Human Serum Albumin-Based Nanoparticles for Targeted Intracellular Drug Delivery
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of HSA and (HSA-FA):Ru Nanoparticles
2.2. Assessment of Cell Viability of HT-29 After Exposure to Nanoparticles
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFM | Atomic Force microscopy |
DAPI | 4′,6-diamidino-2-phenylindole |
FA | Folic Acid |
HSA | Human serum Albumin |
NPs | Nanoparticles |
Ru | Rutin |
SEM | Scanning electron microscopy |
ThT | Thioflavin T |
MTS | (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) |
EDC | 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride |
NHS | N-Hydroxysuccinimide |
References
- Wong, M.C.; Ding, H.; Wang, J.; Chan, P.S.; Huang, J. Prevalence and risk factors of colorectal cancer in Asia. Intest. Res. 2019, 17, 317–329. [Google Scholar] [CrossRef]
- Sihvola, S.; Kuosmanen, L.; Kvist, T. Resilience and related factors in colorectal cancer patients: A systematic review. Eur. J. Oncol. Nurs. 2022, 56, 102079. [Google Scholar] [CrossRef]
- Tian, Q.; Liu, Y.; Zhang, Y.; Song, Z.; Yang, J.; Zhang, J.; Guo, T.; Gao, W.; Dai, F.; He, C. THBS2 is a biomarker for AJCC stages and a strong prognostic indicator in colorectal cancer. J. BUON 2018, 201823, 1331–1336. [Google Scholar]
- Yang, X.; Xie, Y. Recent advances in polymeric core-shell nanocarriers for targeted delivery of chemotherapeutic drugs. Int. J. Pharm. 2021, 608, 121094. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Lomis, N.; Westfall, S.; Farahdel, L.; Malhotra, M.; Shum-Tim, D.; Prakash, S. Human Serum Albumin Nanoparticles for Use in Cancer Drug Delivery: Process Optimization and In Vitro Characterization. Nanomaterials 2016, 6, 116. [Google Scholar] [CrossRef]
- Borlan, R.; Tatar, A.S.; Soritau, O.; Maniu, D.; Marc, G.; Florea, A.; Focsan, M.; Astilean, S. Design of fluorophore-loaded human serum albumin nanoparticles for specific targeting of NIH:OVCAR3 ovarian cancer cells. Nanotechnology 2020, 31, 315102. [Google Scholar] [CrossRef]
- Barbinta-Patrascu, M.-E.; Iftimie, S.; Cazacu, N.; Stan, D.L.; Costas, A.; Balan, A.E.; Chilom, C.G. Bio-Entities Based on Albumin Nanoparticles and Biomimetic Cell Membranes: Design, Characterization and Biophysical Evaluation. Coatings 2023, 13, 671. [Google Scholar] [CrossRef]
- Thao, L.Q.; Byeon, H.J.; Lee, C.; Lee, S.; Lee, E.S.; Choi, Y.W.; Choi, H.-G.; Park, E.-S.; Lee, K.C.; Youn, Y.S. Doxorubicin-bound albumin nanoparticles containing a TRAIL protein for targeted treatment of colon cancer. Pharm. Res. 2016, 33, 615–626. [Google Scholar] [CrossRef]
- Patel, K.; Jain, P.; Rajput, P.K.; Jangid, A.K.; Solanki, R.; Kulhari, H.; Patel, S. Human serum albumin-based propulsive Piperlongumine-loaded nanoparticles: Formulation development, characterization and anti-cancer study. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129738. [Google Scholar] [CrossRef]
- Sharma, A.; Kaur, A.; Jain, U.K.; Chandra, R.; Madan, J. Stealth recombinant human serum albumin nanoparticles conjugating 5-fluorouracil augmented drug delivery and cytotoxicity in human colon cancer, HT-29 cells. Colloids Surf. B Biointerfaces 2017, 155, 200–208. [Google Scholar] [CrossRef]
- Hassanin, I.; Elzoghby, A. Albumin-based nanoparticles: A promising strategy to overcome cancer drug resistance. Cancer Drug Resist. 2020, 3, 930–946. [Google Scholar] [CrossRef]
- Fernández, M.; Javaid, F.; Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. 2018, 9, 790–810. [Google Scholar] [CrossRef]
- Duthie, S.J. Folic acid deficiency and cancer: Mechanisms of DNA instability. Br. Med. Bull. 1999, 55, 578–592. [Google Scholar] [CrossRef]
- Kim, Y.I. Role of folate in colon cancer development and progression. J. Nutr. 2003, 133, 3731S–3739S. [Google Scholar] [CrossRef]
- Giovannucci, E. Epidemiological studies of folate and colorectal neoplasia: A review. J. Nutr. 2002, 132, 2350S–2355S. [Google Scholar] [CrossRef]
- Kuo, C.-T.; Chang, C.; Lee, W.-S. Folic acid inhibits COLO-205 colon cancer cell proliferation through activating the FRα/c-SRC/ERK1/2/NFκB/TP53 pathway: In vitro and in vivo studies. Sci. Rep. 2015, 5, 11187. [Google Scholar] [CrossRef]
- Youns, M.; Hegazy, A.H.W. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways. PLoS ONE 2017, 12, e0169335. [Google Scholar] [CrossRef]
- Xu, M.; Wang, S.; Song, Y.U.; Yao, J.; Huang, K.; Zhu, X. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway. Oncol. Lett. 2016, 11, 3075–3080. [Google Scholar] [CrossRef] [PubMed]
- Jayameena, P.; Sivakumari, K.; Ashok, K.; Rajesh, S. Rutin: A Potential Anticancer Drug Against Human Colon Cancer (Hct116). Cells 2018, 7, 1731–1745. [Google Scholar]
- Sandu, N.; Chilom, C.G.; Popescu, A.I. Spectroscopic insights on the binding of rutin to bovine serum albumin. Rom. J. Phys. 2020, 65, 703. [Google Scholar]
- Cazacu, N.; Chilom, C.G.; David, M.; Florescu, M. Conformational changes in the BSA-LT4 complex induced by the presence of vitamins: Spectroscopic approach and molecular docking. Int. J. Mol. Sci. 2022, 23, 4215. [Google Scholar] [CrossRef]
- Mendes, M.; Sousa, J.; Pais, A.; Vitorino, C. Clinical applications of nanostructured drug delivery systems: From basic research to translational medicine. In Core-Shell Nanostructures for Drug Delivery and Theranostics; Woodhead Publishing Series in Biomaterials; Focarete, M.L., Tampieri, A., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 43–116. ISBN 9780081021989. [Google Scholar]
- Hornok, V. Serum Albumin Nanoparticles: Problems and Prospects. Polymers 2021, 13, 3759. [Google Scholar] [CrossRef]
- Tulsani, N.B.; Kumar, A.; Pasha, Q.; Kumar, H.; Sarma, U.P. Immobilization of Hormones for Drug Targeting. Artif. Cells Blood Substit. Biotechnol. 2000, 28, 503–519. [Google Scholar] [CrossRef]
- Ji, H.; Zheng, Z.; Li, S.; Xiao, X.; Tang, W.; Zhang, X.; Guo, Q.; He, Q.; Cai, S.; Jiang, P.; et al. Research Progress of Serum Albumin in the Field of Drug Delivery. Interdiscip. Med. 2024, 2, 3. [Google Scholar] [CrossRef]
- Storp, B.; Engel, A.; Boeker, A.; Ploeger, M.; Langer, K. Albumin nanoparticles with predictable size by desolvation procedure. J. Microencapsul. 2012, 29, 138–146. [Google Scholar] [CrossRef]
- Mehravar, R.; Jahanshahi, M.; Saghatoleslami, N. Human Serum Albumin (HSA) Nanoparticles as Drug Delivery System: Preparation, Optimization and Characterization Study. Dyn. Biochem. Process Biotechnol. Mol. Biol. 2009, 3, 51–56. [Google Scholar]
- Li, C.; Zhang, D.; Pan, Y.; Chen, B. Human Serum Albumin Based Nanodrug Delivery Systems: Recent Advances and Future Perspective. Polymers 2023, 15, 3354. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N.K.; Ghosh, S.; Dasgupta, S. Fibrillation in Human Serum Albumin Is Enhanced in the Presence of Copper(II). J. Phys. Chem. B 2010, 114, 10228–10233. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Gan, C.; Li, Y.; Kang, L.; Yi, J. Fabrication of bovine serum albumin nanofibrils: Physicochemical characteristics, emulsifying and foaming activities. Int. J. Biol. Macromol. 2024, 271, 132549. [Google Scholar] [CrossRef] [PubMed]
- Ban, T.; Hamada, D.; Hasegawa, K.; Naiki, H.; Goto, Y. Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 2003, 278, 16462–16465. [Google Scholar] [CrossRef]
- Enache, T.A.; Oliveira-Brett, A.M. Phenol and Para-Substituted Phenols Electrochemical Oxidation Pathways. J. Electroanal. Chem. 2011, 655, 9–16. [Google Scholar] [CrossRef]
- Gurira, R.C.; Montgomery, C.; Winston, R. Electrochemical Reduction of Folic Acid Reconsidered. J. Electroanal. Chem. 1992, 333, 217–233. [Google Scholar] [CrossRef]
- Gonçalves de Araújo, E.; Fernandes, N.S.; da Silva Solon, L.G.; Soares Aragão, C.F.; Martinez-Huitle, C.A. Voltammetric Determination of Folic Acid Using a Graphite Paste Electrode. Electroanalysis 2011, 23, 398–405. [Google Scholar] [CrossRef]
- Enache, T.A.; Oliveira-Brett, A.M. Peptide Methionine Sulfoxide Reductase A (MsrA): Direct Electrochemical Oxidation on Carbon Electrodes. Bioelectrochemistry 2013, 89, 11–18. [Google Scholar] [CrossRef]
- Pedrozo, R.C.; Antônio, E.; Khalil, N.M.; Mainardes, R.M. Bovine Serum Albumin–Based Nanoparticles Containing the Flavonoid Rutin Produced by Nano Spray Drying. Braz. J. Pharm. Sci. 2024, 60, e21143. [Google Scholar] [CrossRef]
- Freire, S.; de Araujo, M.H.; Al-Soufi, W.; Novo, M. Photophysical study of Thioflavin T as fluorescence marker of amyloid fibrils. Dye. Pigment. 2014, 110, 97–105. [Google Scholar] [CrossRef]
- Xue, C.; Lin, T.Y.; Chang, D.; Guo, Z. Thioflavin T as an amyloid dye: Fibril quantification, optimal concentration and effect on aggregation. R. Soc. Open Sci. 2017, 4, 160696. [Google Scholar] [CrossRef] [PubMed]
- Surat, P. DNA Labelling Using DAPI: Methodology. News-Medical. 1 October 2018. Available online: https://www.news-medical.net/life-sciences/DNA-Labelling-Using-DAPI-Methodology.aspx (accessed on 12 April 2023).
- Davidson, P.M.; Cadot, B. Actin on and around the Nucleus. Trends Cell Biol. 2021, 31, 3. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chilom, C.G.; Iftimie, S.; Balan, A.E.; Oprea, D.; Enculescu, M.; Enache, T.A. Human Serum Albumin-Based Nanoparticles for Targeted Intracellular Drug Delivery. Int. J. Mol. Sci. 2025, 26, 8297. https://doi.org/10.3390/ijms26178297
Chilom CG, Iftimie S, Balan AE, Oprea D, Enculescu M, Enache TA. Human Serum Albumin-Based Nanoparticles for Targeted Intracellular Drug Delivery. International Journal of Molecular Sciences. 2025; 26(17):8297. https://doi.org/10.3390/ijms26178297
Chicago/Turabian StyleChilom, Claudia Gabriela, Sorina Iftimie, Adriana Elena Balan, Daniela Oprea, Monica Enculescu, and Teodor Adrian Enache. 2025. "Human Serum Albumin-Based Nanoparticles for Targeted Intracellular Drug Delivery" International Journal of Molecular Sciences 26, no. 17: 8297. https://doi.org/10.3390/ijms26178297
APA StyleChilom, C. G., Iftimie, S., Balan, A. E., Oprea, D., Enculescu, M., & Enache, T. A. (2025). Human Serum Albumin-Based Nanoparticles for Targeted Intracellular Drug Delivery. International Journal of Molecular Sciences, 26(17), 8297. https://doi.org/10.3390/ijms26178297