In Search of the Perfect Composite Material—A Chemoinformatics Approach Towards the Easier Handling of Dental Materials
Abstract
1. Introduction
2. Results
Modeling
3. Discussion
3.1. Density Model Based on OCHEM Dataset
3.2. Density Model Based on Dental Monomer Dataset
3.3. Surface Tension Model Based on OCHEM Dataset
3.4. Surface Tension Model Based on Dental Monomer Dataset
3.5. Structural Interpretation of the CircuS Models
3.6. Model Comparison
4. Materials and Methods
4.1. Datasets
4.2. Descriptor Calculation and Model Building
4.3. Model Interpretation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Glossary
Appendix B. Moreau–Broto Autocorrelation Descriptors
References
- Aminoroaya, A.; Neisiany, R.E.; Khorasani, S.N.; Panahi, P.; Das, O.; Madry, H.; Cucchiarini, M.; Ramakrishna, S. A Review of Dental Composites: Challenges, Chemistry Aspects, Filler Influences, and Future Insights. Compos. Part B Eng. 2021, 216, 108852. [Google Scholar] [CrossRef]
- Szczesio-Wlodarczyk, A.; Domarecka, M.; Kopacz, K.; Sokolowski, J.; Bociong, K. An Evaluation of the Properties of Urethane Dimethacrylate-Based Dental Resins. Materials 2021, 14, 2727. [Google Scholar] [CrossRef]
- Podgórski, M. Structure-Property Relationship in New Photo-Cured Dimethacrylate-Based Dental Resins. Dent. Mater. 2012, 28, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Kundie, F.; Azhari, C.H.; Muchtar, A.; Ahmad, Z.A. Effects of Filler Size on the Mechanical Properties of Polymer-Filled Dental Composites: A Review of Recent Developments. J. Phys. Sci. 2018, 29, 141–165. [Google Scholar] [CrossRef]
- Moszner, N.; Salz, U. New Developments of Polymeric Dental Composites. Prog. Polym. Sci. 2001, 26, 535–576. [Google Scholar] [CrossRef]
- Iordache, S.M.; Iordache, A.M.; Gatin, D.I.; Grigorescu, C.E.A.; Ilici, R.R.; Luculescu, C.R.; Gatin, E. Performance Assessment of Three Similar Dental Restorative Composite Materials via Raman Spectroscopy Supported by Complementary Methods Such as Hardness and Density Measurements. Polymers 2024, 16, 466. [Google Scholar] [CrossRef]
- Weidmann, S.M.; Weatherell, J.A.; Hamm, S.M. Variations of Enamel Density in Sections of Human Teeth. Arch. Oral Biol. 1967, 12, 85–97. [Google Scholar] [CrossRef]
- Istrate, O.M.; Chen, B. Relative Modulus-Relative Density Relationships in Low Density Polymer-Clay Nanocomposite Foams. Soft Matter 2011, 7, 1840–1848. [Google Scholar] [CrossRef]
- Burrer, P.; Par, M.; Fürer, L.; Stübi, M.; Marovic, D.; Tarle, Z.; Attin, T.; Tauböck, T.T. Effect of Polymerization Mode on Shrinkage Kinetics and Degree of Conversion of Dual-Curing Bulk-Fill Resin Composites. Clin. Oral Investig. 2023, 27, 3169–3180. [Google Scholar] [CrossRef]
- Kaisarly, D.; Gezawi, M. El Polymerization Shrinkage Assessment of Dental Resin Composites: A Literature Review. Odontology 2016, 104, 257–270. [Google Scholar] [CrossRef]
- Yadav, R.; Saini, S.; Sonwal, S.; Meena, A.; Huh, Y.S.; Brambilla, E.; Ionescu, A.C. Optimization and Ranking of Dental Restorative Composites by ENTROPY-VIKOR and VIKOR-MATLAB. Polym. Adv. Technol. 2024, 35, e6526. [Google Scholar] [CrossRef]
- Asmussen, E.; Peutzfeldt, A. Surface Energy Characteristics of Adhesive Monomers. Dent. Mater. 1998, 14, 21–28. [Google Scholar] [CrossRef]
- Marshall, S.J.; Bayne, S.C.; Baier, R.; Tomsia, A.P.; Marshall, G.W. A Review of Adhesion Science. Dent. Mater. 2010, 26, e11–e16. [Google Scholar] [CrossRef] [PubMed]
- Retief, D.H. Adhesion in Dentistry. J. Dent. Ass. S. Afr. 1973, 28, 11–24. [Google Scholar]
- Buyukozer Ozkan, H.; Terlemez, A.; Batibay, A.B.; Erdogan, H.; Kont Cobankara, F. Evaluation of Surface Tensions and Root-Dentin Surface Contact Angles of Different Endodontic Irrigation Solutions. BMC Oral Health 2024, 24, 681. [Google Scholar] [CrossRef] [PubMed]
- Gramatica, P. On the Development and Validation of QSAR Models. Methods Mol. Biol. 2013, 930, 499–526. [Google Scholar] [CrossRef]
- Begam, B.F.; Kumar, J.S. Computer Assisted QSAR/QSPR Approaches—A Review. Indian J. Sci. Technol. 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Eichenlaub, J.; Rakowska, P.W.; Kloskowski, A. User-Assisted Methodology Targeted for Building Structure Interpretable QSPR Models for Boosting CO2 Capture with Ionic Liquids. J. Mol. Liq. 2022, 350, 118511. [Google Scholar] [CrossRef]
- Halder, A.K.; Delgado, A.H.S.; Cordeiro, M.N.D.S. First Multi-Target QSAR Model for Predicting the Cytotoxicity of Acrylic Acid-Based Dental Monomers. Dent. Mater. 2022, 38, 333–346. [Google Scholar] [CrossRef]
- Opri, M.; Amzoiu, E.; Manolea, H.O.; Rîcă, R. Computational Study of Physicochemical Properties of the Monomers Used in Stomatology. Key Eng. Mater. 2016, 695, 59–64. [Google Scholar] [CrossRef]
- Abedin, F.; Roughton, B.; Ye, Q.; Spencer, P.; Camarda, K. Computer-Aided Molecular Design of Water Compatible Visible Light Photosensitizers for Dental Adhesive. Chem. Eng. Sci. 2017, 159, 131–139. [Google Scholar] [CrossRef]
- Tuğut, F.; Bolayır, G.; Gülnahar, E.; Kaya, S.; Boztuğ, A.; Maslov, M.M. Applied and Computational Investigation of Plasticizing Effects of Dibutyl Maleate on Polymethyl Methacrylate Acrylic Resin Material. J. Mol. Struct. 2024, 1296, 136826. [Google Scholar] [CrossRef]
- Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A.K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V.V.; Tanchuk, V.Y.; et al. Online Chemical Modeling Environment (OCHEM): Web Platform for Data Storage, Model Development and Publishing of Chemical Information. J. Comput.-Aided Mol. Des. 2011, 25, 533–554. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics; Methods and Principles in Medicinal Chemistry; Wiley: Oxford, UK, 2009; Volume 41, ISBN 9783527318520. [Google Scholar]
- Randic, M. On Molecular Identification Numbers. J. Chem. Inf. Comput. Sci. 1984, 24, 164–175. [Google Scholar] [CrossRef]
- Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T. Mordred: A Molecular Descriptor Calculator. J. Cheminform. 2018, 10, 4. [Google Scholar] [CrossRef]
- Narayana Moorthy, N.S.H.; Martins, S.A.; Sousa, S.F.; Ramos, M.J.; Fernandes, P.A. Classification Study of Solvation Free Energies of Organic Molecules Using Machine Learning Techniques. RSC Adv. 2014, 4, 61624–61630. [Google Scholar] [CrossRef]
- Takaku, T.; Nagahori, H.; Sogame, Y.; Takagi, T. Quantitative Structure-Activity Relationship Model for the Fetal-Maternal Blood Concentration Ratio of Chemicals in Humans. Biol. Pharm. Bull. 2015, 38, 930–934. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, J.; Marsili, M. A New Model for Calculating Atomic Charges in Molecules. Tetrahedron Lett. 1978, 19, 3181–3184. [Google Scholar] [CrossRef]
- Burden, F.R. Molecular Identification Number for Substructure Searches. J. Chem. Inf. Comput. Sci. 1989, 29, 225–227. [Google Scholar] [CrossRef]
- Roy, K.; Mitra, I. Electrotopological State Atom (E-State) Index in Drug Design, QSAR, Property Prediction and Toxicity Assessment. Curr. Comput.-Aided Drug Des. 2012, 8, 135–158. [Google Scholar] [CrossRef]
- Clar, E.; Macpherson, I.A. The Significance of Kekulé Structures for the Stability of Aromatic Systems—II. Tetrahedron 1962, 18, 1411–1416. [Google Scholar] [CrossRef]
- Basak, S.C.; Harriss, D.K.; Magnuson, V.R. Comparative Study of Lipophilicity versus Topological Molecular Descriptors in Biological Correlations. J. Pharm. Sci. 1984, 73, 429–437. [Google Scholar] [CrossRef]
- Kier, L.B.; Hall, L.H. An Electrotopological-State Index for Atoms in Molecules. Pharm. Res. 1990, 7, 801–807. [Google Scholar] [CrossRef]
- Pogliani, L. Modeling with Molecular Pseudoconnectivity Descriptors. A Useful Extension of the Intrinsic I-State Concent. J. Phys. Chem. A 2000, 104, 9029–9045. [Google Scholar] [CrossRef]
- Marcou, G.; Horvath, D.; Solov’ev, V.; Arrault, A.; Vayer, P.; Varnek, A. Interpretability of SAR/QSAR Models of Any Complexity by Atomic Contributions. Mol. Inform. 2012, 31, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Kar, S.; Das, R.N. QSAR/QSPR Modeling: Introduction. In A Primer on QSAR/QSPR Modeling: Fundamental Concepts; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–36. ISBN 978-3-319-17281-1. [Google Scholar]
- Mauri, A. AlvaDesc: A Tool to Calculate and Analyze Molecular Descriptors and Fingerprints. In Ecotoxicological QSARs; Springer: New York, NY, USA, 2020; pp. 801–820. [Google Scholar] [CrossRef]
- Zhong, S.; Guan, X. Count-Based Morgan Fingerprint: A More Efficient and Interpretable Molecular Representation in Developing Machine Learning-Based Predictive Regression Models for Water Contaminants’ Activities and Properties. Environ. Sci. Technol. 2023, 57, 18193–18202. [Google Scholar] [CrossRef] [PubMed]
- Van Der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Pedregosa, F.; Michel, V.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Vanderplas, J.; Cournapeau, D.; Pedregosa, F.; Varoquaux, G.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inform. 2010, 29, 476–488. [Google Scholar] [CrossRef]
- Tsuji, N.; Sidorov, P.; Zhu, C.; Nagata, Y.; Gimadiev, T.; Varnek, A.; List, B. Predicting Highly Enantioselective Catalysts Using Tunable Fragment Descriptors. Angew. Chem. Int. Ed. 2023, 62, e202218659. [Google Scholar] [CrossRef] [PubMed]
- Louhichi, M.; Nesmaoui, R.; Marwan, M.; Lazaar, M. Shapley Values for Explaining the Black Box Nature of Machine Learning Model Clustering. Procedia Comput. Sci. 2023, 220, 806–811. [Google Scholar] [CrossRef]
- Marcou, G.; Rognan, D. Optimizing Fragment and Scaffold Docking by Use of Molecular Interaction Fingerprints. J. Chem. Inf. Model. 2007, 47, 195–207. [Google Scholar] [CrossRef]
- Hollas, B. An Analysis of the Autocorrelation Descriptor for Molecules. J. Math. Chem. 2003, 33, 91–101. [Google Scholar] [CrossRef]
- Broto, P.; Devillers, J. Autocorrelation of Properties Distributed on Molecular Graphs. In Practical Applications of Quantitative Structure-Activity Relationships (QSAR) in Environmental Chemistry and Toxicology; Karcher, W., Devillers, J., Eds.; ECSC: Brussels, Belgium, 1990; pp. 105–217. [Google Scholar]
- Anselin, L. The Moran Scatterplot as an ESDA Tool to Assess Local Instability in Spatial Association. In Spatial Analytical Perspectives on GIS; Fischer, M., Scholten, H., Unwin, D., Eds.; Taylor and Francis: London, UK, 1996; pp. 111–125. [Google Scholar]
- Fatemi, M.H.; Ghorbannezhad, Z. Estimation of the Volume of Distribution of Some Pharmacologically Important Compounds from Their Structural Descriptors. J. Serbian Chem. Soc. 2011, 76, 1003–1014. [Google Scholar] [CrossRef]
Molecular Representation | Density | Surface Tension | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
OCHEM datasets (5-CV) | ||||
MFs | 0.673 | 0.112 | 0.551 | 0.004 |
MDs | 0.960 | 0.039 | 0.732 | 0.003 |
MFs + MDs | 0.955 | 0.041 | 0.734 | 0.003 |
Dental monomer datasets (LOOCV) | ||||
MFs | 0.763 | 0.042 | 0.494 | 0.003 |
MDs | 0.641 | 0.052 | 0.768 | 0.002 |
MFs + MDs | 0.737 | 0.044 | 0.758 | 0.002 |
Subset of Data Monomer Dataset | Density | Surface Tension | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
Experimental | 0.797 | 0.035 | <0 | 0.002 |
Experimental and simulated | 0.826 | 0.036 | 0.565 | 0.003 |
Descriptor | Permutation Importance | RF Model-Based Importance |
---|---|---|
Density model based on OCHEM dataset | ||
AMID_h | 0.210 | 0.126 |
AATS1Z | 0.184 | 0.170 |
AMW | 0.076 | 0.215 |
Mm | 0.052 | 0.173 |
AATS2m | 0.047 | 0.163 |
AATS2Z | 0.046 | 0.152 |
Density model based on dental monomer dataset | ||
TopoPSA | 0.110 | 0.211 |
AATS1Z | 0.109 | 0.191 |
TopoPSA(NO) | 0.109 | 0.153 |
AATS1m | 0.093 | 0.145 |
ATSC1c | 0.053 | 0.199 |
BCUTc-1h | 0.025 | 0.101 |
Surface tension model based on OCHEM dataset | ||
Mv | 0.690 | 0.357 |
GATS1v | 0.264 | 0.247 |
VSA_EState8 | 0.238 | 0.088 |
nBondsM | 0.192 | 0.078 |
SIC5 | 0.174 | 0.151 |
nHBDon | 0.122 | 0.079 |
Surface tension model based on dental monomer dataset | ||
AATS1d | 0.213 | 0.350 |
BCUTs-1h | 0.177 | 0.210 |
AATS4dv | 0.117 | 0.151 |
ATSC1c | 0.042 | 0.127 |
MATS1dv | 0.034 | 0.076 |
ATS0s | 0.025 | 0.085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eichenlaub, J.; Baran, K.; Urbański, K.; Robakowska, M.; Kalinowska, J.; Racka-Pilszak, B.; Kloskowski, A. In Search of the Perfect Composite Material—A Chemoinformatics Approach Towards the Easier Handling of Dental Materials. Int. J. Mol. Sci. 2025, 26, 8283. https://doi.org/10.3390/ijms26178283
Eichenlaub J, Baran K, Urbański K, Robakowska M, Kalinowska J, Racka-Pilszak B, Kloskowski A. In Search of the Perfect Composite Material—A Chemoinformatics Approach Towards the Easier Handling of Dental Materials. International Journal of Molecular Sciences. 2025; 26(17):8283. https://doi.org/10.3390/ijms26178283
Chicago/Turabian StyleEichenlaub, Joachim, Karol Baran, Kamil Urbański, Marlena Robakowska, Jolanta Kalinowska, Bogna Racka-Pilszak, and Adam Kloskowski. 2025. "In Search of the Perfect Composite Material—A Chemoinformatics Approach Towards the Easier Handling of Dental Materials" International Journal of Molecular Sciences 26, no. 17: 8283. https://doi.org/10.3390/ijms26178283
APA StyleEichenlaub, J., Baran, K., Urbański, K., Robakowska, M., Kalinowska, J., Racka-Pilszak, B., & Kloskowski, A. (2025). In Search of the Perfect Composite Material—A Chemoinformatics Approach Towards the Easier Handling of Dental Materials. International Journal of Molecular Sciences, 26(17), 8283. https://doi.org/10.3390/ijms26178283