Association of Genetically Predicted Activity of AMP Deaminase 1 with Clinical and Biochemical Parameters in Diabetic Individuals with Coronary Artery Disease
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients and Control Subjects
4.2. AMPD1 Genotyping
4.3. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMPD1 | gene encoding adenosine monophosphate deaminase 1 |
AMPD2 | gene encoding adenosine monophosphate deaminase 2 |
AMP | adenosine monophosphate |
AMPDs | adenosine monophosphate deaminases |
AMPK | 5′ AMP-activated protein kinase |
BMI | body mass index |
CAD | coronary artery disease |
CKD-EPI | Chronic Kidney Disease Epidemiological Collaboration |
e-GFR | estimated glomerular filtration rate |
HbA1C | glycated hemoglobin |
HDL | HDL cholesterol |
LDL | LDL cholesterol |
NYHA | New York Heart Association |
TC | total cholesterol |
TG | triacylglycerols |
WHR | waist-to-hip ratio |
References
- Safranow, K.; Czyzycka, E.; Binczak-Kuleta, A.; Rzeuski, R.; Skowronek, J.; Wojtarowicz, A.; Jakubowska, K.; Olszewska, M.; Loniewska, B.; Kaliszczak, R.; et al. Association of C34T AMPD1 gene polymorphism with features of metabolic syndrome in patients with coronary artery disease or heart failure. Scand. J. Clin. Lab. Investig. 2009, 69, 102–112. [Google Scholar] [CrossRef]
- Morisaki, T.; Sabina, R.L.; Holmes, E.W. Adenylate deaminase. A multigene family in humans and rats. J. Biol. Chem. 1990, 265, 11482–11486. [Google Scholar] [CrossRef]
- Morisaki, T.; Gross, M.; Morisaki, H.; Pongratz, D.; Zöllner, N.; Holmes, E.W. Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc. Natl. Acad. Sci. USA 1992, 89, 6457–6461. [Google Scholar] [CrossRef] [PubMed]
- Loh, E.; Rebbeck, T.R.; Mahoney, P.D.; DeNofrio, D.; Swain, J.L.; Holmes, E.W. Common variant in AMPD1 gene predicts improved clinical outcome in patients with heart failure. Circulation 1999, 99, 1422–1425. [Google Scholar] [CrossRef] [PubMed]
- Feng, A.F.; Liu, Z.H.; Zhou, S.L.; Zhao, S.Y.; Zhu, Y.X.; Wang, H.X. Effects of AMPD1 gene C34T polymorphism on cardiac index, blood pressure and prognosis in patients with cardiovascular diseases: A meta-analysis. BMC Cardiovasc. Disord. 2017, 17, 174. [Google Scholar] [CrossRef] [PubMed]
- Toyama, K.; Morisaki, H.; Kitamura, Y.; Gross, M.; Tamura, T.; Nakahori, Y.; Vance, J.M.; Speer, M.; Kamatani, N.; Morisaki, T. Haplotype analysis of human AMPD1 gene: Origin of common mutant allele. J. Med. Genet. 2004, 41, e74. [Google Scholar] [CrossRef]
- Safranow, K.; Suchy, J.; Jakubowska, K.; Olszewska, M.; Bińczak-Kuleta, A.; Kurzawski, G.; Rzeuski, R.; Czyżycka, E.; Łoniewska, B.; Kornacewicz-Jach, Z.; et al. AMPD1 gene mutations are associated with obesity and diabetes in Polish patients with cardiovascular diseases. J. Appl. Genet. 2011, 52, 67–76. [Google Scholar] [CrossRef]
- Arking, D.E.; Krebsova, A.; Macek, M., Sr.; Macek, M., Jr.; Arking, A.; Mian, I.S.; Fried, L.; Hamosh, A.; Dey, S.; McIntosh, I.; et al. Association of human aging with a functional variant of klotho. Proc. Natl. Acad. Sci. USA 2002, 99, 856–861. [Google Scholar] [CrossRef]
- Cybulski, C.; Górski, B.; Huzarski, T.; Byrski, T.; Gronwald, J.; Debniak, T.; Wokolorczyk, D.; Jakubowska, A.; Kowalska, E.; Oszurek, O.; et al. CHEK2-positive breast cancers in young Polish women. Clin. Cancer Res. 2006, 12, 4832–4835. [Google Scholar] [CrossRef]
- Freiberger, T.; Vyskocilová, M.; Kolárová, L.; Kuklínek, P.; Krystůfková, O.; Lahodná, M.; Hanzlíková, J.; Litzman, J. Exon 1 polymorphism of the B2BKR gene does not influence the clinical status of patients with hereditary angioedema. Hum. Immunol. 2002, 63, 492–494. [Google Scholar] [CrossRef]
- Larsen, T.B.; Lassen, J.F.; Brandslund, I.; Byriel, L.; Petersen, G.B.; Nørgaard-Pedersen, B. The Arg506Gln mutation (FV Leiden) among a cohort of 4188 unselected Danish newborns. Thromb. Res. 1998, 89, 211–215. [Google Scholar] [CrossRef]
- Han, T.; Wang, X.; Cui, Y.; Ye, H.; Tong, X.; Piao, M. Relationship between angiotensin-converting enzyme gene insertion or deletion polymorphism and insulin sensitivity in healthy newborns. Pediatrics 2007, 119, 1089–1094. [Google Scholar] [CrossRef]
- Ploski, R.; Wozniak, M.; Pawlowski, R.; Monies, D.M.; Branicki, W.; Kupiec, T.; Kloosterman, A.; Dobosz, T.; Bosch, E.; Nowak, M.; et al. Homogeneity and distinctiveness of Polish paternal lineages revealed by Y chromosome microsatellite haplotype analysis. Hum. Genet. 2002, 110, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Kayser, M.; Lao, O.; Anslinger, K.; Augustin, C.; Bargel, G.; Edelmann, J.; Elias, S.; Heinrich, M.; Henke, J.; Henke, L.; et al. Significant genetic differentiation between Poland and Germany follows present-day political borders, as revealed by Y-chromosome analysis. Hum. Genet. 2005, 117, 428–443. [Google Scholar] [CrossRef]
- Debniak, T.; Scott, R.J.; Huzarski, T.; Byrski, T.; Rozmiarek, A.; Debniak, B.; Załuga, E.; Maleszka, R.; Kładny, J.; Górski, B.; et al. CDKN2A common variants and their association with melanoma risk: A population-based study. Cancer Res. 2005, 65, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Adler, G.; Łoniewska, B.; Parczewski, M.; Kordek, A.; Ciechanowicz, A. Frequency of common CYP3A5 gene variants in healthy Polish newborn infants. Pharmacol. Rep. 2009, 61, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Leońska-Duniec, A.; Maculewicz, E.; Humińska-Lisowska, K.; Maciejewska-Skrendo, A.; Leźnicka, K.; Cięszczyk, P.; Sawczuk, M.; Trybek, G.; Wilk, M.; Lepionka, W.; et al. AMPD1 C34T Polymorphism (rs17602729) Is Not Associated with Post-Exercise Changes of Body Weight, Body Composition, and Biochemical Parameters in Caucasian Females. Genes 2020, 11, 558. [Google Scholar] [CrossRef]
- Ciȩszczyk, P.; Eider, J.; Ostanek, M.; Leońska-Duniec, A.; Ficek, K.; Kotarska, K.; Girdauskas, G. Is the C34T polymorphism of the AMPD1 gene associated with athlete performance in rowing? Int. J. Sports Med. 2011, 32, 987–991. [Google Scholar] [CrossRef]
- Cieszczyk, P.; Ostanek, M.; Leońska-Duniec, A.; Sawczuk, M.; Maciejewska, A.; Eider, J.; Ficek, K.; Sygit, K.; Kotarska, K. Distribution of the AMPD1 C34T polymorphism in Polish power-oriented athletes. J. Sports Sci. 2012, 30, 31–35. [Google Scholar] [CrossRef]
- Gronek, P.; Gronek, J.; Lulińska-Kuklik, E.; Spieszny, M.; Niewczas, M.; Kaczmarczyk, M.; Petr, M.; Fischerova, P.; Ahmetov, I.I.; Żmijewski, P. Polygenic Study of Endurance-Associated Genetic Markers NOS3 (Glu298Asp), BDKRB2 (-9/+9), UCP2 (Ala55Val), AMPD1 (Gln45Ter) and ACE (I/D) in Polish Male Half Marathoners. J. Hum. Kinet. 2018, 64, 87–98. [Google Scholar] [CrossRef]
- Petr, M.; Thiel, D.; Kateřina, K.; Brož, P.; Malý, T.; Zahálka, F.; Vostatková, P.; Wilk, M.; Chycki, J.; Stastny, P. Speed and power-related gene polymorphisms associated with playing position in elite soccer players. Biol. Sport 2022, 39, 355–366. [Google Scholar] [CrossRef]
- Smolenski, R.T.; Rybakowska, I.; Turyn, J.; Romaszko, P.; Zabielska, M.; Taegtmeyer, A.; Słomińska, E.M.; Kaletha, K.K.; Barton, P.J. AMP deaminase 1 gene polymorphism and heart disease-a genetic association that highlights new treatment. Cardiovasc. Drugs Ther. 2014, 28, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Winder, W.W.; Hardie, D.G. AMP-activated protein kinase, a metabolic master switch: Possible roles in type 2 diabetes. Am. J. Physiol. 1999, 277, E1–E10. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, G.R.; Macaulay, S.L.; Febbraio, M.A.; Kemp, B.E. AMP-activated protein kinase--the fat controller of the energy railroad. Can. J. Physiol. Pharmacol. 2006, 84, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Leff, T. AMP-activated protein kinase regulates gene expression by direct phosphorylation of nuclear proteins. Biochem. Soc. Trans. 2003, 31, 224–227. [Google Scholar] [CrossRef]
- Long, Y.C.; Zierath, J.R. AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Investig. 2006, 116, 1776–1783. [Google Scholar] [CrossRef]
- Szydłowska, M. Rodzina genów deaminazy AMP [Family of AMP-deaminase genes]. Postepy. Hig. Med. Dosw. 2005, 59, 503–509. (In Polish) [Google Scholar]
- Christie, S.; Robiou-du-Pont, S.; Anand, S.S.; Morrison, K.M.; McDonald, S.D.; Paré, G.; Atkinson, S.A.; Teo, K.K.; Meyre, D. Genetic contribution to lipid levels in early life based on 158 loci validated in adults: The FAMILY study. Sci. Rep. 2017, 7, 68. [Google Scholar] [CrossRef]
- Zydowo, M.M. Regulatory effects of the lipid-cytosolic enzyme interaction: AMP deaminase. Acta Biochim. Pol. 1993, 40, 429–432. [Google Scholar] [CrossRef]
- Spencer-Jones, N.J.; Ge, D.; Snieder, H.; Perks, U.; Swaminathan, R.; Spector, T.D.; Carter, N.D.; O’Dell, S.D. AMP-kinase alpha2 subunit gene PRKAA2 variants are associated with total cholesterol, low-density lipoprotein-cholesterol and high-density lipoprotein-cholesterol in normal women. J. Med. Genet. 2006, 43, 936–942. [Google Scholar] [CrossRef]
- Weyrich, P.; Machicao, F.; Staiger, H.; Simon, P.; Thamer, C.; Machann, J.; Schick, F.; Guirguis, A.; Fritsche, A.; Stefan, N.; et al. Role of AMP-activated protein kinase gamma 3 genetic variability in glucose and lipid metabolism in non-diabetic whites. Diabetologia 2007, 50, 2097–2106. [Google Scholar] [CrossRef]
- Randrianarisoa, E.; Lehn-Stefan, A.; Krier, J.; Böhm, A.; Heni, M.; Hrabě De Angelis, M.; Fritsche, A.; Häring, H.U.; Stefan, N.; Staiger, H. AMPK Subunits Harbor Largely Nonoverlapping Genetic Determinants for Body Fat Mass, Glucose Metabolism, and Cholesterol Metabolism. J. Clin. Endocrinol. Metab. 2020, 105, dgz020. [Google Scholar] [CrossRef]
Polymorphism (Chromosomal Location a) | Allele b | Distribution of Alleles, n A (%) | p | Distribution of Genotypes b, n G (%) | p | pR | pD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1/2) | Diabetic Individuals with CAD | Newborn Controls | Diabetic Individuals with CAD | Newborn Controls | |||||||||
1/2 | 1/2 | [1;1] | [1(;)2] | [2;2] | [1;1] | [1(;)2] | [2;2] | ||||||
rs17602729 (1:114693436) | C/T | 330/62 (84.2/15.8) | 338/62 (84.5/15.5) | 0.903 | 141 (71.9) | 48 (24.5) | 7 (3.6) | 141 (70.5) | 56 (28.0) | 3 (1.5) | 0.338 | 0.189 | 0.752 |
rs34526199 (1:114679616) | A/T | 375/17 (95.7/4.3) | 383/17 (95.8/4.2) | 0.952 | 179 (91.3) | 17 (8.7) | 0 (0.0) | 183 (91.5) | 17 (8.5) | 0 (0.0) | 0.951 | - | - |
Variable | All | AMPD1: rs17602729 (c.34C>T) Genotype | p | ||
---|---|---|---|---|---|
(n = 196) | CC (n = 141) | CT (n = 48) | TT (n = 7) | ||
Female, n (%) | 54 (27.0) | 39 (27.6) | 12 (25.0) | 3 (42.8) | 0.613 |
Myocardial infarction, n (%) | 98 (50.0) | 72 (51.1) | 21 (43.7) | 5 (71.4) | 0.351 |
Arterial hypertension, n (%) | 184 (93.9) | 132 (93.6) | 45 (93.7) | 7 (100.0) | 0.789 |
Heart failure, n (%) | 27 (13.8) | 21 (14.9) | 5 (10.4) | 1 (14.3) | 0.739 |
Statin use, n (%) | 170 (86.7) | 119 (84.4) | 44 (91.7) | 7 (100.0) | 0.289 |
Metformin use | 139 (70.9) | 102 (72.3) | 33 (68.7) | 4 (57.1) | 0.640 |
Sulphonylureas use | 45 (22.9) | 28 (19.8) | 15 (31.2) | 2 (28.6) | 0.252 |
Insulin use | 79 (40.3) | 60 (42.6) | 16 (33.3) | 3 (42.9) | 0.526 |
Age (years) | 66 (44:84) | 66 (44:82) | 64 (50:80) | 69 (55:84) | 0.381 |
Body height (cm) | 168 (135:183) | 168 (135:182) | 167 (147:183) | 170 (158:182) | 0.806 |
Body mass (kg) | 86 (53:139) | 86 (53:121) | 89 (65:139) | 73 (62:110) | 0.115 |
BMI (kg/m2) | 30.9 (20.4:45.7) | 30.7 (20.4:45.7) | 31.5 (22.8:41.6) | 26.3 (24.1:35.1) A | 0.008 |
BMI ≥ 30 kg/m2, n (%) | 114 (58.2) | 81 (57.4) | 32 (66.7) | 1 (14.3) B | 0.031 |
Waist (cm) | 106 (71:138) | 105 (72:128) | 107 (71:138) | 92 (83:115) | 0.278 |
Hip (cm) | 104 (90:134) | 104 (90:134) | 106 (92:125) | 101 (94:113) | 0.077 |
WHR | 0.99 (0.77:1.17) | 1.00 (0.77:1.14) | 0.97 (0.77:1.16) | 0.94 (0.78:1.17) | 0.292 |
Fasting glucose (mg/dL) | 132 (67:356) | 134 (67:356) | 127 (71:308) | 126 (103:353) | 0.866 |
HbA1C (%) | 6.6 (4.7:11.8) | 6.8 (4.8:11.7) | 6.4 (4.7:11.8) | 6.9 (5.5:10.8) | 0.579 |
Creatinine (mg/dL) | 0.91 (0.61:6.67) | 0.91 (0.61:5.34) | 0.89 (0.67:6.67) | 0.86 (0.76:1.37) | 0.767 |
e-GFRCKD EPI (ml/min/1.73 m2) | 80.9 (7.7:111.5) | 79.5 (10.4:111.5) | 82.2 (7.7:102.5) | 81.8 (40.0:103.1) | 0.509 |
TC (mg/dL) | 164 (101:358) | 154 (101:358) C | 184 (101:309) | 192 (153:272) | 0.070 |
HDL-C (mg/dL) | 43 (20:69) | 41 (26:69) | 41 (20:61) | 57 (47:63) D | 0.031 |
LDL-C (mg/dL) | 98 (34:298) | 89 (41:298) E | 117 (34:218) | 126 (68:169) | 0.110 |
TG (mg/dL) | 151 (41:821) | 138 (44:821) | 162 (65:485) | 123 (41:318) | 0.296 |
Variable | AMPD1: rs34526199 (c.860A>T) Genotype | p | |
---|---|---|---|
AA (n = 179) | AT (n = 17) | ||
Female, n (%) | 48 (26.8) | 6 (35.3) | 0.570 |
Myocardial infarction, n (%) | 91 (50.8) | 7 (41.2) | 0.613 |
Arterial hypertension, n (%) | 168 (93.8) | 16 (94.1) | 1.000 |
Heart failure, n (%) | 27 (15.1) | 0 (0.0) | 0.175 |
Statin use, n (%) | 153 (85.5) | 17 (100.0) | 0.136 |
Metformin use | 126 (70.4) | 13 (76.5) | 0.598 |
Sulphonylureas use | 41 (22.9) | 4 (23.5) | 0.953 |
Insulin use | 72 (40.2) | 7 (41.2) | 0.940 |
Age (years) | 66 (44:84) | 69 (56:81) | 0.031 |
Body height (cm) | 169 (135:183) | 165 (143:178) | 0.072 |
Body mass (kg) | 86 (53:139) | 86 (55:121) | 0.592 |
BMI (kg/m2) | 30.8 (20.4:41.6) | 32.0 (22.9:45.7) | 0.375 |
BMI ≥ 30 kg/m2, n (%) | 104 (58.1) | 10 (58.9) | 0.556 |
Waist (cm) | 105 (71:138) | 107 (78:128) | 0.683 |
Hip (cm) | 104 (90:130) | 104 (96:134) | 0.991 |
WHR | 0.99 (0.77:1.17) | 0.99 (0.82:1.11) | 0.852 |
Fasting glucose (mg/dL) | 133 (67:356) | 128 (81:237) | 0.291 |
HbA1C (%) | 6.7 (4.7:11.8) | 6.5 (5.4:8.9) | 0.626 |
Creatinine (mg/dL) | 0.90 (0.65:6.67) | 0.97 (0.61:1.90) | 0.834 |
e-GFRCKD EPI (ml/min/1.73 m2) | 81.1 (7.7:111.5) | 80.7 (33.4:92.0) | 0.521 |
TC (mg/dL) | 164 (101:358) | 168 (140:337) | 0.610 |
HDL-C (mg/dL) | 42 (20:69) | 55 (41:56) | 0.183 |
LDL-C (mg/dL) | 96 (34:298) | 98 (62:226) | 0.682 |
TG (mg/dL) | 146 (41:821) | 170 (96:249) | 0.383 |
Distribution of AMPD1: rs17602729/rs34526199 Combined Genotypes, n (%) | p * | p # | |||||
---|---|---|---|---|---|---|---|
CC/AA | CC/AT | CT/AA | CT/AT | TT/AA | |||
Diabetic Individuals with CAD | 126 (64.3) | 15 (7.6) | 46 (23.5) | 2 (1.0) | 7 (3.6) | 0.604 | 0.339 |
Newborn Controls | 125 (62.5) | 16 (8.0) | 55 (27.5) | 1 (0.5) | 3 (1.5) |
Variable | Genotype-Predicted AMPD1 Activity | p | ||
---|---|---|---|---|
Full (n = 126) | Intermediate (n = 63) | No Activity (n = 7) | ||
Female, n (%) | 33 (26.2) | 18 (28.6) | 3 (42.8) | 0.616 |
Myocardial infarction, n (%) | 65 (51.6) | 28 (44.4) | 5 (71.4) | 0.335 |
Arterial hypertension, n (%) | 118 (93.6) | 59 (93.6) | 7 (100.0) | 0.789 |
Heart failure, n (%) | 21 (16.7) | 5 (7.9) | 1 (14.3) | 0.260 |
Statin use, n (%) | 104 (82.5) | 59 (93.6) | 7 (100.0) | 0.061 |
Metformin use | 91 (72.2) | 44 (69.8) | 4 (57.1) | 0.676 |
Sulphonylureas use | 30 (23.8) | 13 (20.6) | 2 (28.6) | 0.832 |
Insulin use | 53 (42.1) | 23 (36.5) | 3 (42.9) | 0.756 |
Age (years) | 66 (44:82) | 66 (50:81) | 69 (55:84) | 0.620 |
Body height (cm) | 169 (135:182) | 167 (143:183) | 170 (158:182) | 0.332 |
Body mass (kg) | 86 (53:119) | 88 (55:139) | 73 (62:110) | 0.177 |
BMI (kg/m2) | 30.7 (20.3:40.3) | 31.7 (22.8:45.7) | 26.3 (24.1:35.1) A | 0.004 |
BMI ≥ 30 kg/m2, n (%) | 72 (57.2) | 41 (65.1) | 1 (14.3) B | 0.033 |
Waist (cm) | 105 (72:125) | 107 (71:138) | 92 (83:115) | 0.255 |
Hip (cm) | 104 (90:130) | 106 (92:134) | 101 (94:113) | 0.087 |
WHR | 1.00 (0.77:1.14) | 0.98 (0.77:1.16) | 0.94 (0.78:1.17) | 0.326 |
Fasting glucose (mg/dL) | 137 (67:356) | 127 (71:308) | 126 (103:353) | 0.319 |
HbA1C (%) | 6.8 (4.8:11.7) | 6.4 (4.7:11.8) | 6.9 (5.5:10.8) | 0.376 |
Creatinine (mg/dL) | 0.91 (0.65:5.34) | 0.91 (0.61:6.67) | 0.86 (0.76:1.37) | 0.659 |
e-GFRCKD EPI (ml/min/1.73 m2) | 79.4 (10.4:111.5) | 81.6 (7.7:102.5) | 81.8 (40.0:103.1) | 0.799 |
TC (mg/dL) | 152 (101:358) C | 184 (101:337) | 192 (153:272) | 0.035 |
HDL-C (mg/dL) | 41 (26:69) | 42 (20:61) | 57 (47:63) D | 0.022 |
LDL-C (mg/dL) | 87 (41:298) E | 117 (34:226) | 126 (68:169) | 0.058 |
TG (mg/dL) | 132 (44:821) | 167 (65:485) | 123 (41:318) | 0.116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrzak-Nowacka, M.; Gątarska, E.; Safranow, K.; Boroń, A.; Ciechanowski, K.; Clark, J.S.C.; Ciechanowicz, A.; Kostrzewa-Nowak, D. Association of Genetically Predicted Activity of AMP Deaminase 1 with Clinical and Biochemical Parameters in Diabetic Individuals with Coronary Artery Disease. Int. J. Mol. Sci. 2025, 26, 8071. https://doi.org/10.3390/ijms26168071
Pietrzak-Nowacka M, Gątarska E, Safranow K, Boroń A, Ciechanowski K, Clark JSC, Ciechanowicz A, Kostrzewa-Nowak D. Association of Genetically Predicted Activity of AMP Deaminase 1 with Clinical and Biochemical Parameters in Diabetic Individuals with Coronary Artery Disease. International Journal of Molecular Sciences. 2025; 26(16):8071. https://doi.org/10.3390/ijms26168071
Chicago/Turabian StylePietrzak-Nowacka, Maria, Ewa Gątarska, Krzysztof Safranow, Agnieszka Boroń, Kazimierz Ciechanowski, Jeremy S. C. Clark, Andrzej Ciechanowicz, and Dorota Kostrzewa-Nowak. 2025. "Association of Genetically Predicted Activity of AMP Deaminase 1 with Clinical and Biochemical Parameters in Diabetic Individuals with Coronary Artery Disease" International Journal of Molecular Sciences 26, no. 16: 8071. https://doi.org/10.3390/ijms26168071
APA StylePietrzak-Nowacka, M., Gątarska, E., Safranow, K., Boroń, A., Ciechanowski, K., Clark, J. S. C., Ciechanowicz, A., & Kostrzewa-Nowak, D. (2025). Association of Genetically Predicted Activity of AMP Deaminase 1 with Clinical and Biochemical Parameters in Diabetic Individuals with Coronary Artery Disease. International Journal of Molecular Sciences, 26(16), 8071. https://doi.org/10.3390/ijms26168071