Comparison of Current Immunotherapy Approaches and Novel Anti-Cancer Vaccine Modalities for Clinical Application
Abstract
1. Introduction
2. Tumorigenesis and Immunotherapy Approaches
2.1. Limitations of Traditional Oncology Approaches
2.2. Immunotherapy Modalities to Overcome Traditional Therapy Limitations
2.3. Limitations of Immunotherapies
3. Anti-Cancer Vaccine Modalities
3.1. Preventative Vaccines
3.2. Therapeutic Vaccines
3.2.1. Tumour Antigens Used in Vaccines
3.2.2. Nucleic Acid Vaccines
3.2.3. Whole Cell Vaccines
3.2.4. Oncolytic Viruses
Vaccine Platform | Mechanism of Action | Key Clinical Developments 1 | Advantages & Limitations |
---|---|---|---|
mRNA-Based Vaccines | mRNA molecules encoding TAAs or viral antigens are delivered into host cells, where they are translated into proteins that elicit targeted immune responses. |
| Rapid development enabled by synthetic mRNA technology; scalable manufacturing; strong antigen expression; adaptability to personalised neoantigens. They offer high tumour specificity, favourable safety profile due to non-integrating nature, and broad design flexibility. Limitations include cold-chain logistics, inflammatory side effects, and variable immunogenicity in patients, especially those with immune suppression or unfavourable tumour microenvironments [115,138,139]. |
DNA-Based Vaccines | Plasmids (circular DNA) or other DNA constructs encoding TAAs or viral antigens are delivered into the body (often via electroporation), where they enter host cells and express the encoded antigen, triggering an immune response. |
| Excellent stability, ease of manufacturing, and safety profiles [146]. They can be stored without cold-chain requirements and enable multivalent antigen design [146], which can broaden immune responses while also offering tumour specificity and scalability. However, they often require advanced delivery methods (e.g., electroporation) to achieve sufficient transfection efficiency and typically elicit lower immunogenicity compared to mRNA or viral vector platforms, with adjuvants or ICIs offering potential solutions to enhance efficacy [126]. Challenges with antigen presentation and immunosuppressive TME can limit effectiveness. |
Peptide-Based Vaccines | Short AA sequences derived from TAAs or viral proteins are delivered with adjuvants to enhance immune activation and stimulate antigen-specific T cells to target cancer cells. |
| Highly specific, targeting defined tumour antigens with a favourable safety profile. They can be manufactured quickly and cost-effectively. However, they often require adjuvants for optimal immunogenicity and may exhibit limited efficacy in patients with immune tolerance or low antigen expression. Additionally, challenges with antigen presentation and TME can hinder their ability to induce robust immune responses [150]. |
Dendritic Cell Vaccines | Autologous dendritic cells are isolated, loaded with tumour antigens (often neoantigens or TAAs), and reintroduced into the patient to stimulate a targeted T cell response against cancer cells. |
| Strong immune activation by utilising the body’s own dendritic cells to target specific tumour antigens, potentially overcoming immune tolerance and inducing long-term immunity. However, they face limitations related to complex and costly manufacturing processes (patient-specific personalisation adds manufacturing burden), immunosuppressive TME, and variable clinical success, with many trials showing modest outcomes. Additionally, the immune response may not be long-lasting without booster shots [130,151]. |
Oncolytic Virus Vaccines | Engineered viruses designed to selectively infect and kill cancer cells while stimulating the immune response. |
| Targeted tumour destruction, immune activation, and potential for synergistic effects with other therapies. However, limitations include immunity to viral vectors, TME challenges, tumour heterogenicity, limited viral replication, and complex manufacturing, necessitating further research to improve their clinical impact [133]. |
Viral vector-based vaccines | Viral particles where the genomes have been modified to contain genes coding for cancer antigens. |
| Induce a robust innate and humoral and cellular immunity, have intrinsic adjuvant properties due to the expression of PAMPs, can be engineered to be replication-competent or replication-deficient allowing for improved safety and reactogenicity [133] |
3.3. Considerations in the Application of Therapeutic Vaccines in Clinical Settings
3.4. Combination Therapies
4. Advancements Towards Vaccine Efficacy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Health Topics: Cancer. 2023. Available online: https://www.who.int/health-topics/cancer#tab=tab_1 (accessed on 12 May 2025).
- World Health Organization (WHO). Global Cancer Burden Growing, Amidst Mounting Need for Services. 2025. Available online: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services (accessed on 18 May 2025).
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 2022, 72, 409–436. [Google Scholar] [CrossRef]
- Garvey, M. Intestinal Dysbiosis: Microbial Imbalance Impacts on Colorectal Cancer Initiation, Progression and Disease Mitigation. Biomedicines 2024, 12, 740. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Goddard, K.A.; Feuer, E.J.; Mandelblatt, J.S.; Meza, R.; Holford, T.R.; Jeon, J.; Lansdorp-Vogelaar, I.; Gulati, R.; Stout, N.K.; Howlader, N.; et al. Estimation of cancer deaths averted from prevention, screening, and treatment efforts, 1975–2020. JAMA Oncol. 2025, 11, 162–167. [Google Scholar] [CrossRef]
- Im, C.; Hasan, H.; Stene, E.; Monick, S.; Rader, R.K.; Sheade, J.; Wolfe, H.; Lu, Z.; Spector, L.G.; McDonald, A.J.; et al. Treatment, toxicity, and mortality after subsequent breast cancer in female survivors of childhood cancer. Nat. Commun. 2025, 16, 3088. [Google Scholar] [CrossRef]
- Jasra, S.; Anampa, J. Anthracycline use for early stage breast cancer in the modern era: A review. Curr. Treat. Options Oncol. 2018, 19, 30. [Google Scholar] [CrossRef] [PubMed]
- Moss, E.L.; Taneja, S.; Munir, F.; Kent, C.; Robinson, L.; Potdar, N.; Sarhanis, P.; McDermott, H. Iatrogenic Menopause After Treatment for Cervical Cancer. Clin. Oncol. 2016, 28, 766–775. [Google Scholar] [CrossRef]
- Belitsky, G.A.; Kirsanov, K.I.; Lesovaya, E.A.; Yakubovskaya, M.G. Prevention of therapy-related malignances in cancer survivors. Oncotarget 2019, 10, 2114–2115. [Google Scholar] [CrossRef] [PubMed]
- Maijaroen, S.; Klaynongsruang, S.; Roytrakul, S.; Konkchaiyaphum, M.; Taemaitree, L.; Jangpromma, N. An Integrated Proteomics and Bioinformatics Analysis of the Anticancer Properties of RT2 Antimicrobial Peptide on Human Colon Cancer (Caco-2) Cells. Molecules 2022, 27, 1426. [Google Scholar] [CrossRef]
- Khushalani, N.I.; Harrington, K.J.; Melcher, A.; Bommareddy, P.K.; Zamarin, D. Breaking the barriers in cancer care: The next generation of herpes simplex virus-based oncolytic immunotherapies for cancer treatment. Mol. Ther.-Oncolytics 2023, 31, 100729. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, C.; Doepker, M.P.; Zager, J.S. Talimogene laherparepvec: Overview, combination therapy and current practices. Melanoma Manag. 2016, 3, 267–272. [Google Scholar] [CrossRef]
- Ferrucci, P.F.; Pala, L.; Conforti, F.; Cocorocchio, E. Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers 2021, 13, 1383. [Google Scholar] [CrossRef]
- Mullard, A. FDA approves first-in-class AKT inhibitor. Nat. Rev. Drug Discov. 2024, 23, 9. [Google Scholar] [CrossRef]
- Neupane, N.; Bawek, S.; Gurusinghe, S.; Ghaffary, E.M.; Mirmosayyeb, O.; Thapa, S.; Falkson, C.; O’Regan, R.; Dhakal, A. Oral SERD, a novel endocrine therapy for estrogen receptor-positive breast cancer. Cancers 2024, 16, 619. [Google Scholar] [CrossRef]
- Zheng-Lin, B.; Bekaii-Saab, T.S. Treatment options for HER2-expressing colorectal cancer: Updates and recent approvals. Ther. Adv. Med. Oncol. 2024, 16, 17588359231225037. [Google Scholar] [CrossRef]
- Scheck, M.K.; Hofheinz, R.D.; Lorenzen, S. HER2-positive gastric cancer and antibody treatment: State of the art and future developments. Cancers 2024, 16, 1336. [Google Scholar] [CrossRef]
- Ryoo, B.Y.; Cheng, A.L.; Ren, Z.; Kim, T.Y.; Pan, H.; Rau, K.M.; Choi, H.J.; Park, J.W.; Kim, J.H.; Yen, C.J.; et al. Randomised Phase 1b/2 trial of tepotinib vs. sorafenib in Asian patients with advanced hepatocellular carcinoma with MET overexpression. Br. J. Cancer 2021, 125, 200–208. [Google Scholar] [CrossRef]
- Qin, S.; Pan, H.; Blanc, J.F.; Grando, V.; Lim, H.Y.; Chang, X.Y.; O’Brate, A.; Stroh, C.; Friese-Hamim, M.; Albers, J.; et al. Activity of Tepotinib in hepatocellular carcinoma with high-level MET amplification: Preclinical and clinical evidence. JCO Precis. Oncol. 2024, 8, e2300328. [Google Scholar] [CrossRef] [PubMed]
- Haddad, R.; Elisei, R.; Hoff, A.O.; Liu, Z.; Pitoia, F.; Pruneri, G.; Sadow, P.M.; Soares, F.; Turk, A.; Williams, M.D.; et al. Diagnosis and management of tropomyosin receptor kinase fusion-positive thyroid carcinomas: A review. JAMA Oncol. 2023, 9, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Kumar Kore, R.; Shirbhate, E.; Singh, V.; Mishra, A.; Veerasamy, R.; Rajak, H. New Investigational Drug’s Targeting Various Molecular Pathways for Treatment of Cervical Cancer: Current Status and Future Prospects. Cancer Investig. 2024, 42, 627–642. [Google Scholar] [CrossRef]
- Stefanoudakis, D.; Karopoulou, E.; Matsas, A.; Katsampoula, G.A.; Tsarna, E.; Stamoula, E.; Christopoulos, P. Immunotherapy in cervical and endometrial cancer: Current landscape and future directions. Life 2024, 14, 344. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/search?cond=bladder%20cancer&intr=TYRA-300 (accessed on 12 June 2025).
- ClinicalTrials.gov. A First-in-Human Study of alpha1H in Patients with Non-Muscle Invasive Bladder Cancer. Available online: https://clinicaltrials.gov/study/NCT03560479 (accessed on 12 June 2025).
- Bantounou, M.A.; Plascevic, J.; MacDonald, L.; Wong, M.C.; O’Connell, N.; Galley, H.F. Enfortumab vedotin and pembrolizumab as monotherapies and combination treatment in locally advanced or metastatic urothelial carcinoma: A narrative review. Curr. Urol. 2023, 17, 271–279. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. A Clinical Trial Evaluating the Efficacy and Safety of Disitamab Vedotin Plus Tislelizumab Combined with Re-TURBT in the Treatment of HER-2-high Expression(2+-3+) Non-muscle Invasive Bladder Cancer at High-risk and Very High-Risk. Available online: https://www.clinicaltrials.gov/study/NCT06630871 (accessed on 12 June 2025).
- Frank, S.A. Chapter 4 History of Theories. In Dynamics of Cancer: Incidence, Inheritance, and Evolution; Princeton University Press: Princeton, NJ, USA, 2007; pp. 59–80. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1569/ (accessed on 19 June 2025).
- Mendiratta, G.; Ke, E.; Aziz, M.; Liarakos, D.; Tong, M.; Stites, E.C. Cancer gene mutation frequencies for the U.S. population. Nat. Commun. 2021, 12, 5961. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, X.; Yi, Y.; Wang, X.; Zhu, L.; Shen, Y.; Lin, D.; Wu, C. Tumor initiation and early tumorigenesis: Molecular mechanisms and interventional targets. Signal Transduct. Target. Ther. 2024, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Kainov, Y.; Hamid, F.; Makeyev, E.V. Recurrent disruption of tumour suppressor genes in cancer by somatic mutations in cleavage and polyadenylation signals. eLife 2024, 13, RP99040. [Google Scholar] [CrossRef] [PubMed]
- Joyce, C.; Rayi, A.; Kasi, A. Tumor-Suppressor Genes. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK532243/ (accessed on 19 June 2025).
- Xie, N.; Shen, G.; Gao, W.; Huang, Z.; Huang, C.; Fu, L. Neoantigens: Promising targets for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 9. [Google Scholar] [CrossRef]
- Roerden, M.; Castro, A.B.; Cui, Y.; Harake, N.; Kim, B.; Dye, J.; Maiorino, L.; White, F.M.; Irvine, D.J.; Litchfield, K.; et al. Neoantigen architectures define immunogenicity and drive immune evasion of tumors with heterogenous neoantigen expression. J. Immunother. Cancer 2024, 12, e010249. [Google Scholar] [CrossRef] [PubMed]
- Hope, J.L.; Spantidea, P.I.; Kiernan, C.H.; Stairiker, C.J.; Rijsbergen, L.C.; van Meurs, M.; Brouwers-Haspels, I.; Mueller, Y.M.; Nelson, D.J.; Bradley, L.M.; et al. Microenvironment-Dependent Gradient of CTL Exhaustion in the AE17sOVA Murine Mesothelioma Tumor Model. Front. Immunol. 2020, 10, 3074. [Google Scholar] [CrossRef]
- Cho, N.W.; Guldberg, S.M.; Nabet, B.Y.; Yu, J.Z.; Kim, E.J.; Hiam-Galvez, K.J.; Yee, J.L.; DeBarge, R.; Tenvooren, I.; Ashitey, N.A.; et al. T Cells Instruct Immune Checkpoint Inhibitor Therapy Resistance in Tumors Responsive to IL1 and TNFα Inflammation. Cancer Immunol. Res. 2025, 13, 229–244. [Google Scholar] [CrossRef]
- Kim, S.K.; Cho, S.W. The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Front. Pharmacol. 2022, 13, 868695. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arner, E.N.; Rathnell, J.C. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell 2023, 41, 421–433. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Zhang, Z.; Wu, P.; Zhang, Y.; Chen, X. Advances in targeting tumor microenvironment for immunotherapy. Front. Immunol. 2024, 15, 1472772. [Google Scholar] [CrossRef]
- Li, S.; He, Y.; Liu, J.; Chen, K.; Yang, Y.; Tao, K.; Yang, J.; Luo, K.; Ma, X. An umbrella review of socioeconomic status and cancer. Nat. Commun. 2024, 15, 9993. [Google Scholar] [CrossRef]
- IARC. New Report on Global Cancer Burden in 2022 by World Region and Human Development Level. 2025. Available online: https://www.iarc.who.int/news-events/new-report-on-global-cancer-burden-in-2022-by-world-region-and-human-development-level/ (accessed on 12 May 2025).
- Arem, H.; Loftfield, E. Cancer Epidemiology: A Survey of Modifiable Risk Factors for Prevention and Survivorship. Am. J. Lifestyle Med. 2017, 12, 200–210. [Google Scholar] [CrossRef]
- Song, M.; Giovannucci, E. Preventable incidence and mortality of carcinoma associated with lifestyle factors among white adults in the United States. JAMA Oncol. 2016, 2, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Colorectal Cancer. Available online: http://cdc.gov/colorectal-cancer/index.html (accessed on 12 May 2025).
- Saladores, P.; Mürdter, T.; Eccles, D.; Chowbay, B.; Zgheib, N.K.; Winter, S.; Ganchev, B.; Eccles, B.; Gerty, S.; Tfayli, A.; et al. Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer. Pharmacogenomics J. 2015, 15, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.; Baltazar, F.; Silva, E.; Preto, A. Microbiota-derived short-chain fatty acids: New road in colorectal cancer therapy. Pharmaceutics 2022, 14, 2359. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, Y.; Zhao, G.; Yang, Y.; Yan, W.; Wang, R.; Han, B.; Wang, L.; Zhang, Z.; Chen, L.; et al. Novel oncolytic vaccinia virus armed with interleukin-27 is a potential therapeutic agent for the treatment of murine pancreatic cancer. J. Immunother. Cancer 2025, 13, e010341. [Google Scholar] [CrossRef]
- Mueller-Schoell, A.; Michelet, R.; Klopp-Schulze, L.; van Dyk, M.; Mürdter, T.E.; Schwab, M.; Joerger, M.; Huisinga, W.; Mikus, G.; Kloft, C. Computational treatment simulations to assess the need for personalized tamoxifen dosing in breast cancer patients of different biogeographical groups. Cancers 2021, 13, 2432. [Google Scholar] [CrossRef] [PubMed]
- Lavan, A.H.; O’Mahony, D.; Buckley, M.; O’Mahony, D.; Gallagher, P. Adverse drug reactions in an oncological population: Prevalence, predictability, and preventability. Oncologist 2019, 24, e968–e977. [Google Scholar] [CrossRef]
- Creelan, B.C.; Wang, C.; Teer, J.K.; Toloza, E.M.; Yao, J.; Kim, S.; Landin, A.M.; Mullinax, J.E.; Saller, J.J.; Saltos, A.N.; et al. Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: A phase 1 trial. Nat. Med. 2021, 27, 1410–1418. [Google Scholar] [CrossRef] [PubMed]
- Parums, D.V. First regulatory approval for adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TILs)–Lifileucel (Amtagvi). Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2024, 30, e944927-1. [Google Scholar] [CrossRef]
- Guedan, S.; Posey, A.D., Jr.; Shaw, C.; Wing, A.; Da, T.; Patel, P.R.; McGettigan, S.E.; Casado-Medrano, V.; Kawalekar, O.U.; Uribe-Herranz, M.; et al. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight 2018, 3, e96976. [Google Scholar] [CrossRef]
- Tran, E.; Robbins, P.F.; Lu, Y.C.; Prickett, T.D.; Gartner, J.J.; Jia, L.; Pasetto, A.; Zheng, Z.; Ray, S.; Groh, E.M.; et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 2016, 375, 2255–2262. [Google Scholar] [CrossRef]
- Moeckel, C.; Bakhl, K.; Georgakopoulos-Soares, I.; Zaravinos, A. The Efficacy of Tumor Mutation Burden as a Biomarker of Response to Immune Checkpoint Inhibitors. Int. J. Mol. Sci. 2023, 24, 6710. [Google Scholar] [CrossRef]
- Wang, D.Y.; Salem, J.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; et al. Fatal toxic effects associated with immune checkpoint inhibitors: A systematic review and meta-analysis. JAMA Oncol. 2018, 4, 1721–1728, Erratum in JAMA Oncol. 2018, 4, 1972. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Paz-Ares, L.; Caro, R.B.; Zurawski, B.; Kim, S.W.; Costa, E.C.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus ipilimumab in advanced non–small-cell lung cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Zhang, L.; Acharya, C.; An, G.; Wen, K.; Qiu, L.; Munshi, N.C.; Tai, Y.T.; Anderson, K.C. Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. Clin. Cancer Res. 2017, 23, 4290–4300. [Google Scholar] [CrossRef] [PubMed]
- Garvey, M. Non-mammalian eukaryotic expression systems yeast and fungi in the production of biologics. J. Fungi 2022, 8, 1179. [Google Scholar] [CrossRef]
- Al-Taie, A.; Sheta, N. Clinically approved monoclonal antibodies–based immunotherapy: Association with glycemic control and impact role of clinical pharmacist for cancer patient care. Clin. Ther. 2024, 46, e29–e44. [Google Scholar] [CrossRef] [PubMed]
- Topp, M.S.; Gokbuget, N.; Stein, A.S.; Zugmaier, G.; O’Brien, S.; Bargou, R.C.; Dombret, H.; Fielding, A.K.; Heffner, L.; Larson, R.A.; et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: A multicentre, single-arm, phase 2 study. Lancet Oncol. 2015, 16, 57–66, Correction to Lancet Oncol. 2015, 16, 60–61. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Tisotumab Vedotin: First Approval. Drugs 2021, 81, 2141–2147. [Google Scholar] [CrossRef]
- Alaklabi, S.; Roy, A.M.; Zagami, P.; Chakraborty, A.; Held, N.; Elijah, J.; Georgy, A.; Attwood, K.; Shaikh, S.S.; Chaudhary, L.N.; et al. Real-World Clinical Outcomes With Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. JCO Oncol. Pract. 2024, 21, 620–628. [Google Scholar] [CrossRef]
- ImmPACT Bio. ImmPACT Bio Announces FDA Clearance of IND for Novel Bispecific CAR to Treat Aggressive B-Cell Lymphoma. Available online: https://tdg.ucla.edu/immpact-bio-announces-fda-clearance-ind-novel-bispecific-car-treat-aggressive-b-cell-lymphoma#:~:text=(%E2%80%9CImmPACT%20Bio%E2%80%9D)%2C,a%20bispecific%20%E2%80%9COR%2DGate%E2%80%9D (accessed on 17 May 2025).
- Bouras, E.; Karhunen, V.; Gill, D.; Huang, J.; Haycock, P.C.; Gunter, M.J.; Johansson, M.; Brennan, P.; Key, T.; Lewis, S.J.; et al. Circulating inflammatory cytokines and risk of five cancers: A Mendelian randomization analysis. BMC Med. 2022, 20, 3. [Google Scholar] [CrossRef] [PubMed]
- Song, K. Current development status of cytokines for cancer immunotherapy. Biomol. Ther. 2024, 32, 13. [Google Scholar] [CrossRef]
- The Food and Drug Administration (FDA). FDA Approves Nogapendekin Alfa Inbakicept-Pmln for BCG-Unresponsive Non-Muscle Invasive Bladder Cancer. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-nogapendekin-alfa-inbakicept-pmln-bcg-unresponsive-non-muscle-invasive-bladder-cancer#:~:text=On%20April%2022%2C%202024%2C%20the,with%20or%20without%20papillary%20tumors (accessed on 19 May 2025).
- Davar, D.; Ding, F.; Saul, M.; Sander, C.; Tarhini, A.A.; Kirkwood, J.M.; Tawbi, H.A. High-dose interleukin-2 (HD IL-2) for advanced melanoma: A single center experience from the University of Pittsburgh Cancer Institute. J. Immunother. Cancer 2017, 5, 74. [Google Scholar] [CrossRef]
- Gupta, S.; Shukla, S. Limitations of Immunotherapy in Cancer. Cureus 2022, 14, e30856. [Google Scholar] [CrossRef]
- Herrera, M.; Pretelli, G.; Desai, J.; Garralda, E.; Siu, L.L.; Steiner, T.M.; Au, L. Bispecific antibodies: Advancing precision oncology. Trends Cancer 2024, 10, 893–919. [Google Scholar] [CrossRef]
- Abdul-Rahman, T.; Ghosh, S.; Badar, S.M.; Nazir, A.; Bamigbade, G.B.; Aji, N.; Roy, P.; Kachani, H.; Garg, N.; Lawal, L.; et al. The paradoxical role of cytokines and chemokines at the tumor microenvironment: A comprehensive review. Eur. J. Med. Res. 2024, 29, 124. [Google Scholar] [CrossRef]
- Haslam, A.; Prasad, V. stimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2019, 2, e192535. [Google Scholar] [CrossRef]
- Zaretsky, J.M.; Garcia-Diaz, A.; Shin, D.S.; Escuin-Ordinas, H.; Hugo, W.; Hu-Lieskovan, S.; Torrejon, D.Y.; Abril-Rodriguez, G.; Sandoval, S.; Barthly, L.; et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 2016, 375, 819–829. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/search?cond=NCT02208362 (accessed on 13 May 2025).
- Maganti, H.B.; Kirkham, A.M.; Bailey, A.J.M.; Shorr, R.; Kedre, N.; Pineault, N.; Allan, D.S. Use of CRISPR/Cas9 gene editing to improve chimeric antigen-receptor T cell therapy: A systematic review and meta-analysis of preclinical studies. Cytotherapy 2022, 24, 405–412. [Google Scholar] [CrossRef]
- Stadtmauer, E.A.; Fraietta, J.A.; Davis, M.M.; Cohen, A.D.; Weber, K.L.; Lancaster, E.; Mangan, P.A.; Kulikovskaya, I.; Gupta, M.; Chen, F.; et al. CRISPR-engineered T cells in patients with refractory cancer. Science 2020, 367, eaba7365. [Google Scholar] [CrossRef]
- Alsalloum, A.; Shevchenko, J.A.; Sennikov, S. The Melanoma-Associated Antigen Family A (MAGE-A): A promising target for cancer immunotherapy? Cancers 2023, 15, 1779. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, Y.; Tian, X.; Wei, X. Cancer vaccines: Current status and future directions. J. Hematol. Oncol. 2025, 18, 18. [Google Scholar] [CrossRef]
- Kleponis, J.; Skelton, R.; Zheng, L. Fueling the engine and releasing the break: Combinational therapy of cancer vaccines and immune checkpoint inhibitors. Cancer Biol. Med. 2015, 12, 201–208. [Google Scholar] [CrossRef]
- Wu, D.W.; Jia, S.P.; Xing, S.J.; Ma, H.L.; Wang, X.; Tang, Q.Y.; Li, Z.W.; Wu, Q.; Bai, M.; Zhang, X.Y.; et al. Personalized neoantigen cancer vaccines: Current progression, challenges and a bright future. Clin. Exp. Med. 2024, 24, 229. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.; Malek, T.R. Fueling cancer vaccines to improve T cell-mediated antitumor immunity. Front. Oncol. 2022, 12, 878377. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.G.; Sang, Y.B.; Lee, J.H.; Chon, H.J. Combining cancer vaccines with immunotherapy: Establishing a new immunological approach. Int. J. Mol. Sci. 2021, 22, 8035. [Google Scholar] [CrossRef] [PubMed]
- Buyukgolcigezli, I.; Tenekeci, A.K.; Sahin, I.H. Opportunities and Challenges in Antibody–Drug Conjugates for Cancer Therapy: A New Era for Cancer Treatment. Cancers 2025, 17, 958. [Google Scholar] [CrossRef]
- Li, H.; Er Saw, P.; Song, E. Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell. Mol. Immunol. 2020, 17, 451–461. [Google Scholar] [CrossRef]
- Middelburg, J.; Sluijter, M.; Schaap, G.; Göynük, B.; Lloyd, K.; Ovcinnikovs, V.; Zom, G.G.; Marijnissen, R.J.; Groeneveldt, C.; Griffioen, L.; et al. T-cell stimulating vaccines empower CD3 bispecific antibody therapy in solid tumors. Nat. Commun. 2024, 15, 48. [Google Scholar] [CrossRef]
- Middelburg, J.; Schaap, G.; Sluijter, M.; Lloyd, K.; Ovcinnikovs, V.; Schuurman, J.; van der Burg, S.H.; Kemper, K.; van Hall, T. Cancer vaccines compensate for the insufficient induction of protective tumor-specific immunity of CD3 bispecific antibody therapy. J. Immunother. Cancer 2025, 13, e010331. [Google Scholar] [CrossRef]
- Peng, Y.; Fu, S.; Zhao, Q. 2022 update on the scientific premise and clinical trials for IL-15 agonists as cancer immunotherapy. J. Leukoc. Biol. 2022, 112, 823–834. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Poznańska, J.; Fechner, F.; Michalska, N.; Paszkowska, S.; Napierała, A.; Mackiewicz, A. Cancer vaccine therapeutics: Limitations and effectiveness—A literature review. Cells 2023, 12, 2159. [Google Scholar] [CrossRef]
- Hicks, K.C.; Knudson, K.M.; Lee, K.L.; Hamilton, D.H.; Hodge, J.W.; Figg, W.D.; Ordentlich, P.; Jones, F.R.; Rabizadeh, S.; Soon-Shiong, P.; et al. Cooperative Immune-Mediated Mechanisms of the HDAC Inhibitor Entinostat, an IL15 Superagonist, and a Cancer Vaccine Effectively Synergize as a Novel Cancer Therapy. Clin. Cancer Res. 2020, 26, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.H.; Sadri, M.; Najafi, A.; Rahimi, A.; Baghernejadan, Z.; Khorramdelazad, H.; Falak, R. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango? Front. Immunol. 2022, 13, 1018962. [Google Scholar] [CrossRef] [PubMed]
- Kandalaft, L.E.; Harari, A. Vaccines as priming tools for T cell therapy for epithelial cancers. Cancers 2021, 13, 5819. [Google Scholar] [CrossRef] [PubMed]
- Morse, M.A.; Crosby, E.J.; Force, J.; Osada, T.; Hobeika, A.C.; Hartman, P.; Berglund, H.C.; Smith, J.; Lyerly, H.K. Clinical trials of self-replicating RNA-based cancer vaccines. Cancer Gene Ther. 2023, 30, 803–811. [Google Scholar] [CrossRef]
- Meade, E.; Rowan, N.; Garvey, M. Bioprocessing and the production of antiviral biologics in the prevention and treatment of viral infectious disease. Vaccines 2023, 11, 992. [Google Scholar] [CrossRef]
- Lin, R.; Jin, H.; Fu, X. Comparative efficacy of human papillomavirus vaccines: Systematic review and network meta-analysis. Expert Rev. Vaccines 2023, 22, 1168–1178. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, R.; Zhang, M.; Liu, S.; Xie, M.; Yang, Z.; Shi, Q.; Chen, H.; Xiong, H.; Wang, N.; et al. CIN grades possessing different HPV RNA location patterns and RNAscope is helpful tool for distinguishing squamous intraepithelial lesions in difficult cervical cases. Diagn. Pathol. 2023, 18, 23. [Google Scholar] [CrossRef]
- Henschke, N.; Bergman, H.; Villanueva, G.; Loke, Y.K.; Golder, S.P.; Crosbie, E.J. Effects of human papillomavirus (HPV) vaccination programmes on community rates of HPV-related disease and harms from vaccination. Cochrane Database Syst. Rev. 1996, 2022, CD015363. [Google Scholar] [CrossRef]
- Del Mistro, A.; Frayle, H.; Menegaldo, A.; Favaretto, N.; Gori, S.; Nicolai, P.; Spinato, G.; Romeo, S.; Tirelli, G.; da Mosto, M.C.; et al. Age-independent increasing prevalence of Human Papillomavirus-driven oropharyngeal carcinomas in North-East Italy. Sci. Rep. 2020, 10, 9320. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Considerations for Human Papillomavirus (HPV) Vaccine Product Choice, 2nd ed.; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Chackerian, B.; Durfee, M.R.; Schiller, J.T. Virus-like display of a neo-self antigen reverses B cell anergy in a B cell receptor transgenic mouse model. J. Immunol. 2008, 180, 5816–5825. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Human papillomavirus vaccines (HPV). Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/diseases/human-papillomavirus-vaccines-(HPV) (accessed on 20 May 2025).
- Watson-Jones, D.; Changalucha, J.; Whitworth, H.; Pinto, L.; Mutani, P.; Indangasi, J.; Kemp, T.; Hashim, R.; Kamala, B.; Wiggins, R.; et al. Immunogenicity and safety of one-dose human papillomavirus vaccine compared with two or three doses in Tanzanian girls (DoRIS): An open-label, randomised, non-inferiority trial. Lancet Glob. Health 2022, 10, e1473–e1484. [Google Scholar] [CrossRef]
- Palmer, T.; Wallace, L.; Pollock, K.G.; Cuschieri, K.; Robertson, C.; Kavanagh, K.; Cruickshank, M. Prevalence of cervical disease at age 20 after immunisation with bivalent HPV vaccine at age 12-13 in Scotland: Retrospective population study. BMJ 2019, 365, I1161. [Google Scholar] [CrossRef] [PubMed]
- Falcaro, M.; Castaño, A.; Ndela, B.; Checchi, M.; Soldan, K.; Lopez-Bernal, J.; Elliss-Brookes, L.; Sasieni, P. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: A register-based observational study. Lancet 2021, 398, 2084–2092. [Google Scholar] [CrossRef]
- Baisley, K.; Kemp, T.J.; Kreimer, A.R.; Basu, P.; Changalucha, J.; Hildesheim, A.; Porras, C.; Whitworth, H.; Herrero, R.; Lacey, C.J.; et al. Comparing one dose of HPV vaccine in girls aged 9-14 years in Tanzania (DoRIS) with one dose of HPV vaccine in historical cohorts: An immunobridging analysis of a randomised controlled trial. Lancet Glob. Health 2022, 10, e1485–e1493. [Google Scholar] [CrossRef]
- Chang, M.H. Cancer Prevention by Vaccination Against Hepatitis B. Cancer Prev. 2009, 181, 85–94. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Hepatitis B Vaccine Administration. Available online: https://www.cdc.gov/hepatitis-b/hcp/vaccine-administration/index.html (accessed on 20 May 2015).
- Qu, W.; Sui, W.; Li, Y. Vaccine escape challenges virus prevention: The example of two vaccine-preventable oncogenic viruses. J. Med. Virol. 2023, 95, e29184. [Google Scholar] [CrossRef]
- Joe, C.D.; Chatterjee, S.; Lovrecz, G.; Adams, T.E.; Thaysen-Andersen, M.; Walsh, R.; Locarnini, S.A.; Smooker, P.; Netter, H.J. Glycoengineered hepatitis B virus-like particles with enhanced immunogenicity. Vaccine 2020, 38, 3892–3901. [Google Scholar] [CrossRef]
- Cao, M.; Fan, J.; Lu, L.; Fan, C.; Wang, Y.; Hen, T.C.; Zhang, S.; Yu, Y.; Xia, C.; Lu, J.; et al. Long term outcome of prevention of liver cancer by hepatitis B vaccine: Results from an RCT with 37 years. Cancer Lett. 2022, 536, 215652. [Google Scholar] [CrossRef] [PubMed]
- Palladini, A.; Thrane, S.; Janitzek, C.M.; Pihl, J.; Clemmensen, S.B.; De Jongh, W.A.; Clausen, T.M.; Nicoletti, G.; Landuzzi, L.; Penichet, M.L.; et al. Virus-like particle display of HER2 induces potent anti-cancer responses. OncoImmunology 2018, 77, 1408749. [Google Scholar] [CrossRef]
- Kurtovic, L.; Wetzel, D.; Reiling, L.; Drew, D.R.; Palmer, C.; Kouskousis, B.; Hanssen, E.; Wines, B.D.; Hogarth, P.M.; Suckow, M.; et al. Novel Virus-Like Particle Vaccine Encoding the Circumsporozoite Protein of Plasmodium falciparum Is Immunogenic and Induces Functional Antibody Responses in Mice. Front. Immunol. 2021, 12, 641421. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Malaria Vaccines (RTS,S and R21). Available online: https://www.who.int/news-room/questions-and-answers/item/q-a-on-rts-s-malaria-vaccine (accessed on 21 May 2025).
- Ariera, B.; Guyah, B.; Rahkola, J.; Arao, I.; Waomba, K.; Koech, E.; Samayoa-Reyes, G.; Sabourin, K.R.; Ogolla, S.; Rochford, R. Sustained activation induced cytidine deaminase (AID) expression in B cells following Plasmodium falciparum malaria infection in Kenyan children. J. Immunol. 2025, 214, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Zhang, M.; Yang, J.; Zhu, Z.; Cao, W.; Dong, C. Therapeutic cancer vaccines: Advancements, challenges and prospects. Signal Transduct. Target. Ther. 2023, 8, 450. [Google Scholar] [CrossRef]
- Kiełbowski, K.; Plewa, P.; Zadworny, J.; Bakinowska, E.; Becht, R.; Pawlik, A. Recent Advances in the Development and Efficacy of Anti-Cancer Vaccines—A Narrative Review. Vaccines 2025, 13, 237. [Google Scholar] [CrossRef]
- Goloudina, A.; Chevalier, F.L.; Authie, P.; Charneau, P.; Mailessi, L. Shared neoantigens for cancer immunotherapy. Mol. Ther. Oncol. 2025, 33, 200978. [Google Scholar] [CrossRef]
- Tran, N.H.; Qiao, R.; Xin, L.; Chen, X.; Shan, B.; Li, M. Personalized deep learning of individual immunopeptidomes to identify neoantigens for cancer vaccines. Nat. Mach. Intell. 2020, 2, 764–771. [Google Scholar] [CrossRef]
- Jazayeri, B.; Li, R. Personalized neoantigen vaccines in urologic malignancies. Nat. Cancer 2025, 6, 916–918. [Google Scholar] [CrossRef]
- Cai, Z.; Li, Z.; Zhong, W.; Lin, F.; Dong, X.; Ye, H.; Guo, Y.; Chen, G.; Yu, X.; Yu, H.; et al. Targeting Mesothelin Enhances Personalized Neoantigen Vaccine Induced Antitumor Immune Response in Orthotopic Pancreatic Cancer Mouse Models. Adv. Sci. 2025, 12, 2407976. [Google Scholar] [CrossRef]
- Sahin, U.; Oehm, P.; Derhovanessian, E.; Jabulowsky, R.A.; Vormehr, M.; Gold, M.; Maurus, D.; Schwarck-Kokarakis, D.; Kuhn, A.N.; Omokoko, T.; et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 2020, 585, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Weiss, F.; Kolibius, J.; Freitag, P.C.; Gantenbein, F.; Kipar, A.; Pluckthum, A. Dendritic cell targeting in lymph nodes with modular adapters boosts HAdV5 and HC-HAdV5 tumor vaccination by co-secretion of IL-2v and IL-21. Mol. Ther. Oncol. 2025, 33, 200984. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Sun, H.; Cao, W.; Song, Y.; Jiang, Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp. Hematol. Oncol. 2022, 11, 3. [Google Scholar] [CrossRef]
- Guo, X.; Guo, M.; Cai, R.; Hu, M.; Rao, L.; Su, W.; Liu, H.; Gao, F.; Zhang, X.; Liu, J.; et al. mRNA compartmentalization via multimodule DNA nanostructure assembly augments the immunogenicity and efficacy of cancer mRNA vaccine. Sci. Adv. 2024, 10, eadp3680. [Google Scholar] [CrossRef] [PubMed]
- Fournier, C.; Mercey-Ressejac, M.; Derangère, V.; Al Kadi, A.; Rageot, D.; Charrat, C.; Leroy, A.; Vollaire, J.; Josserand, V.; Escudé, M.; et al. Nanostructured lipid carriers based mRNA vaccine leads to a T cell-inflamed tumour microenvironment favourable for improving PD-1/PD-L1 blocking therapy and long-term immunity in a cold tumour model. EBioMedicine 2025, 112, 10. [Google Scholar] [CrossRef]
- Huang, K.; Lin, X.J.; Hu, J.C.; Xia, T.Y.; Xu, F.P.; Huang, J.D.; Zhou, N. Epstein-Barr virus mRNA vaccine synergizes with NK cells to enhance nasopharyngeal carcinoma eradication in humanized mice. Mol. Ther. Oncol. 2024, 33, 200986. [Google Scholar] [CrossRef]
- Shariati, A.; Khezrpour, A.; Shariati, F.; Afkhami, H.; Yarahmadi, A.; Alavimanesh, S.; Kamrani, S.; Modarressi, M.H.; Khani, P. DNA vaccines as promising immuno-therapeutics against cancer: A new insight. Front. Immunol. 2025, 15, 1498431. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, J.; Santangelo, P.J.; Prausnitz, M.R. DNA uptake, intracellular trafficking and gene transfection after ultrasound exposure. J. Control. Release 2016, 234, 1–9. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Mammaglobin-A DNA Vaccine for Metastatic Breast Cancer. Available online: https://clinicaltrials.gov/study/NCT00807781?rank=1 (accessed on 15 May 2025).
- Small, E.J.; Schellhammer, P.F.; Higano, C.S.; Redfern, C.H.; Nemunaitis, J.J.; Valone, F.H.; Verjee, S.S.; Jones, L.A.; Mershberg, R.M. Placebo-Controlled Phase III Trial of Immunologic Therapy with Sipuleucel-T (APC8015) in Patients with Metastatic, Asymptomatic Hormone Refractory Prostate Cancer. J. Clin. Oncol. 2006, 24, 3089–3094. [Google Scholar] [CrossRef] [PubMed]
- Lasek, W.; Zapała, Ł. Therapeutic metastatic prostate cancer vaccines: Lessons learnt from urologic oncology. Cent. Eur. J. Urol. 2021, 74, 300. [Google Scholar] [CrossRef]
- Gulley, J.L.; Borre, M.; Vogelzang, N.J.; Ng, S.; Agarwal, N.; Parker, C.C.; Pook, D.W.; Rathenborg, P.; Flaig, T.W.; Carles, J.; et al. Phase III Trial of PROSTVAC in Asymptomatic or Minimally Symptomatic Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2019, 37, 1051–1061. [Google Scholar] [CrossRef]
- Arias, V.; Kudling, T.V.; Clubb, J.H.A.; Jirovec, E.; Pakola, S.a.; der Heijden, M.; Basnet, S.; Quixabeira, D.C.A.; Haybout, L.; Ojala, N.; et al. Boosting anti-tumor immunity with TILT-517 oncolytic adenovirus and checkpoint blockade in renal cell carcinoma. Mol. Ther. Oncol. 2025, 33, 200979. [Google Scholar] [CrossRef] [PubMed]
- Sato-Dahlman, M.; Miura, Y.; Hajeri, P.; Roach, B.; Jacobsen, K.; Yamamoto, M. Systemic therapy with the infectivity-selective oncolytic adenovirus by targeting mesothelin. Mol. Oncol. Ther. 2025, 33, 200967. [Google Scholar] [CrossRef]
- Lu, Z.H.; Dmitriev, I.P.; Brough, D.E.; Kashentseva, E.A.; Li, J.; Curiel, D.T. A new gorilla adenoviral vector with natural lung tropism avoids liver toxicity and is amenable to capsid engineering and vector retargeting. J. Virol. 2020, 94, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Ottensmeier, C.H.; Delord, J.P.; Lalanne, A.; Lantz, O.; Jamet, C.; Tavernaro, A.; Brandely-Talbot, M.; Grellier, B.; Bastien, B.; Makhloufi, H.; et al. Safety and immunogenicity of TG4050: A personalized cancer vaccine in head and neck carcinoma. J. Clin. Oncol. 2023, 41, 6082. [Google Scholar] [CrossRef]
- Sethna, Z.; Guasp, P.; Reiche, C.; Milighetti, M.; Ceglia, N.; Patterson, E.; Lihm, J.; Payne, G.; Lyudovyk, O.; Rojas, L.A.; et al. RNA neoantigen vaccines prime long-lived CD8+ T cells in pancreatic cancer. Nature 2025, 639, 1042–1051. [Google Scholar] [CrossRef]
- Weber, J.S.; Khattak, M.A.; Carlino, M.S.; Meniawy, T.; Taylor, M.H.; Ansstas, G.; Kim, K.B.; McKean, M.; Sullivan, R.J.; Faries, M.B.; et al. Individualized neoantigen therapy mRNA-4157 (V940) plus pembrolizumab in resected melanoma: 3-year update from the mRNA-4157-P201 (KEYNOTE-942) trial. J. Clin. Oncol. 2024, 42, LBA9512. [Google Scholar] [CrossRef]
- Evaxion Biotech. Evaxion Publishes Data, Showing 67% Objective Response Rate in Metastatic Melanoma for the AI-Designed Personalized Cancer Vaccine EVX-01, in Leading Medical Journal. Available online: https://investors.evaxion.ai/news-releases/news-release-details/evaxion-publishes-data-showing-67-objective-response-rate (accessed on 14 June 2025).
- Le Tourneau, C.; Delord, J.-P.; Lantz, O.; Dochy, E.; Ceppi, M.; Spring-Giusti, C.; Bidet Huang, K.; Bastien, B.; Tavernaro, A.; Lacoste, G.; et al. Randomized Phase I Trial of Adjuvant Personalized Cancer Vaccine TG4050 in Resected Locally Advanced Head and Neck Squamous Cell Carcinoma Patients. J. Clin. Oncol. 2024, 43, 6016. [Google Scholar] [CrossRef]
- McNeel, D.G.; Emamekhoo, H.; Eickhoff, J.C.; Kyriakopoulos, C.E.; Wargowski, E.; Tonelli, T.P.; Johnson, L.E.; Liu, G. Phase 2 trial of a DNA vaccine (pTVG-HP) and nivolumab in patients with castration-sensitive non-metastatic (M0) prostate cancer. Vaccine 2024, 42, 1234–1245. [Google Scholar] [CrossRef]
- Stanton, S.E.; Wisinski, K.B.; Gwin, W.R.; Coveler, A.; Liao, J.B.; Burkard, M.; Bailey, H.; Kim, K.; Havinghurst, T.; DeShong, K.; et al. P2-02-02: Phase I trial of the safety and immunogenicity of a tri-antigen vaccine targeting HER2, IGFBP-2, and IGF-IR in patients with non-metastatic breast cancer. Cancer Res. 2023, 83, 1042–1051. [Google Scholar] [CrossRef]
- Disis, M.; Liu, Y.; Stanton, S.; Gwin, W.; Coveler, A.; Liao, J.; Childs, J.; Cecil, D. A phase I dose escalation study of STEMVAC, a multi-antigen, multi-epitope Th1 selective plasmid-based vaccine, targeting stem cell associated proteins in patients with advanced breast cancer. J. Immunother. Cancer 2022, 10, 546. [Google Scholar] [CrossRef]
- Reardon, D.A.; Brem, S.; Desai, A.S.; Bagley, S.J.; Kurz, S.C.; De La Fuente, M.I.; Nagpal, S.; Welch, M.R.; Hormigo, A.; Carroll, N.; et al. INO-5401 and INO-9012 delivered intramuscularly (IM) with electroporation (EP) in combination with cemiplimab (REGN2810) in newly diagnosed glioblastoma (GBM): Interim results. J. Clin. Oncol. 2022, 38, 15. [Google Scholar] [CrossRef]
- INOVIO. INOVIO Announces Positive Results from REVEAL 1, a Phase 3 Pivotal Trial Evaluating VGX-3100, Its DNA-Based HPV Immunotherapy for the Treatment of High-grade Precancerous Cervical Dysplasia Caused by HPV-16 and/or HPV-18. Available online: https://ir.inovio.com/news-releases/news-releases-details/2021/INOVIO-Announces-Positive-Results-from-REVEAL-1-a-Phase-3-Pivotal-Trial-Evaluating-VGX-3100-its-DNA-based-HPV-Immunotherapy-for-the-Treatment-of-High-grade-Precancerous-Cervical-Dysplasia-Caused-by-HPV-16-andor-HPV-18/default.aspx (accessed on 15 June 2025).
- Stern, P.L. Is immunotherapy a potential game changer in managing human papillomavirus (HPV) infection and intraepithelial neoplasia? Tumour Virus Res. 2023, 16, 200263. [Google Scholar] [CrossRef] [PubMed]
- Aljabali, A.A.; Hamzat, Y.; Alqudah, A.; Alzoubi, L. Neoantigen vaccines: Advancing personalized cancer immunotherapy. Explor. Immunol. 2025, 5, 1003190. [Google Scholar] [CrossRef]
- Ahluwalia, M.S.; Reardon, D.A.; Abad, A.P.; Curry, W.T.; Wong, E.T.; Figel, S.A.; Mechtler, L.L.; Peereboom, D.M.; Hutson, A.D.; Withers, H.G.; et al. Phase IIa study of SurVaxM plus adjuvant temozolomide for newly diagnosed glioblastoma. J. Clin. Oncol. 2023, 41, 1453–1465. [Google Scholar] [CrossRef]
- Pant, S.; Wainberg, Z.A.; Weekes, C.D.; Furqan, M.; Kasi, P.M.; Devoe, C.E.; Leal, A.D.; Chung, V.; Basturk, O.; VanWyk, H.; et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: The phase 1 AMPLIFY-201 trial. Nat. Med. 2024, 30, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Manning-Geist, B.L.; Gnjatic, S.; Aghajanian, C.; Konner, J.; Kim, S.H.; Sarasohn, D.; Soldan, K.; Tew, W.P.; Sarlis, N.J.; Zamarin, D.; et al. Phase I study of a multivalent WT1 peptide vaccine (Galinpepimut-S) in combination with nivolumab in patients with WT1-expressing ovarian cancer in second or third remission. Cancers 2023, 15, 1458. [Google Scholar] [CrossRef]
- Xiao, W.; Jiang, W.; Chen, Z.; Huang, Y.; Mao, J.; Zheng, W.; Hu, Y.; Shi, J. Advance in peptide-based drug development: Delivery platforms, therapeutics and vaccines. Signal Transduct. Target. Ther. 2025, 10, 74. [Google Scholar] [CrossRef]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422, Correction to N. Engl. J. Med. 2012, 367, 1474. [Google Scholar] [CrossRef]
- Gatto, L.; Di Nunno, V.; Tosoni, A.; Bartolini, S.; Ranieri, L.; Franceschi, E. DCVax-L vaccination in patients with glioblastoma: Real promise or negative trial? The debate is open. Cancers 2023, 15, 3251. [Google Scholar] [CrossRef]
- Wang, C.; Lu, N.; Yan, L.; Li, Y. The efficacy and safety assessment of oncolytic virotherapies in the treatment of advanced melanoma: A systematic review and meta-analysis. Virol. J. 2023, 20, 252. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Galle, P.R.; Chao, Y.; Erinjeri, J.; Heo, J.; Borad, M.J.; Luca, A.; Burke, J.; Pelusio, A.; Agathon, D.; et al. PHOCUS: A phase 3, randomized, open-label study of sequential treatment with pexa-vec (JX-594) and sorafenib in patients with advanced hepatocellular carcinoma. Liver Cancer 2024, 13, 256–272. [Google Scholar] [CrossRef] [PubMed]
- Khansari, N. Challenges and Limitations of Personalized Cancer Vaccines. J. Clin. Biomed. Res. 2025, 7, 1–2. [Google Scholar] [CrossRef]
- Crews, D.W.; Dombroski, J.A.; King, M.R. Prophylactic cancer vaccines engineered to elicit specific adaptive immune response. Front. Oncol. 2021, 11, 626463. [Google Scholar] [CrossRef] [PubMed]
- Gasparoto, T.H.; Malaspina, T.S.S.; Benevides, L.; de Melo, E.J.F., Jr.; Costa, M.R.S.N.; Damante, J.H.; Ikoma, M.R.V.; Garlet, G.P.; Cavassani, K.A.; da Silva, J.S.; et al. Patients with oral squamous cell carcinoma are characterized by increased frequency of suppressive regulatory T cells in the blood and tumor 23. microenvironment. Cancer Immunol. Immunother. 2010, 59, 819–828. [Google Scholar] [CrossRef]
- Daniel, S.; Kis, Z.; Kontoravdi, C. Quality by Design for enabling RNA platform production processes. Trends Biotechnol. 2022, 40, 1213–1228. [Google Scholar] [CrossRef]
- Yaremenko, V.; Khan, M.M.; Zhen, X.; Tang, W.; Tao, W. Clinical advances of mRNA vaccines for cancer immunotherapy. Med 2025, 6, 100562. [Google Scholar] [CrossRef]
- Persano, S.; Guevara, M.L.; Li, Z.; Mai, J.; Ferrari, M.; Pompa, P.P.; Shen, H. Lipopolyplex potentiates anti-tumor immunity of mRNA-based vaccination. Biomaterials 2017, 125, 81–89. [Google Scholar] [CrossRef]
- Wang, C.; Pan, C.; Yong, H.; Wang, F.; Bo, T.; Zhao, Y.; Ma, B.; He, W.; Li, M. Emerging non-viral vectors for gene delivery. J. Nanobiotechnology 2023, 21, 272. [Google Scholar] [CrossRef] [PubMed]
- Alameh, M.G.; Tombácz, I.; Bettini, E.; Lederer, K.; Ndeupen, S.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; Soliman, O.Y.; Pine, M.; et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021, 54, 2877–2892. [Google Scholar] [CrossRef]
- Oberli, M.A.; Reichmuth, A.M.; Dorkin, J.R.; Mitchell, M.J.; Fenton, O.S.; Jaklenec, A.; Anderson, D.G.; Langer, R.; Blankschtein, D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017, 17, 1326–1335. [Google Scholar] [CrossRef]
- Han, G.; Dahye Noh, D.; Lee, H.; Lee, S.; Kim, S.; Yoon, H.Y.; Lee, S.H. Advances in mRNA therapeutics for cancer immunotherapy: From modification to delivery. Adv. Drug Deliv. Rev. 2023, 199, 114973. [Google Scholar] [CrossRef] [PubMed]
- Kozma, G.T.; Shimizu, T.; Ishida, T.; Szebeni, J. Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev. 2020, 154, 163–175. [Google Scholar] [CrossRef]
- Hu, C.; Bai, Y.; Liu, J.; Wang, Y.; He, Q.; Zhang, X.; Cheng, F.; Xu, M.; Mao, Q.; Liang, Z. Research progress on the quality control of mRNA vaccines. Expert Rev. Vaccines 2024, 23, 570–583. [Google Scholar] [CrossRef]
- Xie, Y.; Guo, J.; Hu, J.; Li, Y.; Zhang, Z.; Zhu, Y.; Deng, F.; Qi, J.; Zhou, Y.; Chen, W. A factorial design-optimized microfluidic LNP vaccine elicits potent magnesium-adjuvating cancer immunotherapy. Mater. Today Bio 2025, 32, 101703. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Yu, K.D. Breast Cancer Vaccines: Disappointing or Promising? Front. Immunol. 2022, 13, 828386. [Google Scholar] [CrossRef]
- Sultan, H.; Kumai, T.; Nagato, T.; Wu, J.; Salazar, A.M.; Celis, E. The route of administration dictates the immunogenicity of peptide-based cancer vaccines in mice. Cancer Immunol. Immunother. 2019, 68, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.; Gotru, S.; Salave, S.; Vora, L.K. Vaccine adjuvants for immunotherapy: Type, mechanisms and clinical applications. Front. Biomater. Sci. 2025, 4, 1544465. [Google Scholar] [CrossRef]
- Lavelle, E.C.; McEntee, C.P. Vaccine adjuvants: Tailoring innate recognition to send the right message. Immunity 2024, 57, 772–789. [Google Scholar] [CrossRef]
- Marriott, M.; Post, B.; Chablani, L. A comparison of cancer vaccine adjuvants in clinical trials. Cancer Treat. Res. Commun. 2023, 34, 100667. [Google Scholar] [CrossRef]
- Cui, Y.; Ho, M.; Hu, Y.; Shi, Y. Vaccine adjuvants: Current status, research and development, licensing, and future opportunities. J. Mater. Chem. B 2024, 12, 4118–4137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kerr, M.D.; McBride, D.A.; Chumber, A.K.; Shah, N.J. Combining therapeutic vaccines with chemo- and immunotherapies in the treatment of cancer. Expert Opin. Drug Discov. 2021, 16, 89–99. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lei, W.; Zhou, K.; Lei, Y.; Zhu, H. Cancer vaccines: Platforms and current progress. Mol. Biomed. 2025, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Ott, P.A.; Hu-Lieskovan, S.; Chmielowski, B.; Govindan, R.; Naing, A.; Bhardwaj, N.; Margolin, K.; Awad, M.M.; Hellmann, M.D.; Lin, J.J.; et al. A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-small Cell Lung Cancer, or Bladder Cancer. Cell 2020, 183, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Ghaneialvar, H.; Jahani, S.; Hashemi, E.; Khalilzad, M.A.; Falahi, S.; Rashidi, M.A.; Majidpoor, J.; Najafi, S. Combining anti-checkpoint immunotherapies and cancer vaccines as a novel strategy in oncological therapy: A review. Hum. Immunol. 2025, 86, 111209. [Google Scholar] [CrossRef]
- Hushmandi, K.; Imani Fooladi, A.A.; Reiter, R.J.; Farahani, N.; Liang, L.; Aref, A.R.; Nabavi, N.; Alimohammadi, M.; Liu, L.; Sethi, G. Next-generation immunotherapeutic approaches for blood cancers: Exploring the efficacy of CAR-T and cancer vaccines. Exp. Hematol. Oncol. 2025, 14, 75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cadena, A.; Cushman, T.R.; Anderson, C.; Barsoumian, H.B.; Welsh, J.W.; Cortez, M.A. Radiation and Anti-Cancer Vaccines: A Winning Combination. Vaccines 2018, 6, 9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garnett-Benson, C.; Hodge, J.W.; Gameiro, S.R. Combination Regimens of Radiation Therapy and Therapeutic Cancer Vaccines: Mechanisms and Opportunities. Semin. Radiat. Oncol. 2015, 25, 46–53. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, S.; Srinivasan, K.; Vincent, P.D.R. Personalized cancer vaccine design using AI-powered technologies. Front. Immunol. 2024, 15, 1357217. [Google Scholar] [CrossRef] [PubMed]
- Høie, M.H.; Gade, F.S.; Johansen, J.M.; Würtzen, C.; Winther, O.; Nielsen, M.; Marcatili, P. DiscoTope-3.0: Improved B-cell epitope prediction using inverse folding latent representations. Front. Immunol. 2024, 15, 1322712. [Google Scholar] [CrossRef]
- Xiang, W.; Yu, L.; Chen, X.; Herold, M.J. Artificial intelligence in cancer immunotherapy: Navigating challenges and unlocking opportunities. Engineering 2025, 44, 12–16. [Google Scholar] [CrossRef]
- Pounraj, S.; Chen, S.; Ma, L.; Mazzieri, R.; Dolcetti, R.; Rehm, B.H. Targeting tumor heterogeneity with neoantigen-based cancer vaccines. Cancer Res. 2024, 84, 353–363. [Google Scholar] [CrossRef]
- Tsui, C.K.; Barfield, R.M.; Fischer, C.R.; Morgens, D.W.; Li, A.; Smith, B.A.; Gray, M.A.; Bertozzi, C.R.; Rabuka, D.; Bassik, M.C. CRISPR-Cas9 screens identify regulators of antibody-drug conjugate toxicity. Nat. Chem. Biol. 2019, 15, 949–958. [Google Scholar] [CrossRef]
- Maserat, E. Integration of artificial intelligence and CRISPR/Cas9 system for vaccine design. Cancer Inform. 2022, 21, 11769351221140102. [Google Scholar] [CrossRef]
- Manguso, R.T.; Pope, H.W.; Zimmer, M.D.; Brown, F.D.; Yates, K.B.; Miller, B.C.; Collins, N.B.; Bi, K.; LaFleur, M.W.; Juneja, V.R.; et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 2017, 547, 413–418. [Google Scholar] [CrossRef]
- Ewaisha, R.; Anderson, K.S. Immunogenicity of CRISPR therapeutics-Critical considerations for clinical translation. Front. Bioeng. Biotechnol. 2023, 11, 1138596. [Google Scholar] [CrossRef] [PubMed]
- Huber, F.; Arnaud, M.; Stevenson, B.J.; Michaux, J.; Benedetti, F.; Thevenet, J.; Bobisse, S.; Chiffelle, J.; Gehert, T.; Müller, M.; et al. A comprehensive proteogenomic pipeline for neoantigen discovery to advance personalized cancer immunotherapy. Nat. Biotechnol. 2024, 43, 1360–1372. [Google Scholar] [CrossRef]
- Zhao, W.; Li, S.; Liu, Y.; Yang, H. NeoaPred: A structure-based deep learning approach for predicting peptide-MHC binding and immunogenicity. Bioinformatics 2022, 38, 3792–3800. [Google Scholar]
- Mekki-Berrada, F.; Ren, Z.; Huang, T.; Wong, W.K.; Zheng, F.; Xie, J.; Parker, I.; Tian, S.; Jayavelu, S.; Mahfoud, Z.; et al. Two-step machine learning enables optimized nanoparticle synthesis. Npj Comput. Mater. 2021, 7, 55. [Google Scholar] [CrossRef]
- Sugiyama, N.; Terry, F.E.; Gutierrez, A.H.; Hirano, T.; Hoshi, M.; Mizuno, Y.; Martin, W.; Yasunaga, S.; Niiro, H.; Fujio, K.; et al. Individual and population-level variability in HLA-DR associated immunogenicity risk of biologics used for the treatment of rheumatoid arthritis. Front. Immunol. 2024, 15, 1377911. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.; Zha, Y.; Li, N. Microfluidic cell squeeze-based vaccine comes into clinical investigation. Npj Vaccines 2023, 8, 65. [Google Scholar] [CrossRef]
- Park, J.C.; Bernstein, H.; Loughhead, S.; Zwirtes, R.; Jennings, J.; Nicolini, V.; Klein, C.; Deak, L.C.; Umana, P.; Trumpfheller, C.; et al. Cell Squeeze: Driving more effective CD8 T-cell activation through cytosolic antigen delivery. Immuno-Oncol. Technol. 2022, 16, 100091. [Google Scholar] [CrossRef] [PubMed]
- Booty, M.G.; Hlavaty, K.A.; Stockmann, A.; Ozay, E.I.; Smith, C.; Tian, L.; How, E.; Subramanya, D.; Venkitaraman, A.; Yee, C.; et al. Microfluidic squeezing enables MHC class I antigen presentation by diverse immune cells to elicit CD8+ T cell responses with antitumor activity. J. Immunol. 2022, 208, 929–940. [Google Scholar] [CrossRef] [PubMed]
Cancer | Prevalence 1 (Millions) | Mortality (Millions) 1 | Treatment Options 2 | |
---|---|---|---|---|
Small Molecules | Biologics | |||
Lung | 2.48 | 1.82 | EGFR inhibitors (e.g., erlotinib, gefitinib, osimertinib); ALK inhibitors (e.g., crizotinib, alectinib, brigatinib); ROS1 inhibitors (e.g., crizotinib); RET inhibitors (e.g., selpercatinib, pralsetinib); MET inhibitors (e.g., capmatinib, tepotinib); KRAS G12C inhibitors (e.g., sotorasib); BRAF inhibitors (e.g., dabrafenib); Chemotherapy (e.g., cisplatin, carboplatin); PARP inhibitors (e.g., olaparib, clinical trials only, not approved) | ICIs (e.g., pembrolizumab, nivolumab); CTLA-4 inhibitor (e.g., ipilimumab); Anti-angiogenic mAbs (e.g., bevacizumab, Anti-VEGF). |
Breast | 2.30 | 0.66 | Hormonal therapy (e.g., tamoxifen, aromatase inhibitors, fulvestrant); CDK4/6 inhibitors (e.g., palbociclib, ribociclib); PI3K inhibitors (e.g., alpelisib); PARP inhibitors (e.g., olaparib for BRCA-mutated breast cancers); AKT inhibitor (e.g., capivasertib for HR+/HER2-negative breast cancer) [16]; Chemotherapy (e.g., taxanes, anthracyclines); Oral SERDs (e.g., elacestrant, emerging, not approved, under investigation) [17]. | Anti-HER2 mAbs (e.g., trastuzumab); HER2 ADCs (e.g., T-DM1, T-DXd); ICIs (e.g., atezolizumab, pembrolizumab). |
Colorectal | 1.93 | 0.90 | BRAF inhibitors (e.g., encorafenib); MKI (e.g., regorafenib); HER2 inhibitors (e.g., tucatinib, approved only in combination with the biologic trastuzumab for HER2-positive mCRC); Chemotherapy (e.g., 5-FU, oxaliplatin, irinotecan); Clinical trials ongoing for other HER2 inhibitors (e.g., lapatinib, under investigation, not approved) [18]. | Anti-angiogenic mAbs (e.g., bevacizumab, Anti-VEGF); ICIs (e.g., pembrolizumab, nivolumab); HER2-targeted antibodies (e.g., trastuzumab + tucatinib, first FDA-approved combo for HER2+ mCRC); Other HER2 biologics are in trials [18] |
Prostate | 1.47 | 0.40 | Androgen receptor inhibitors (e.g., enzalutamide); Androgen biosynthesis inhibitor (e.g., abiraterone acetate); CYP17 inhibitors; PARP inhibitors (e.g., olaparib, rucaparib for BRCA/HRR-mutated mCRPC); Chemotherapy (e.g., docetaxel, cabazitaxel) | Therapeutic vaccine (i.e., Sipuleucel-T); Immunotherapy (e.g., pembrolizumab, approved only in certain cases, i.e., mCRPC). |
Stomach | 0.97 | 0.66 | Chemotherapy (e.g., 5-FU, capecitabine, cisplatin); MKI (e.g., regorafenib, approved for advanced/refractory GC); HER2 inhibitors (e.g., lapatinib, clinical trials only, not approved) [19]. | HER2-targeted mAb (e.g., trastuzumab for HER2+ cases); Anti-VEGFR2 mAb (e.g., ramucirumab, approved for advanced disease); ICIs (e.g., nivolumab, pembrolizumab) |
Liver | 0.87 | 0.76 | MKI/TKI (e.g., sorafenib, regorafenib, lenvatinib); MET inhibitor (e.g., tepotinib, clinical trials only, not approved) [20,21]. | ICIs (PD-1 inhibitors, e.g., atezolizumab + bevacizumab, durvalumab, pembrolizumab, and CTLA-4 inhibitor, e.g., ipilimumab with nivolumab); Anti-angiogenic mAb (e.g., bevacizumab, Anti-VEGF). |
Thyroid | 0.82 | 0.048 | MKI (e.g., sorafenib, lenvatinib); RET inhibitors (e.g., selpercatinib, pralsetinib); BRAF inhibitors (e.g., dabrafenib, approved for BRAF V600E-mutant ATC, usually with the MEK inhibitor, trametinib); ALK inhibitors (e.g., larotrectinib, entrectinib for NTRK fusion-positive thyroid cancers, very rare, tissue-agnostic approval) [22]. | No biologics are approved as standard first-line treatments for thyroid cancer; ICIs (e.g., pembrolizumab) are approved only for rare cases with specific biomarkers (e.g., MSI-H, TMB-high, or PD-L1 positive). |
Cervical | 0.66 | 0.35 | Chemotherapy (e.g., cisplatin, paclitaxel); MKIs (e.g., pazopanib, clinical trials only, not standard) [23] | Anti-angiogenic mAb (e.g., bevacizumab); ICIs (e.g., pembrolizumab for PD-L1 positive recurrent/metastatic cervical cancer); ADCs (e.g., tisotumab vedotin); Other biologics under clinical investigation include ICIs (e.g., nivolumab, ipilimumab), therapeutic vaccines (e.g., ADXS11-001, ISA101), EGFR antibodies, and CAR T therapies [24]. |
Bladder | 0.61 | 0.22 | FGFR inhibitors (e.g., erdafitinib); Traditional chemotherapies (e.g., cisplatin, gemcitabine, carboplatin, methotrexate); MTIs (e.g., vinflunine, EMA-approved for mTCCU); Other small molecules in trials include TYRA-300 [25], an FGFR3 inhibitor, in phase 1 for low-grade NMIBC and advanced urothelial carcinoma. | ICIs (e.g., pembrolizumab, atezolizumab, nivolumab); ADCs (e.g., enfortumab vedotin); IL-15 receptor agonist (e.g., Anktiva); Other biologics under clinical investigation for bladder cancer include anti-VEGF monoclonal antibody (bevacizumab) [10]; ADCs (with PD-inhibitors) [26,27,28]. |
Non-Hodgkin lymphoma | 0.55 | 0.25 | BTK inhibitors (e.g., ibrutinib, acalbrutinib; BCL-2 inhibitors (e.g., venetoclax); PI3K inhibitors (e.g., idelalisib, duvelisib, copanlisib); Chemotherapy (e.g., cyclophosphamide, doxorubicin, vincristine). | Anti-CD20 mAbs (e.g., rituximab, obinutuzumab); CAR T-cell therapy (e.g., axicabtagene ciloleucel); Immunomodulatory agents (e.g., lenalidomide); ICIs (e.g., pembrolizumab, nivolumab); ADCs (e.g., brentuximab vedotin); Radiolabeled antibodies (e.g., ibritumomab tiuxetan); T-cell engagers (e.g., blinatumomab for relapsed/refractory B-cell NHL); Rituximab biosimilars (e.g., truxima, ruxience, riabni); Other biologics in trials include IL-2 cytokine therapy. |
Immunotherapy Type | Limitations | How Vaccines May Overcome Limitations |
---|---|---|
Immune Checkpoint Inhibitor (ICI) | Limited response rates and development of acquired resistance; immune-related adverse events (irAEs); biomarker identification challenges; high cost and inequitable global access [78]. | Cancer vaccines enhance tumour immunogenicity by expanding and diversifying tumour-specific T-cell responses, including memory and effector functions [79,80,81]. They help overcome resistance to ICIs by promoting T-cell infiltration and modulating immunosuppressive features within the TME [78,79,82]. Vaccines typically induce more targeted immune activation, which may contribute to a reduced incidence of immune-related adverse events compared to systemic checkpoint blockade therapies [80,82]. Furthermore, many vaccine platforms are cost-effective and scalable, offering potential for broader global accessibility [78,82]. |
Antibody-Drug Conjugate (ADC) | Neuropathy and ocular toxicity; heterogeneous antigen expression limiting efficacy; resistance, including multidrug efflux mechanisms; delivery and premature payload release causing off-target toxicities [83]. | Cancer vaccines elicit immune-mediated tumour killing without cytotoxic payloads, target multiple tumour antigens to reduce resistance from antigen heterogeneity, and promote durable memory T-cell responses with minimal off-target toxicity [78,79,84]. |
Bispecific Antibody | Tumour antigen heterogeneity; intractable TME; limited T-cell activation; systemic toxicities such as cytokine release syndrome (CRS); off-target effects damaging healthy tissues; need for frequent dosing; manufacturing complexity and immunogenicity risk [84]. | Cancer vaccines induce broad, polyclonal T-cell responses targeting diverse tumour antigens, addressing heterogeneity and immune escape [78,79,80] while minimising systemic toxicities; they also activate and sustain T cells within the TME for durable immunity [80,82]. Recent preclinical studies show that tumour-specific and non-specific vaccination prior to CD3 bispecific antibody therapy enhances T-cell infiltration, polarises the TME toward a pro-inflammatory state, improves therapeutic efficacy, and establishes durable immune memory in both ‘cold’ and ‘hot’ tumours [85,86]. |
IL-15 Superagonist Cytokine Therapy | Toxicity, including CRS and organ inflammation; short in vivo half-life requiring complex dosing; immunosuppressive TME limiting efficacy; lack of tumour-specific targeting causing systemic immune activation; and potential immune cell exhaustion reducing long-term responses [87]. | Cancer vaccines induce tumour-specific T-cell responses that localise immunity to the tumour, reducing systemic toxicity seen with IL-15 superagonists. They promote durable memory T cells resistant to exhaustion and improve antigen presentation to counteract tumour immunosuppression [88]. While vaccines address key IL-15 limitations independently, combining both may further enhance antitumour efficacy [89]. |
Tumour-Infiltrating Lymphocyte (TIL) Therapy | Manufacturing complexity and variability; limited TIL expansion from some tumours; high cost and labour-intensive process; patient conditioning toxicity; potential for T-cell exhaustion and limited persistence [90]. | Cancer vaccines can prime and expand tumour-specific T cells in vivo without the need for ex vivo cell manipulation, enabling more consistent and scalable immune responses. They also promote durable memory T-cell formation and can enhance antigen spreading to target tumour heterogeneity, potentially reducing T-cell exhaustion and improving persistence [88]. By converting ‘cold’ tumours into ‘hot’ ones, they increase T-cell infiltration and function, offering a complementary strategy to TIL therapy [91]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meade, E.; Garvey, M. Comparison of Current Immunotherapy Approaches and Novel Anti-Cancer Vaccine Modalities for Clinical Application. Int. J. Mol. Sci. 2025, 26, 8307. https://doi.org/10.3390/ijms26178307
Meade E, Garvey M. Comparison of Current Immunotherapy Approaches and Novel Anti-Cancer Vaccine Modalities for Clinical Application. International Journal of Molecular Sciences. 2025; 26(17):8307. https://doi.org/10.3390/ijms26178307
Chicago/Turabian StyleMeade, Elaine, and Mary Garvey. 2025. "Comparison of Current Immunotherapy Approaches and Novel Anti-Cancer Vaccine Modalities for Clinical Application" International Journal of Molecular Sciences 26, no. 17: 8307. https://doi.org/10.3390/ijms26178307
APA StyleMeade, E., & Garvey, M. (2025). Comparison of Current Immunotherapy Approaches and Novel Anti-Cancer Vaccine Modalities for Clinical Application. International Journal of Molecular Sciences, 26(17), 8307. https://doi.org/10.3390/ijms26178307