33, 845–848. [Google Scholar] [CrossRef] [PubMed]
- Chelly, J.; Khelfaoui, M.; Francis, F.; Chérif, B.; Bienvenu, T. Genetics and Pathophysiology of Mental Retardation. Eur. J. Hum. Genet. 2006, 14, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Vaillend, C.; Poirier, R.; Laroche, S. Genes, Plasticity and Mental Retardation. Behav. Brain Res. 2008, 192, 88–105. [Google Scholar] [CrossRef]
- Nelson, K.B.; Grether, J.K.; Croen, L.A.; Dambrosia, J.M.; Dickens, B.F.; Jelliffe, L.L.; Hansen, R.L.; Phillips, T.M. Neuropeptides and Neurotrophins in Neonatal Blood of Children with Autism or Mental Retardation. Ann. Neurol. 2001, 49, 597–606. [Google Scholar] [CrossRef]
- Miyazaki, K.; Narita, N.; Sakuta, R.; Miyahara, T.; Naruse, H.; Okado, N.; Narita, M. Serum Neurotrophin Concentrations in Autism and Mental Retardation: A Pilot Study. Brain Dev. 2004, 26, 292–295. [Google Scholar] [CrossRef]
- Esnafoglu, E.; Adıgüzel, Ö. Association of BDNF Levels with IQ: Comparison of S100B and BDNF Levels in Typically Developing Children and Subjects with Neurologically Normal Nonsyndromic Intellectual Disability. J. Intellect. Disabil. Res. 2021, 65, 1073–1084. [Google Scholar] [CrossRef]
- Shaw, P.; Greenstein, D.; Lerch, J.; Clasen, L.; Lenroot, R.; Gogtay, N.; Evans, A.; Rapoport, J.; Giedd, J. Intellectual Ability and Cortical Development in Children and Adolescents. Nature 2006, 440, 676–679. [Google Scholar] [CrossRef]
- Thomason, M. BDNF Genotype Modulates Resting Functional Connectivity in Children. Front. Hum. Neurosci. 2009, 3, 55. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Cory, S.; Kidane, A.H.; Shirkey, N.J.; Marshak, S. Brain-derived Neurotrophic Factor and the Development of Structural Neuronal Connectivity. Dev. Neurobiol. 2010, 70, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Bekinschtein, P.; Cammarota, M.; Izquierdo, I.; Medina, J.H. Reviews: BDNF and Memory Formation and Storage. Neurosci. 2008, 14, 147–156. [Google Scholar] [CrossRef]
- Tyler, W.J.; Alonso, M.; Bramham, C.R.; Pozzo-Miller, L.D. From Acquisition to Consolidation: On the Role of Brain-Derived Neurotrophic Factor Signaling in Hippocampal-Dependent Learning. Learn. Mem. 2002, 9, 224–237. [Google Scholar] [CrossRef]
- Chapleau, C.A.; Larimore, J.L.; Theibert, A.; Pozzo-Miller, L. Modulation of Dendritic Spine Development and Plasticity by BDNF and Vesicular Trafficking: Fundamental Roles in Neurodevelopmental Disorders Associated with Mental Retardation and Autism. J. Neurodev. Disord. 2009, 1, 185–196. [Google Scholar] [CrossRef]
- Mizuno, M.; Yamada, K.; Olariu, A.; Nawa, H.; Nabeshima, T. Involvement of Brain-Derived Neurotrophic Factor in Spatial Memory Formation and Maintenance in a Radial Arm Maze Test in Rats. J. Neurosci. 2000, 20, 7116–7121. [Google Scholar] [CrossRef] [PubMed]
- Galloway, E.M.; Woo, N.H.; Lu, B. Chapter 15 Persistent Neural Activity in the Prefrontal Cortex: A Mechanism by Which BDNF Regulates Working Memory? In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2008; pp. 251–266. ISBN 978-0-444-53164-3. [Google Scholar]
- Aureli, A.; Del Beato, T.; Sebastiani, P.; Marimpietri, A.; Melillo, C.V.; Sechi, E.; Di Loreto, S. Attention-Deficit Hyperactivity Disorder and Intellectual Disability: A Study of Association with Brain-Derived Neurotrophic Factor Gene Polymorphisms. Int. J. Immunopathol. Pharmacol. 2010, 23, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Aureli, A.; Del Beato, T.; Sebastiani, P.; Di Rocco, M.; Marimpietri, A.E.; Graziani, A. Potential Biomarkers for Intellectual Disability: A Gipsy Family Study. Hered. Genet. 2014, 3, 1000138. [Google Scholar] [CrossRef]
- Gray, J.; Yeo, G.S.H.; Cox, J.J.; Morton, J.; Adlam, A.-L.R.; Keogh, J.M.; Yanovski, J.A.; El Gharbawy, A.; Han, J.C.; Tung, Y.C.L.; et al. Hyperphagia, Severe Obesity, Impaired Cognitive Function, and Hyperactivity Associated with Functional Loss of One Copy of the Brain-Derived Neurotrophic Factor (BDNF) Gene. Diabetes 2006, 55, 3366–3371. [Google Scholar] [CrossRef]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; et al. The BDNF Val66met Polymorphism Affects Activity-Dependent Secretion of BDNF and Human Memory and Hippocampal Function. Cell 2003, 112, 257–269. [Google Scholar] [CrossRef]
- Black, K.J.; Black, E.R.; Greene, D.J.; Schlaggar, B.L. Provisional Tic Disorder: What to Tell Parents When Their Child First Starts Ticcing. F1000Research 2016, 5, 696. [Google Scholar] [CrossRef]
- Cohen, S.C.; Leckman, J.F.; Bloch, M.H. Clinical Assessment of Tourette Syndrome and Tic Disorders. Neurosci. Biobehav. Rev. 2013, 37, 997–1007. [Google Scholar] [CrossRef]
- Sarchioto, M.; Frey, J.; Ganos, C.; Gilbert, D.L.; Hartmann, A.; Hedderly, T.; Isaacs, D.; Malaty, I.; Martindale, J.M.; Medina Escobar, A.; et al. Diagnostic Criteria for Primary Tic Disorders: Time for Reappraisal. Mov. Disord. 2024, 39, 1276–1281. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Hao, J.; Jiang, K.; Wu, M.; Zhao, X.; Zhang, X. Neuroinflammation and Pathways That Contribute to Tourette Syndrome. Ital. J. Pediatr. 2025, 51, 63. [Google Scholar] [CrossRef]
- Schulte-Herbruggen, O.; Braun, A.; Rochlitzer, S.; Jockers-Scherubl, M.; Hellweg, R. Neurotrophic Factors—A Tool for Therapeutic Strategies in Neurological, Neuropsychiatric and Neuroimmunological Diseases? Curr. Med. Chem. 2007, 14, 2318–2329. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Wang, Z.; Zhang, Y.-M.; Luo, J.-G.; Kong, L.-Y. Bioassay-Guided Isolation of Anti-Inflammatory Components from the Bulbs of Lilium Brownii Var. Viridulum and Identifying the Underlying Mechanism through Acting on the NF-κB/MAPKs Pathway. Molecules 2017, 22, 506. [Google Scholar] [CrossRef]
- Sleiman, S.F.; Henry, J.; Al-Haddad, R.; El Hayek, L.; Abou Haidar, E.; Stringer, T.; Ulja, D.; Karuppagounder, S.S.; Holson, E.B.; Ratan, R.R.; et al. Exercise Promotes the Expression of Brain Derived Neurotrophic Factor (BDNF) through the Action of the Ketone Body β-Hydroxybutyrate. eLife 2016, 5, e15092. [Google Scholar] [CrossRef]
- Long, H.; Ruan, J.; Zhang, M.; Wang, C.; Huang, Y. Rhynchophylline Attenuates Tourette Syndrome via BDNF/NF-κB Pathway In Vivo and In Vitro. Neurotox. Res. 2019, 36, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Karayağmurlu, A.; Öğütlü, H.; Esin, İ.S.; Dursun, O.B.; Kızıltunç, A. The Role of Nerve Growth Factor (NGF) and Glial Cell Line-Derived Neurotrophic Factor (GDNF) in Tic Disorders. Pak. J. Med. Sci. 2018, 34, 844–848. [Google Scholar] [CrossRef]
- Tourette Syndrome Association International Consortium for Genetics. Genome Scan for Tourette Disorder in Affected-Sibling-Pair and Multigenerational Families. Am. J. Hum. Genet. 2007, 80, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Barr, C.L.; Wigg, K.G.; Pakstis, A.J.; Kurlan, R.; Pauls, D.; Kidd, K.K.; Tsui, L.-C.; Sandor, P. Genome Scan for Linkage to Gilles de La Tourette Syndrome. Am. J. Med. Genet. 1999, 88, 437–445. [Google Scholar] [CrossRef]
- Pascual, A.; Hidalgo-Figueroa, M.; Piruat, J.I.; Pintado, C.O.; Gómez-Díaz, R.; López-Barneo, J. Absolute Requirement of GDNF for Adult Catecholaminergic Neuron Survival. Nat. Neurosci. 2008, 11, 755–761. [Google Scholar] [CrossRef]
- Graybiel, A.M. Habits, Rituals, and the Evaluative Brain. Annu. Rev. Neurosci. 2008, 31, 359–387. [Google Scholar] [CrossRef] [PubMed]
- Huertas-Fernández, I.; Gómez-Garre, P.; Madruga-Garrido, M.; Bernal-Bernal, I.; Bonilla-Toribio, M.; Martín-Rodríguez, J.F.; Cáceres-Redondo, M.T.; Vargas-González, L.; Carrillo, F.; Pascual, A.; et al. GDNF Gene is Associated with Tourette Syndrome in a Family Study. Mov. Disord. 2015, 30, 1115–1120. [Google Scholar] [CrossRef]
- Wang, L.-J.; Wu, C.-C.; Lee, M.-J.; Chou, M.-C.; Lee, S.-Y.; Chou, W.-J. Peripheral Brain-Derived Neurotrophic Factor and Contactin-1 Levels in Patients with Attention-Deficit/Hyperactivity Disorder. J. Clin. Med. 2019, 8, 1366. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.G.; Pratesi, R.; Paz, G.S.C.; Dos Santos, M.A.A.L.; Uenishi, R.H.; Nakano, E.Y.; Gandolfi, L.; Pratesi, C.B. Assessment of BDNF Serum Levels as a Diagnostic Marker in Children with Autism Spectrum Disorder. Sci. Rep. 2020, 10, 17348. [Google Scholar] [CrossRef]
- Robinson-Agramonte, M.D.L.A.; Michalski, B.; Vidal-Martinez, B.; Hernández, L.R.; Santiesteban, M.W.; Fahnestock, M. BDNF, proBDNF and IGF-1 Serum Levels in Naïve and Medicated Subjects with Autism. Sci. Rep. 2022, 12, 13768. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-H.; Shi, X.-J.; Fan, F.-C.; Cheng, Y. Peripheral Blood Neurotrophic Factor Levels in Children with Autism Spectrum Disorder: A Meta-Analysis. Sci. Rep. 2021, 11, 15. [Google Scholar] [CrossRef]
- Bazzari, A.H.; Bazzari, F.H. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int. J. Mol. Sci. 2022, 23, 8417. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.d.M.; Islam, M.d.R.; Supti, F.A.; Dhar, P.S.; Shohag, S.; Ferdous, J.; Shuvo, S.K.; Akter, A.; Hossain, M.d.S.; Sharma, R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: At a Glance. Mol. Neurobiol. 2023, 60, 4206–4231. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Contreras, A.Y.; Campos-Ordonez, T.; Gonzalez-Castaneda, R.E.; Gonzalez-Perez, O. Alterations of Growth Factors in Autism and Attention-Deficit/Hyperactivity Disorder. Front. Psychiatry 2017, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Terwisscha Van Scheltinga, A.F.; Bakker, S.C.; Kahn, R.S.; Kas, M.J.H. Fibroblast Growth Factors in Neurodevelopment and Psychopathology. Neurosci. 2013, 19, 479–494. [Google Scholar] [CrossRef]
- Réthelyi, J.M.; Vincze, K.; Schall, D.; Glennon, J.; Berkel, S. The Role of Insulin/IGF1 Signalling in Neurodevelopmental and Neuropsychiatric Disorders—Evidence from Human Neuronal Cell Models. Neurosci. Biobehav. Rev. 2023, 153, 105330. [Google Scholar] [CrossRef]
- Riikonen, R. Insulin-Like Growth Factors in the Pathogenesis of Neurological Diseases in Children. Int. J. Mol. Sci. 2017, 18, 2056. [Google Scholar] [CrossRef]
- Spoto, G.; Butera, A.; Albertini, M.L.; Consoli, C.; Ceraolo, G.; Nicotera, A.G.; Rosa, G.D. The Ambiguous Role of Growth Factors in Autism: What Do We Really Know? Int. J. Mol. Sci. 2025, 26, 1607. [Google Scholar] [CrossRef]
- Gravesteijn, E.; Mensink, R.P.; Plat, J. Effects of Nutritional Interventions on BDNF Concentrations in Humans: A Systematic Review. Nutr. Neurosci. 2022, 25, 1425–1436. [Google Scholar] [CrossRef]
- Vahdatpour, C.; Dyer, A.H.; Tropea, D. Insulin-Like Growth Factor 1 and Related Compounds in the Treatment of Childhood-Onset Neurodevelopmental Disorders. Front. Neurosci. 2016, 10, 450. [Google Scholar] [CrossRef]
- Mitchelmore, C.; Gede, L. Brain Derived Neurotrophic Factor: Epigenetic Regulation in Psychiatric Disorders. Brain Res. 2014, 1586, 162–172. [Google Scholar] [CrossRef]
- Binder, D.K.; Scharfman, H.E. Mini Review. Growth Factors 2004, 22, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Neeper, S.A.; Gómez-Pinilla, F.; Choi, J.; Cotman, C.W. Physical Activity Increases mRNA for Brain-Derived Neurotrophic Factor and Nerve Growth Factor in Rat Brain. Brain Res. 1996, 726, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Oliff, H.S.; Berchtold, N.C.; Isackson, P.; Cotman, C.W. Exercise-Induced Regulation of Brain-Derived Neurotrophic Factor (BDNF) Transcripts in the Rat Hippocampus. Mol. Brain Res. 1998, 61, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Seifert, T.; Brassard, P.; Wissenberg, M.; Rasmussen, P.; Nordby, P.; Stallknecht, B.; Adser, H.; Jakobsen, A.H.; Pilegaard, H.; Nielsen, H.B.; et al. Endurance Training Enhances BDNF Release from the Human Brain. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2010, 298, R372–R377. [Google Scholar] [CrossRef]
- Vivar, C.; Potter, M.C.; van Praag, H. All About Running: Synaptic Plasticity, Growth Factors and Adult Hippocampal Neurogenesis. In Current Topics in Behavioral Neurosciences; Springer: Berlin/Heidelberg, Germany, 2012; pp. 189–210. ISBN 978-3-642-36231-6. [Google Scholar]
- Ziaei, S.; Mohammadi, S.; Hasani, M.; Morvaridi, M.; Belančić, A.; Daneshzad, E.; Saleh, S.A.K.; Adly, H.M.; Heshmati, J. A Systematic Review and Meta-Analysis of the Omega-3 Fatty Acids Effects on Brain-Derived Neurotrophic Factor (BDNF). Nutr. Neurosci. 2024, 27, 715–725. [Google Scholar] [CrossRef]
Primary Receptor | Key Functions | Role | |
---|---|---|---|
Brain-derived neurotrophic factor (BDNF) [82,83] | TrkB | Synaptic plasticity, learning and memory, neuronal survival | High in early development; supports hippocampal and cortical maturation |
Nerve growth factor (NGF) [84,85] | TrkA | Neuronal differentiation, survival of cholinergic neurons, nociception | Peripheral and central nervous system development |
Neurotrophin-3 (NT-3) [81,86] | TrkC (TrkB) | Proprioceptive neuron development, oligodendrocyte maturation | Spinal cord and sensory neuron development |
Neurotrophin-4/5 (NT-4/5) [86,87] | TrkB | Overlapping functions with BDNF, neuromuscular development | Supports synaptic maintenance during development |
Glial-derived neurotrophic factor (GDNF) [88,89] | RET (via GFRα1 co-receptor) | Promotes survival of dopaminergic and motor neurons, kidney development | Critical for enteric nervous system and motor neuron maturation |
Key Findings | Mechanistic Implications | |
---|---|---|
ADHD | BDNF: Overall levels not significantly different from controls, but higher in males (linked to poorer cognition) and in females (linked to fewer attentional errors) [111,173]. Elevated pro-BDNF/BDNF ratio due to reduced BDNF, associated with cognitive deficits and EEG abnormalities [118]. NT-3: Elevated vs. controls, no link to symptom severity [105]. NT-4: Data insufficient. NGF: No consistent difference [105]. GDNF: Elevated; not correlated with symptom severity [105]. | Sex-specific BDNF effects on attention/executive circuits; altered pro-BDNF/BDNF ratio may impair synaptic maturation. Elevated NT-3 may reflect adaptive neuroplasticity. GDNF changes may indicate compensatory neuroprotection. |
ASD | BDNF: Meta-analyses show higher levels in children, linked to abnormal brain growth, connectivity changes, neuroinflammation. Lower pro-BDNF in some medicated cases [174,175]. NT-3: No significant difference [176]. NT-4: No significant difference [176]. NGF: Modestly higher in meta-analyses [176]. GDNF: Limited data, mechanistically relevant to dopaminergic survival. | Dysregulated BDNF/pro-BDNF balance may disrupt learning/memory circuits; NGF and GDNF may influence neuroimmune and dopaminergic pathways. |
NSID | BDNF: Higher levels associated with better cognitive scores and cortical plasticity [177]. Other neurotrophins: data limited. | BDNF supports cortical development and long-term potentiation; disruption likely contributes to cognitive impairment. |
Tic disorders | BDNF: Variably altered; may modulate neuroinflammation [177]. Data on NT-3, NT-4, NGF, GDNF limited. | BDNF modulates neuroimmune balance; GDNF critical for striatal interneurons and dopaminergic function. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panvino, F.; Paparella, R.; Tarani, F.; Lombardi, C.; Ferraguti, G.; Pisani, F.; Fiore, M.; Pancheva, R.; Ardizzone, I.; Tarani, L. Neurotrophins in Neurodevelopmental Disorders: A Narrative Review of the Literature. Int. J. Mol. Sci. 2025, 26, 8335. https://doi.org/10.3390/ijms26178335
Panvino F, Paparella R, Tarani F, Lombardi C, Ferraguti G, Pisani F, Fiore M, Pancheva R, Ardizzone I, Tarani L. Neurotrophins in Neurodevelopmental Disorders: A Narrative Review of the Literature. International Journal of Molecular Sciences. 2025; 26(17):8335. https://doi.org/10.3390/ijms26178335
Chicago/Turabian StylePanvino, Fabiola, Roberto Paparella, Francesca Tarani, Chiara Lombardi, Giampiero Ferraguti, Francesco Pisani, Marco Fiore, Rouzha Pancheva, Ignazio Ardizzone, and Luigi Tarani. 2025. "Neurotrophins in Neurodevelopmental Disorders: A Narrative Review of the Literature" International Journal of Molecular Sciences 26, no. 17: 8335. https://doi.org/10.3390/ijms26178335
APA StylePanvino, F., Paparella, R., Tarani, F., Lombardi, C., Ferraguti, G., Pisani, F., Fiore, M., Pancheva, R., Ardizzone, I., & Tarani, L. (2025). Neurotrophins in Neurodevelopmental Disorders: A Narrative Review of the Literature. International Journal of Molecular Sciences, 26(17), 8335. https://doi.org/10.3390/ijms26178335