Human Serum Albumin-Based Nanoparticles for Targeted Intracellular Drug Delivery
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of HSA and (HSA-FA):Ru Nanoparticles
2.2. Assessment of Cell Viability of HT-29 After Exposure to Nanoparticles
3. Materials and Methods
3.1. Materials
3.2. Preparation of HSA NPs
3.3. Preparation of (HSA-FA)
3.4. Cell Cultivation
3.5. Scanning Electron Microscopy (SEM)
3.6. Atomic Force Microscopy (AFM)
3.7. Fluorescence Microscopy
3.8. Voltammetric Measurements and the Electrochemical Cell
3.9. Cell Viability
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFM | Atomic Force microscopy |
DAPI | 4′,6-diamidino-2-phenylindole |
FA | Folic Acid |
HSA | Human serum Albumin |
NPs | Nanoparticles |
Ru | Rutin |
SEM | Scanning electron microscopy |
ThT | Thioflavin T |
MTS | (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) |
EDC | 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride |
NHS | N-Hydroxysuccinimide |
References
- Wong, M.C.; Ding, H.; Wang, J.; Chan, P.S.; Huang, J. Prevalence and risk factors of colorectal cancer in Asia. Intest. Res. 2019, 17, 317–329. [Google Scholar] [CrossRef]
- Sihvola, S.; Kuosmanen, L.; Kvist, T. Resilience and related factors in colorectal cancer patients: A systematic review. Eur. J. Oncol. Nurs. 2022, 56, 102079. [Google Scholar] [CrossRef]
- Tian, Q.; Liu, Y.; Zhang, Y.; Song, Z.; Yang, J.; Zhang, J.; Guo, T.; Gao, W.; Dai, F.; He, C. THBS2 is a biomarker for AJCC stages and a strong prognostic indicator in colorectal cancer. J. BUON 2018, 201823, 1331–1336. [Google Scholar]
- Yang, X.; Xie, Y. Recent advances in polymeric core-shell nanocarriers for targeted delivery of chemotherapeutic drugs. Int. J. Pharm. 2021, 608, 121094. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Lomis, N.; Westfall, S.; Farahdel, L.; Malhotra, M.; Shum-Tim, D.; Prakash, S. Human Serum Albumin Nanoparticles for Use in Cancer Drug Delivery: Process Optimization and In Vitro Characterization. Nanomaterials 2016, 6, 116. [Google Scholar] [CrossRef]
- Borlan, R.; Tatar, A.S.; Soritau, O.; Maniu, D.; Marc, G.; Florea, A.; Focsan, M.; Astilean, S. Design of fluorophore-loaded human serum albumin nanoparticles for specific targeting of NIH:OVCAR3 ovarian cancer cells. Nanotechnology 2020, 31, 315102. [Google Scholar] [CrossRef]
- Barbinta-Patrascu, M.-E.; Iftimie, S.; Cazacu, N.; Stan, D.L.; Costas, A.; Balan, A.E.; Chilom, C.G. Bio-Entities Based on Albumin Nanoparticles and Biomimetic Cell Membranes: Design, Characterization and Biophysical Evaluation. Coatings 2023, 13, 671. [Google Scholar] [CrossRef]
- Thao, L.Q.; Byeon, H.J.; Lee, C.; Lee, S.; Lee, E.S.; Choi, Y.W.; Choi, H.-G.; Park, E.-S.; Lee, K.C.; Youn, Y.S. Doxorubicin-bound albumin nanoparticles containing a TRAIL protein for targeted treatment of colon cancer. Pharm. Res. 2016, 33, 615–626. [Google Scholar] [CrossRef]
- Patel, K.; Jain, P.; Rajput, P.K.; Jangid, A.K.; Solanki, R.; Kulhari, H.; Patel, S. Human serum albumin-based propulsive Piperlongumine-loaded nanoparticles: Formulation development, characterization and anti-cancer study. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129738. [Google Scholar] [CrossRef]
- Sharma, A.; Kaur, A.; Jain, U.K.; Chandra, R.; Madan, J. Stealth recombinant human serum albumin nanoparticles conjugating 5-fluorouracil augmented drug delivery and cytotoxicity in human colon cancer, HT-29 cells. Colloids Surf. B Biointerfaces 2017, 155, 200–208. [Google Scholar] [CrossRef]
- Hassanin, I.; Elzoghby, A. Albumin-based nanoparticles: A promising strategy to overcome cancer drug resistance. Cancer Drug Resist. 2020, 3, 930–946. [Google Scholar] [CrossRef]
- Fernández, M.; Javaid, F.; Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. 2018, 9, 790–810. [Google Scholar] [CrossRef]
- Duthie, S.J. Folic acid deficiency and cancer: Mechanisms of DNA instability. Br. Med. Bull. 1999, 55, 578–592. [Google Scholar] [CrossRef]
- Kim, Y.I. Role of folate in colon cancer development and progression. J. Nutr. 2003, 133, 3731S–3739S. [Google Scholar] [CrossRef]
- Giovannucci, E. Epidemiological studies of folate and colorectal neoplasia: A review. J. Nutr. 2002, 132, 2350S–2355S. [Google Scholar] [CrossRef]
- Kuo, C.-T.; Chang, C.; Lee, W.-S. Folic acid inhibits COLO-205 colon cancer cell proliferation through activating the FRα/c-SRC/ERK1/2/NFκB/TP53 pathway: In vitro and in vivo studies. Sci. Rep. 2015, 5, 11187. [Google Scholar] [CrossRef]
- Youns, M.; Hegazy, A.H.W. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways. PLoS ONE 2017, 12, e0169335. [Google Scholar] [CrossRef]
- Xu, M.; Wang, S.; Song, Y.U.; Yao, J.; Huang, K.; Zhu, X. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway. Oncol. Lett. 2016, 11, 3075–3080. [Google Scholar] [CrossRef] [PubMed]
- Jayameena, P.; Sivakumari, K.; Ashok, K.; Rajesh, S. Rutin: A Potential Anticancer Drug Against Human Colon Cancer (Hct116). Cells 2018, 7, 1731–1745. [Google Scholar]
- Sandu, N.; Chilom, C.G.; Popescu, A.I. Spectroscopic insights on the binding of rutin to bovine serum albumin. Rom. J. Phys. 2020, 65, 703. [Google Scholar]
- Cazacu, N.; Chilom, C.G.; David, M.; Florescu, M. Conformational changes in the BSA-LT4 complex induced by the presence of vitamins: Spectroscopic approach and molecular docking. Int. J. Mol. Sci. 2022, 23, 4215. [Google Scholar] [CrossRef]
- Mendes, M.; Sousa, J.; Pais, A.; Vitorino, C. Clinical applications of nanostructured drug delivery systems: From basic research to translational medicine. In Core-Shell Nanostructures for Drug Delivery and Theranostics; Woodhead Publishing Series in Biomaterials; Focarete, M.L., Tampieri, A., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 43–116. ISBN 9780081021989. [Google Scholar]
- Hornok, V. Serum Albumin Nanoparticles: Problems and Prospects. Polymers 2021, 13, 3759. [Google Scholar] [CrossRef]
- Tulsani, N.B.; Kumar, A.; Pasha, Q.; Kumar, H.; Sarma, U.P. Immobilization of Hormones for Drug Targeting. Artif. Cells Blood Substit. Biotechnol. 2000, 28, 503–519. [Google Scholar] [CrossRef]
- Ji, H.; Zheng, Z.; Li, S.; Xiao, X.; Tang, W.; Zhang, X.; Guo, Q.; He, Q.; Cai, S.; Jiang, P.; et al. Research Progress of Serum Albumin in the Field of Drug Delivery. Interdiscip. Med. 2024, 2, 3. [Google Scholar] [CrossRef]
- Storp, B.; Engel, A.; Boeker, A.; Ploeger, M.; Langer, K. Albumin nanoparticles with predictable size by desolvation procedure. J. Microencapsul. 2012, 29, 138–146. [Google Scholar] [CrossRef]
- Mehravar, R.; Jahanshahi, M.; Saghatoleslami, N. Human Serum Albumin (HSA) Nanoparticles as Drug Delivery System: Preparation, Optimization and Characterization Study. Dyn. Biochem. Process Biotechnol. Mol. Biol. 2009, 3, 51–56. [Google Scholar]
- Li, C.; Zhang, D.; Pan, Y.; Chen, B. Human Serum Albumin Based Nanodrug Delivery Systems: Recent Advances and Future Perspective. Polymers 2023, 15, 3354. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N.K.; Ghosh, S.; Dasgupta, S. Fibrillation in Human Serum Albumin Is Enhanced in the Presence of Copper(II). J. Phys. Chem. B 2010, 114, 10228–10233. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Gan, C.; Li, Y.; Kang, L.; Yi, J. Fabrication of bovine serum albumin nanofibrils: Physicochemical characteristics, emulsifying and foaming activities. Int. J. Biol. Macromol. 2024, 271, 132549. [Google Scholar] [CrossRef] [PubMed]
- Ban, T.; Hamada, D.; Hasegawa, K.; Naiki, H.; Goto, Y. Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 2003, 278, 16462–16465. [Google Scholar] [CrossRef]
- Enache, T.A.; Oliveira-Brett, A.M. Phenol and Para-Substituted Phenols Electrochemical Oxidation Pathways. J. Electroanal. Chem. 2011, 655, 9–16. [Google Scholar] [CrossRef]
- Gurira, R.C.; Montgomery, C.; Winston, R. Electrochemical Reduction of Folic Acid Reconsidered. J. Electroanal. Chem. 1992, 333, 217–233. [Google Scholar] [CrossRef]
- Gonçalves de Araújo, E.; Fernandes, N.S.; da Silva Solon, L.G.; Soares Aragão, C.F.; Martinez-Huitle, C.A. Voltammetric Determination of Folic Acid Using a Graphite Paste Electrode. Electroanalysis 2011, 23, 398–405. [Google Scholar] [CrossRef]
- Enache, T.A.; Oliveira-Brett, A.M. Peptide Methionine Sulfoxide Reductase A (MsrA): Direct Electrochemical Oxidation on Carbon Electrodes. Bioelectrochemistry 2013, 89, 11–18. [Google Scholar] [CrossRef]
- Pedrozo, R.C.; Antônio, E.; Khalil, N.M.; Mainardes, R.M. Bovine Serum Albumin–Based Nanoparticles Containing the Flavonoid Rutin Produced by Nano Spray Drying. Braz. J. Pharm. Sci. 2024, 60, e21143. [Google Scholar] [CrossRef]
- Freire, S.; de Araujo, M.H.; Al-Soufi, W.; Novo, M. Photophysical study of Thioflavin T as fluorescence marker of amyloid fibrils. Dye. Pigment. 2014, 110, 97–105. [Google Scholar] [CrossRef]
- Xue, C.; Lin, T.Y.; Chang, D.; Guo, Z. Thioflavin T as an amyloid dye: Fibril quantification, optimal concentration and effect on aggregation. R. Soc. Open Sci. 2017, 4, 160696. [Google Scholar] [CrossRef] [PubMed]
- Surat, P. DNA Labelling Using DAPI: Methodology. News-Medical. 1 October 2018. Available online: https://www.news-medical.net/life-sciences/DNA-Labelling-Using-DAPI-Methodology.aspx (accessed on 12 April 2023).
- Davidson, P.M.; Cadot, B. Actin on and around the Nucleus. Trends Cell Biol. 2021, 31, 3. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chilom, C.G.; Iftimie, S.; Balan, A.E.; Oprea, D.; Enculescu, M.; Enache, T.A. Human Serum Albumin-Based Nanoparticles for Targeted Intracellular Drug Delivery. Int. J. Mol. Sci. 2025, 26, 8297. https://doi.org/10.3390/ijms26178297
Chilom CG, Iftimie S, Balan AE, Oprea D, Enculescu M, Enache TA. Human Serum Albumin-Based Nanoparticles for Targeted Intracellular Drug Delivery. International Journal of Molecular Sciences. 2025; 26(17):8297. https://doi.org/10.3390/ijms26178297
Chicago/Turabian StyleChilom, Claudia Gabriela, Sorina Iftimie, Adriana Elena Balan, Daniela Oprea, Monica Enculescu, and Teodor Adrian Enache. 2025. "Human Serum Albumin-Based Nanoparticles for Targeted Intracellular Drug Delivery" International Journal of Molecular Sciences 26, no. 17: 8297. https://doi.org/10.3390/ijms26178297
APA StyleChilom, C. G., Iftimie, S., Balan, A. E., Oprea, D., Enculescu, M., & Enache, T. A. (2025). Human Serum Albumin-Based Nanoparticles for Targeted Intracellular Drug Delivery. International Journal of Molecular Sciences, 26(17), 8297. https://doi.org/10.3390/ijms26178297