CACNA1A Genetic Variants and Their Potential Involvement in Migraine Pathogenesis
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
YLDs | Years lived with disability |
MA | Migraine with aura |
MO | Migraine without aura |
CSD | Cortical spreading depression |
CACNA1A | Calcium voltage-gated channel subunit alpha 1 |
ATP1A2 | ATPase Na+/K+ transporting subunit alpha 2 |
SCN1A | Sodium voltage-gated channel alpha subunit 1 |
FHM | Familial hemiplegic migraine |
FHM1 | Familial hemiplegic migraine type 1 |
SCA6 | Spinocerebellar ataxia type 6 |
ICHD-3 | International Classification of Headache Disorders, 3rd edition |
PUMS | Poznan University of Medical Sciences |
EDTA | Disodium edetate |
HRMA | High-resolution melt analysis |
References
- World Health Organization. Migraine and Other Headache Disorders. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/headache-disorders (accessed on 23 February 2025).
- Safiri, S.; Pourfathi, H.; Eagan, A.; Mansournia, M.A.; Khodayari, M.T.; Sullman, M.J.M.; Kaufman, J.; Collins, G.; Dai, H.; Bragazzi, N.L.; et al. Global, regional, and national burden of migraine in 204 countries and territories, 1990 to 2019. Pain 2022, 163, 293–309. [Google Scholar] [CrossRef]
- Allais, G.; Chiarle, G.; Sinigaglia, S.; Airola, G.; Schiapparelli, P.; Benedetto, C. Gender-related differences in migraine. Neurol. Sci. 2020, 41, 429–436. [Google Scholar] [CrossRef]
- Lipton, R.B.; Stewart, W.F.; Scher, A.I. Epidemiology and economic impact of migraine. Curr. Med. Res. Opin. 2001, 17, 4–12. [Google Scholar] [CrossRef]
- Karbowniczek, A.; Domitrz, I. Frequency and clinical characteristics of chronic daily headache in an outpatient clinic setting. Neurol. Neurochir. Pol. 2011, 45, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018, 38, 1–211. [Google Scholar] [CrossRef] [PubMed]
- Pescador Ruschel, M.A.; De Jesus, O. Migraine Headache. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Eigenbrodt, A.K.; Ashina, H.; Khan, S.; Diener, H.C.; Mitsikostas, D.D.; Sinclair, A.J.; Pozo-Rosich, P.; Martelletti, P.; Ducros, A.; Lantéri-Minet, M.; et al. Diagnosis and management of migraine in ten steps. Nat. Rev. Neurol. 2021, 17, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Rai, N.K.; Bitswa, R.; Singh, R.; Pakhre, A.P.; Parauha, D.S. Factors associated with delayed diagnosis of migraine: A hospital-based cross-sectional study. J. Family. Med. Prim. Care. 2019, 8, 1925–1930. [Google Scholar] [CrossRef]
- Frimpong-Manson, K.; Ortiz, Y.T.; McMahon, L.R.; Wilkerson, J.L. Advances in understanding migraine pathophysiology: A bench to bedside review of research insights and therapeutics. Front. Mol. Neurosci. 2024, 17, 1355281. [Google Scholar] [CrossRef]
- Dell’Isola, G.B.; Tulli, E.; Sica, R.; Vinti, V.; Mencaroni, E.; Di Cara, G.; Striano, P.; Verrotti, A. The Vitamin D Role in Preventing Primary Headache in Adult and Pediatric Population. J. Clin. Med. 2021, 10, 5983. [Google Scholar] [CrossRef]
- Amiri, P.; Kazeminasab, S.; Nejadghaderi, S.A.; Mohammadinasab, R.; Pourfathi, H.; Araj-Khodaei, M.; Sullman, M.J.M.; Kolahi, A.A.; Safiri, S. Migraine: A Review on Its History, Global Epidemiology, Risk Factors, and Comorbidities. Front. Neurol. 2022, 12, 800605. [Google Scholar] [CrossRef]
- Lauritzen, M.; Dreier, J.P.; Fabricius, M.; Hartings, J.A.; Graf, R.; Strong, A.J. Clinical relevance of cortical spreading depression in neurological disorders: Migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J. Cereb. Blood Flow Metab. 2011, 31, 17–35. [Google Scholar] [CrossRef]
- Lauritzen, M. Pathophysiology of the migraine aura. The spreading depression theory. Brain 1994, 117, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Correa, B.H.M.; Moreira, C.R.; Hildebrand, M.E.; Vieira, L.B. The role of voltage-gated calcium channels in basal ganglia neurodegenerative disorders. Curr. Neuropharmacol. 2023, 21, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Nimmrich, V.; Gross, G. P/Q-type calcium channel modulators. Br. J. Pharmacol. 2012, 167, 741–759. [Google Scholar] [CrossRef] [PubMed]
- Heck, J.; Palmeira Do Amaral, A.C.; Weißbach, S.; El Khallouqi, A.; Bikbaev, A.; Heine, M. More than a pore: How voltage-gated calcium channels act on different levels of neuronal communication regulation. Channels 2021, 15, 322–338. [Google Scholar] [CrossRef]
- Fu, X.; Chen, M.; Lu, J.; Li, P. Cortical spreading depression induces propagating activation of the thalamus ventral posteromedial nucleus in awake mice. J. Headache Pain 2022, 23, 15. [Google Scholar] [CrossRef]
- Pietrobon, D. Familial hemiplegic migraine. Neurotherapeutics 2007, 4, 274–284. [Google Scholar] [CrossRef]
- Thomsen, L.L.; Oestergaard, E.; Bjornsson, A.; Stefansson, H.; Fasquel, A.C.; Gulcher, J.; Stefansson, K.; Olesen, J. Screen for CACNA1A and ATP1A2 mutations in sporadic hemiplegic migraine patients. Cephalalgia 2008, 28, 914–921. [Google Scholar] [CrossRef]
- Garza-López, E.; Sandoval, A.; González-Ramírez, R.; Gandini, M.A.; Van den Maagdenberg, A.; De Waard, M.; Felix, R. Familial hemiplegic migraine type 1 mutations W1684R and V1696I alter G protein-mediated regulation of Ca(V)2.1 voltage-gated calcium channels. Biochim. Biophys. Acta 2012, 1822, 1238–1246. [Google Scholar] [CrossRef]
- Olesen, J. Cerebral blood flow and arterial responses in migraine: History and future perspectives. J. Headache Pain. 2024, 25, 222. [Google Scholar] [CrossRef]
- van den Maagdenberg, A.M.; Pietrobon, D.; Pizzorusso, T.; Kaja, S.; Broos, L.A.; Cesetti, T.; van de Ven, R.C.; Tottene, A.; van der Kaa, J.; Plomp, J.J.; et al. Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 2004, 41, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Tfelt-Hansen, P.C. History of migraine with aura and cortical spreading depression from 1941 and onwards. Cephalalgia 2010, 30, 780–792. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Raju, P.K.; D’Avanzo, N.; Lachance, M.; Pepin, J.; Dubeau, F.; Mitchell, W.G.; Bello-Espinosa, L.E.; Pierson, T.M.; Minassian, B.A.; et al. Both gain-of-function and loss-of-function de novo CACNA1A mutations cause severe developmental epileptic encephalopathies in the spectrum of Lennox-Gastaut syndrome. Epilepsia 2019, 60, 1881–1894. [Google Scholar] [CrossRef] [PubMed]
- Auffenberg, E.; Hedrich, U.B.; Barbieri, R.; Miely, D.; Groschup, B.; Wuttke, T.V.; Vogel, N.; Lührs, P.; Zanardi, I.; Bertelli, S.; et al. Hyperexcitable interneurons trigger cortical spreading depression in an Scn1a migraine model. J. Clin. Investig. 2021, 131, 142202. [Google Scholar] [CrossRef]
- Restituito, S.; Thompson, R.M.; Eliet, J.; Raike, R.S.; Riedl, M.; Charnet, P.; Gomez, C.M. The polyglutamine expansion in spinocerebellar ataxia type 6 causes a beta subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J. Neurosci. 2000, 20, 6394–6403. [Google Scholar] [CrossRef]
- Kordasiewicz, H.B.; Gomez, C.M. Molecular pathogenesis of spinocerebellar ataxia type 6. Neurotherapeutics 2007, 4, 285–294. [Google Scholar] [CrossRef]
- Spekker, E.; Nagy-Grócz, G.; Vécsei, L. Ion channel disturbances in migraine headache: Exploring the potential role of the kynurenine system in the context of the trigeminovascular system. Int. J. Mol. Sci. 2023, 24, 16574. [Google Scholar] [CrossRef]
- Eren-Koçak, E.; Dalkara, T. Ion channel dysfunction and neuroinflammation in migraine and depression. Front. Pharmacol. 2021, 12, 777607. [Google Scholar] [CrossRef]
- National Library of Medicine. 2024. Available online: https://www.ncbi.nlm.nih.gov/snp/rs10405121 (accessed on 23 February 2025).
- National Library of Medicine. 2024. Available online: https://www.ncbi.nlm.nih.gov/snp/rs894252513 (accessed on 23 February 2025).
- National Library of Medicine. 2024. Available online: https://www.ncbi.nlm.nih.gov/snp/rs1012663275 (accessed on 23 February 2025).
- Ducros, A.; Tournier-Lasserve, E.; Bousser, M.G. The genetics of migraine. Lancet Neurol. 2002, 1, 285–293. [Google Scholar] [CrossRef]
- Grangeon, L.; Lange, K.S.; Waliszewska-Prosół, M.; Onan, D.; Marschollek, K.; Wiels, W.; Mikulenka, P.; Farham, F.; Gollion, C.; Ducros, A.; et al. Genetics of migraine: Where are we now? J. Headache Pain 2023, 24, 12. [Google Scholar] [CrossRef]
- Gosalia, H.; Karsan, N.; Goadsby, P.J. Genetic mechanisms of migraine: Insights from monogenic migraine mutations. Int. J. Mol. Sci. 2023, 24, 12697. [Google Scholar] [CrossRef]
- Sutherland, H.G.; Albury, C.L.; Griffiths, L.R. Advances in genetics of migraine. J. Headache Pain 2019, 20, 72. [Google Scholar] [CrossRef]
- Szymanowicz, O.; Drużdż, A.; Słowikowski, B.; Pawlak, S.; Potocka, E.; Goutor, U.; Konieczny, M.; Ciastoń, M.; Lewandowska, A.; Jagodziński, P.P.; et al. A Review of the CACNA gene family: Its role in neurological disorders. Diseases 2024, 12, 90. [Google Scholar] [CrossRef] [PubMed]
- Hautakangas, H.; Winsvold, B.S.; Ruotsalainen, S.E.; Bjornsdottir, G.; Harder, A.V.E.; Kogelman, L.J.A.; Thomas, L.F.; Noordam, R.; Benner, C.; Gormley, P.; et al. Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nat. Genet. 2022, 54, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Bjornsdottir, G.; Chalmer, M.A.; Stefansdottir, L.; Skuladottir, A.T.; Einarsson, G.; Andresdottir, M.; Beyter, D.; Ferkingstad, E.; Gretarsdottir, S.; Halldorsson, B.V.; et al. Rare variants with large effects provide functional insights into the pathology of migraine subtypes, with and without aura. Nat. Genet. 2023, 55, 1843–1853. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, M.; Prendecki, M.; Kapelusiak-Pielok, M.; Grzelak, T.; Łagan-Jędrzejczyk, U.; Wiszniewska, M.; Kozubski, W.; Dorszewska, J. Analysis of genetic variants in SCN1A, SCN2A, KCNK18, TRPA1 and STX1A as a possible marker of migraine. Curr. Genomics 2020, 21, 224–236. [Google Scholar] [CrossRef]
- Pikor, D.; Hurła, M.; Słowikowski, B.; Szymanowicz, O.; Poszwa, J.; Banaszek, N.; Drelichowska, A.; Jagodziński, P.P.; Kozubski, W.; Dorszewska, J. Calcium Ions in the Physiology and Pathology of the Central Nervous System. Int. J. Mol. Sci. 2024, 25, 13133. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, F.; Li, M.; He, J.; Huang, J.; Rao, D.C.; Hixson, J.E.; Gu, C.; Kelly, T.N.; Chen, S.; et al. Associations of variants in the CACNA1A and CACNA1C genes with longitudinal blood pressure changes and hypertension incidence: The GenSalt study. Am. J. Hypertens. 2016, 29, 1301–1306. [Google Scholar] [CrossRef]
Mutation | Disease | Mechanism | Clinical Symptoms |
---|---|---|---|
p.Thr501Met | Familial Hemiplegic Migraine Type 1 (FHM1) | Increased calcium ion influx, lowered CSD 1 threshold | Migraine with aura, hemiplegia, neuronal hyperexcitability |
p.Arg192Gln | FHM1 | Increased activity of calcium channels | Severe migraine attacks with aura, occasionally coma |
p.Ser218Leu | FHM1 | Significant increase in calcium channel permeability | Severe migraine attacks, aura, ataxia |
p.Gly293Arg | FHM1 | Increased calcium current, lowered neuronal excitability threshold | Severe migraines, sometimes with neurological disturbances |
p.Ala454Thr | FHM1 | Increased calcium channel activity | Hemiplegic migraine attacks, aura |
c.2494C > T (p.Arg831Cys) | Episodic Ataxia Type 2 (EA2) | Decreased calcium ion influx through P/Q channels | Ataxia episodes, vertigo, nystagmus |
c.6793C > T (p.Arg2265Trp) | EA2 | Reduced calcium channel activity | Episodic ataxia triggered by stress or exertion |
CAG repeat expansion | Spinocerebellar Ataxia Type 6 (SCA6) | Formation of abnormal proteins with long glutamine sequences, degeneration of Purkinje cells | Progressive ataxia, dysarthria, nystagmus |
Variant | Genotype | Patients with Family History | Patients Without Family History | Controls | Clinical Features |
---|---|---|---|---|---|
rs10405121 | AA (abnormal) | 14 (17%) 10 MA 1, 4 MO 2 | 6 (33%) 5 MA, 1 MO | 9 (18%) | Found more often in MA. |
GA (heterozygous) | 35 (43%) 10 MA, 25 MO | 5 (28%) 2 MA, 3 MO | 25 (50%) | Present in both migraine patients and controls. | |
GG (normal) | 33 (40%) 16 MA, 17 MO | 7 (39%) 7 MA, 0 MO | 16 (32%) | Present in both migraine patients and controls. | |
rs894252513 | CA (abnormal) | 1 (1%) MO | 0 (0%) | 0 (0%) | Found exclusively in familial MO cases. |
CC (normal) | 81 (99%) 36 MA, 45 MO | 18 (100%) 14 MA, 4 MO | 50 (100%) | Present in both migraine patients and controls. | |
rs1012663275 | CC (abnormal) | 1 (1%) MO | 0 (0%) | 2 (4%) | Found only in a familial MO case. |
AC (heterozygous) | 5 (6%) 2 MA, 3 MO | 0 (0%) | 14 (28%) | Present more often in controls. | |
AA (normal) | 76 (93%) 34 MA, 42 MO | 18 (100%) 14 MA, 4 MO | 34 (68%) | Present more often in familial MA and controls. | |
ch19:13228374 G > C | - | 6 (7%) 1 MA, 5 MO | 0 (0%) | 14 (28%) | Found in migraine patients with a young age of onset (6–20 years). |
ch19:13228428 G > C | - | 12 (15%) 4 MA, 8 MO | 2 (11%) 2 MA, 0 MO | 16 (32%) | Novel variant observed in a familial case with differences in migraine type. |
ch19:13228348 A > T | - | 2 (2%) MO | 0 (0%) | 0 (0%) | Novel variant exclusively associated with familial MO cases. |
Genetic Variant | Genotype | Migraine Patients [n] | Controls [n] | p-Value |
---|---|---|---|---|
rs10405121 | AA (abnormal) | 20 | 9 | 0.94173 |
GA (heterozygous) | 40 | 25 | 0.32201 | |
GG (normal) | 40 | 16 | 0.43783 | |
rs894252513 | CA (abnormal) | 1 | 0 | 1.0000 |
CC (normal) | 99 | 50 | 1.0000 | |
rs1012663275 | CC (abnormal) | 1 | 2 | 0.53619 |
AC (heterozygous) | 5 | 14 | 0.00019 | |
AA (normal) | 94 | 34 | 0.00006 |
Variant (hg38) | Nucleotide Change | CADD PHRED Score | Predicted Effect |
---|---|---|---|
chr19:13228374 | G > C | 0.921 | Likely benign |
chr19:13228428 | G > C | 17.06 | Possibly functional/deleterious |
chr19:13228348 | A > T | 6.464 | Possibly mild regulatory effect |
Migraine (n = 100) | Controls (n = 50) | ||
---|---|---|---|
MO 1 (n = 50) | MA 2 (n = 50) | ||
Sex | |||
Male | 3 | 5 | 6 |
Female | 47 | 45 | 44 |
Age | 35.44 ± 13.33 | 36.64 ± 13.90 | 34.12 ± 13.90 |
Family history of migraine | |||
Yes | 46 | 36 | not applicable |
No | 4 | 14 | |
Age of onset | |||
1–18 | 31 | 31 | not applicable |
18–45 | 16 | 18 | |
>45 | 3 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymanowicz, O.; Słowikowski, B.; Poszwa, J.; Goutor, U.; Wiszniewska, M.; Jagodziński, P.P.; Kozubski, W.; Dorszewska, J. CACNA1A Genetic Variants and Their Potential Involvement in Migraine Pathogenesis. Int. J. Mol. Sci. 2025, 26, 8083. https://doi.org/10.3390/ijms26168083
Szymanowicz O, Słowikowski B, Poszwa J, Goutor U, Wiszniewska M, Jagodziński PP, Kozubski W, Dorszewska J. CACNA1A Genetic Variants and Their Potential Involvement in Migraine Pathogenesis. International Journal of Molecular Sciences. 2025; 26(16):8083. https://doi.org/10.3390/ijms26168083
Chicago/Turabian StyleSzymanowicz, Oliwia, Bartosz Słowikowski, Joanna Poszwa, Ulyana Goutor, Małgorzata Wiszniewska, Paweł P. Jagodziński, Wojciech Kozubski, and Jolanta Dorszewska. 2025. "CACNA1A Genetic Variants and Their Potential Involvement in Migraine Pathogenesis" International Journal of Molecular Sciences 26, no. 16: 8083. https://doi.org/10.3390/ijms26168083
APA StyleSzymanowicz, O., Słowikowski, B., Poszwa, J., Goutor, U., Wiszniewska, M., Jagodziński, P. P., Kozubski, W., & Dorszewska, J. (2025). CACNA1A Genetic Variants and Their Potential Involvement in Migraine Pathogenesis. International Journal of Molecular Sciences, 26(16), 8083. https://doi.org/10.3390/ijms26168083