Larvicidal Effects and Phytochemical Analysis of Myrrh, Commiphora myrrh Chloroform, Methanol, and Acetone Extracts Against Dengue Vector Aedes aegypti L. (Diptera: Culicidae)
Abstract
1. Introduction
2. Results
2.1. Biochemical Analysis
2.2. Effect of the C. myrrha Resin Extracts on Larvae
3. Discussion
4. Materials and Methods
4.1. Plants Materials
4.2. Preparation of Crude Extracts
4.3. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
4.4. Identification of Individual Components of Plant Extract
4.5. Aedes Aegypti Colony
4.6. Larvicidal Bioassay
4.7. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Neglected Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef]
- Calzolari, M. Mosquito-borne diseases in Europe: An emerging public health threat. Rep. Parasitol. 2016, 2016, 1–12. [Google Scholar] [CrossRef]
- Olagunju, E.A.; Ayewumi, I.T.; Adeleye, B.E. Effects of Livestock-Keeping on the Transmission of Mosquito-Borne Diseases. Zoonoses 2024, 4, 966. [Google Scholar] [CrossRef]
- Fonseca, V.; Xavier, J.; de Oliveira, T.; de Filippis, A.M.B.; Alcantara, L.C.J.; Giovanetti, M. Mosquito-borne viral diseases: Control and prevention in the genomics era. In Vector-Borne Diseases-Recent Developments in Epidemiology and Control; IntechOpen: London, UK, 2019. [Google Scholar]
- Anoopkumar, A.; Aneesh, E.M. A critical assessment of mosquito control and the influence of climate change on mosquito-borne disease epidemics. Environ. Dev. Sustain. 2022, 24, 8900–8929. [Google Scholar] [CrossRef]
- Yang, X.; Quam, M.B.; Zhang, T.; Sang, S. Global burden for dengue and the evolving pattern in the past 30 years. J. Travel Med. 2021, 28, taab146. [Google Scholar] [CrossRef]
- Gubler, D.J. The economic burden of dengue. Am. J. Trop. Med. Hyg. 2012, 86, 743. [Google Scholar] [CrossRef]
- Benelli, G.; Murugan, K.; Panneerselvam, C.; Madhiyazhagan, P.; Conti, B.; Nicoletti, M. Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol. Res. 2015, 114, 391–397. [Google Scholar] [CrossRef]
- van den Berg, H.; da Silva Bezerra, H.S.; Al-Eryani, S.; Chanda, E.; Nagpal, B.N.; Knox, T.B.; Velayudhan, R.; Yadav, R.S. Recent trends in global insecticide use for disease vector control and potential implications for resistance management. Sci. Rep. 2021, 11, 23867. [Google Scholar] [CrossRef]
- Pavela, R.; Žabka, M.; Bednář, J.; Tříska, J.; Vrchotová, N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.). Ind. Crops Prod. 2016, 83, 275–282. [Google Scholar] [CrossRef]
- Koureas, M.; Amoutzias, G.D.; Vontas, A.; Kyritsi, M.; Pinaka, O.; Papakonstantinou, A.; Dadouli, K.; Hatzinikou, M.; Koutsolioutsou, A.; Mouchtouri, V.A. Wastewater monitoring as a supplementary surveillance tool for capturing SARS-COV-2 community spread. A case study in two Greek municipalities. Environ. Res. 2021, 200, 111749. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Hoti, S.; Bhattacharyya, A.; Benelli, G. Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol. Res. 2016, 115, 807–815. [Google Scholar] [CrossRef]
- Şengül Demirak, M.Ş.; Canpolat, E. Plant-based bioinsecticides for mosquito control: Impact on insecticide resistance and disease transmission. Insects 2022, 13, 162. [Google Scholar] [CrossRef]
- da Silva, J.P.; Florean, E.O.P.T.; Silva, R.B.; Santos, Y.D.; Pereira, M.M.S.; da Silva, L.R. Relationship of the species Commiphora leptophloeos with Aedes aegypti: A review. Res. Soc. Dev. 2022, 11, e48711326735. [Google Scholar] [CrossRef]
- Su, S.; Hua, Y.; Wang, Y.; Gu, W.; Zhou, W.; Duan, J.-a.; Jiang, H.; Chen, T.; Tang, Y. Evaluation of the anti-inflammatory and analgesic properties of individual and combined extracts from Commiphora myrrha, and Boswellia carterii. J. Ethnopharmacol. 2012, 139, 649–656. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Wasef, L.; Teibo, J.O.; Shaheen, H.M.; Zakariya, A.M.; Akinfe, O.A.; Teibo, T.K.A.; Al-Kuraishy, H.M.; Al-Garbee, A.I.; Alexiou, A. Commiphora myrrh: A phytochemical and pharmacological update. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 405–420. [Google Scholar] [CrossRef] [PubMed]
- Muturi, E.J.; Hay, W.T.; Doll, K.M.; Ramirez, J.L.; Selling, G. Insecticidal activity of Commiphora erythraea essential oil and its emulsions against larvae of three mosquito species. J. Med. Entomol. 2020, 57, 1835–1842. [Google Scholar] [CrossRef] [PubMed]
- Alsharif, K. Potential anti-inflammatory properties effect of myrrh. Lett. Appl. NanoBioSci. 2020, 9, 1687–1694. [Google Scholar]
- Hassanzadeh-Taheri, M.; Salimi, M.; Vazifeshenas-Darmiyan, K.; Mohammadifard, M.; Hosseini, M. Investigating the effect of ethanolic extract of Commiphora myrrha (Nees) Engl. gum-resin against hepatorenal injury in diabetic rats. J. Diabetes Metab. Disord. 2021, 20, 1573–1581. [Google Scholar] [CrossRef]
- Madia, V.N.; De Angelis, M.; De Vita, D.; Messore, A.; De Leo, A.; Ialongo, D.; Tudino, V.; Saccoliti, F.; De Chiara, G.; Garzoli, S. Investigation of Commiphora myrrha (Nees) Engl. oil and its main components for antiviral activity. Pharmaceuticals 2021, 14, 243. [Google Scholar] [CrossRef]
- Akbar, S. Commiphora myrrha (Nees) Engl.(Burseraceae) (Syn.: C. molmol (Engl.) Engl. ex Tschirch). In Handbook of 200 Medicinal Plants: A Comprehensive Review of Their Traditional Medical Uses and Scientific Justifications; Springer: Cham, Switzerland, 2020; pp. 701–706. [Google Scholar]
- Mahboubi, M.; Mohammad Taghizadeh Kashani, L. The anti-dermatophyte activity of Commiphora molmol. Pharm. Biol. 2016, 54, 720–725. [Google Scholar] [CrossRef]
- Mahmoud, S.S.; Aly, E.; Fahmy, Z.H.; El Shenawy, A. Effect of Commiphora molmol (Myrrh) extract on mice infected by Giardia lamblia. J. Biosci. Med. 2019, 7, 50–60. [Google Scholar] [CrossRef]
- Rafińska, K.; Pomastowski, P.; Rudnicka, J.; Krakowska, A.; Maruśka, A.; Narkute, M.; Buszewski, B. Effect of solvent and extraction technique on composition and biological activity of Lepidium sativum extracts. Food Chem. 2019, 289, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Žlabur, J.Š.; Žutić, I.; Radman, S.; Pleša, M.; Brnčić, M.; Barba, F.J.; Rocchetti, G.; Lucini, L.; Lorenzo, J.M.; Domínguez, R. Effect of different green extraction methods and solvents on bioactive components of chamomile (Matricaria chamomilla L.) flowers. Molecules 2020, 25, 810. [Google Scholar] [CrossRef]
- Ahamad, S.R.; Al-Ghadeer, A.R.; Ali, R.; Qamar, W.; Aljarboa, S. Analysis of inorganic and organic constituents of myrrh resin by GC–MS and ICP-MS: An emphasis on medicinal assets. Saudi Pharm. J. 2017, 25, 788–794. [Google Scholar] [CrossRef]
- Ammar, N.M.; El-Hawary, S.S.; Mahdy, A.A.; Hussein, R.A.; Okino, T. Phytochemical study of the biologically active fractions of the oleo-gum-resins of Boswellia carteri and Commiphora myrrha. Adv. Environ. Biol. 2013, 2573–2584. [Google Scholar]
- Alabdalall, A.H. Antifungal activity of Myrrh gum resin against pathogenic Candida spp. Ann. Agric. Environ. Med. 2024, 31, 340–344. [Google Scholar] [CrossRef]
- Baz, M.M.; Hegazy, M.M.; Khater, H.F.; El-Sayed, Y.A. Comparative evaluation of five oil-resin plant extracts against the mosquito larvae, Culex pipiens say (Diptera: Culicidae). Pak. Vet. J. 2021, 41, 191–196. [Google Scholar]
- Samwel, B.; Innocent, E.; Machumi, F.; Kisinza, W. Mosquito larvicidal and brine shrimp activities of Commiphora merkeri Engl. (Burseraceae) exudate. Int. J. Mosq. Res. 2019, 6, 1–4. [Google Scholar]
- Samwel, B.; Innocent, E.; Machumi, F.; Kisinza, W.N.; Heydenreich, M. Two mosquito larvicidal arabinofuranosidetridecanol from Commiphora merkeri exudate. Nat. Prod. Res. 2022, 36, 2821–2829. [Google Scholar] [CrossRef]
- Orabi, S.H.; Al-Sabbagh, E.S.; Khalifa, H.K.; Mohamed, M.A.E.-G.; Elhamouly, M.; Gad-Allah, S.M.; Abdel-Daim, M.M.; Eldaim, M.A.A. Commiphora myrrha resin alcoholic extract ameliorates high fat diet induced obesity via regulation of UCP1 and adiponectin proteins expression in rats. Nutrients 2020, 12, 803. [Google Scholar] [CrossRef]
- Rodríguez-Cavallo, E.; Guarnizo-Méndez, J.; Yépez-Terrill, A.; Cárdenas-Rivero, A.; Díaz-Castillo, F.; Méndez-Cuadro, D. Protein carbonylation is a mediator in larvicidal mechanisms of Tabernaemontana cymosa ethanolic extract. J. King Saud Univ.-Sci. 2019, 31, 464–471. [Google Scholar] [CrossRef]
- Larvicides, M. Guidelines for Laboratory and Field Testing of Mosquito Larvicides; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- El-Sheikh, T.M.; Hassan, M.I.; Moselhy, W.A.; Amer, M.S.; Shehata, A.Z. Evaluation of the biological activity of some Cupressus semprevirens (Cupressaceae) extracts against the mosquito vector Culex pipiens L. (Diptera: Culicidae). Egypt. Acad. J. Biol. Sci. A Entomol. 2011, 4, 33–48. [Google Scholar] [CrossRef]
- Oliveros-Díaz, A.F.; Pájaro-González, Y.; Cabrera-Barraza, J.; Hill, C.; Quiñones-Fletcher, W.; Olivero-Verbel, J.; Castillo, F.D. Larvicidal activity of plant extracts from Colombian North Coast against Aedes aegypti L. mosquito larvae. Arab. J. Chem. 2022, 15, 104365. [Google Scholar] [CrossRef]
- Martínez Rodríguez, E.J.; Evans, P.; Kalsi, M.; Rosenblatt, N.; Stanley, M.; Piermarini, P.M. Larvicidal activity of carbon black against the yellow fever mosquito Aedes aegypti. Insects 2022, 13, 307. [Google Scholar] [CrossRef]
- Candido, L.P.; Cavalcanti, M.T.; Beserra, E.B. Bioactivity of plant extracts on the larval and pupal stages of Aedes aegypti (Diptera, Culicidea). Rev. Soc. Bras. Med. Trop. 2013, 46, 420–425. [Google Scholar] [CrossRef]
- Cheah, S.-X.; Tay, J.-W.; Chan, L.-K.; Jaal, Z. Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 2013, 112, 3275–3282. [Google Scholar] [CrossRef] [PubMed]
No. | RT | Name of the Compound | M. F | M. Wt | Area (%) |
---|---|---|---|---|---|
1 | 9.35 | Cyclohexene,4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1-methylethyl)-, (3R-trans)- | C15H24 | 204 | 0.92 |
2 | 10.62 | Cyclohexane,1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-, [1S-(1à,2á,4á)]- | C15H24 | 204 | 4.06 |
3 | 11.03 | Caryophyllene | C15H24 | 204 | 0.95 |
4 | 11.43 | Ç-Elemene | C15H24 | 204 | 2.57 |
5 | 12.60 | À-selinene | C15H24 | 204 | 0.87 |
6 | 13.20 | Curzerene | C15H20O | 216 | 11.68 |
7 | 13.35 | Naphthalene,1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis)- | C15H24 | 204 | 0.19 |
8 | 13.95 | 1,5-Cyclodecadiene, 1,5-dimethyl-8-(1-methylethylidene)-, (E,E)- | C15H24 | 204 | 3.09 |
9 | 16.10 | Naphthalene, 4-methoxy-1,2,6,8-tetramethyl- | C15H18O | 214 | 32.23 |
10 | 16.17 | (4as,8as)-3,8a-Dimethyl-5-methylene-4,4a,5,6,8a,9-hexahydronaphtho[2,3-b]furan | C15H18O | 214 | 6.86 |
11 | 16.27 | 5-isopropenyl-3,6-dimethyl-6-vinyl-4,5,6,7-tetrahydro-1-benzofuran | C15H20O | 216 | 0.60 |
12 | 16.48 | Cyclohexanemethanol,4-ethenyl-à,à,4-trimethyl-3-(1-methylethenyl)-, acetate, [1R-(1à,3à,4á)]- | C17H28O2 | 264 | 2.32 |
13 | 17.36 | (R,5E,9E)-8-Methoxy-3,6,10-trimethyl-4,7,8,11-tetrahydrocyclodeca[b]furan | C16H22O2 | 246 | 15.19 |
14 | 17.85 | 7-tetracyclo[6.2.1.0(3.8)0(3.9)]undecanol,4,4,11,11-tetramethyl- | C15H24O | 220 | 0.15 |
15 | 18.01 | Azulene,1,2,3,4,5,6,7,8-octahydro-1,4-dimethyl-7-(1-methylethylidene)-, (1s-cis)- | C15H24 | 204 | 0.95 |
16 | 18.60 | Reynosin | C15H20O3 | 248 | 0.13 |
17 | 18.68 | 6-(1-hydroxymethyl-vinyl)-4,8a-dimethyl-3,5,6,7,8,8a-hexahydro-1h-naphthalen-2-one | C15H22O2 | 234 | 0.26 |
18 | 19.11 | Acetic acid, 6-(1-hydroxymethyl-vinyl)-4,8a-dimethyl-3-oxo-1,2,3,5,6,7,8,8a-octahydronaphthalen-2-yl ester | C17H24O4 | 292 | 1.98 |
19 | 19.35 | Cholan-24-oic Acid, 3,7,12-trihydroxy-(3à,5á,7à,12à)- | C24H40O5 | 408 | 2.25 |
20 | 20.23 | (4as,7r,8as)-6,9,9-trimethyl-4,4a,7,8,8a,9-hexahydronaphtho[2,3-b]furan-7-ol | C15H20O2 | 323 | 8.98 |
21 | 21.41 | 4a-Methyl-1-methylene-1,2,3,4,4a,9,10,10a-octahydrophenanthrene | C16H20 | 212 | 1.03 |
22 | 21.66 | 17Alpha-ethynyl-17beta-hydroxy-6beta-methoxy-3alpha,5-cyclo-5alpha-androstan-19-oic acid | C22H30O4 | 358 | 0.14 |
23 | 21.85 | Furosardonin A | C15H20O2 | 232 | 0.71 |
24 | 22.06 | Gazaniolide | C15H18O2 | 230 | 0.56 |
25 | 22.73 | Ethanone, 2-(2,2,4,6,6-pentamethylcyclohexylidene)-1-phenyl- | C19H26O | 270 | 0.19 |
26 | 23.18 | 10-Octadecenoic acid, methyl ester | C19H36O2 | 296 | 0.44 |
27 | 23.72 | 1,3,6,10-cyclotetradecatetraene, 3,7,11-trimethyl-14-(1-methylethyl)-, [s-(e,z,e,e)]- | C20H32 | 272 | 0.28 |
28 | 23.90 | Nerolidol-epoxyacetate | C17H28O4 | 296 | 0.26 |
29 | 34.21 | 24-Norursa-3,12-diene | C29H46 | 394 | 0.19 |
No. | RT | Name of the Compound | M. F | M. Wt | Area (%) |
---|---|---|---|---|---|
1 | 9.36 | Cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1-methylethyl)-, (3R-trans)- | C15H24 | 204 | 1.12 |
2 | 10.12 | Copaene | C15H24 | 204 | 0.18 |
3 | 10.68 | Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-, [1S-(1à,2á,4á)]- | C15H24 | 204 | 5.71 |
5 | 12.39 | 1,6-cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-, [S-(E,E)]- | C15H24 | 204 | 2.85 |
6 | 13.38 | Benzofuran, 6-ethenyl-4,5,6,7-tetrahydro-3,6-dimethyl-5-isopropenyl-, trans- | C15H20O | 216 | 24.5 |
7 | 13.64 | Aromandendrene | C15H24 | 104 | 0.11 |
8 | 14.07 | 1,5-Cyclodecadiene, 1,5-dimethyl-8-(1-methylethylidene)-, (E,E)- | C15H24 | 204 | 3.31 |
9 | 14.44 | 3,5,8a-Trimethyl-4,6,8a,9-tetrahydronaphtho[2,3-b]furan | C15H18O | 214 | 1.77 |
10 | 16.51 | Naphthalene, 4-methoxy-1,2,6,8-tetramethyl- | C15H18O | 214 | 15.02 |
11 | 16.57 | (4aS,8aS)-3,8a-Dimethyl-5-methylene-4,4a,5,6,8a,9-hexahydronaphtho[2,3-b]furan | C15H18O | 214 | 3.08 |
12 | 16.80 | Cyclohexanemethanol, 4-ethenyl-à,à,4-trimethyl-3-(1-methylethenyl)-, acetate, [1R-(1à,3à,4á)]- | C17H28O2 | 264 | 1.99 |
13 | 17.14 | (5E)-3,6,10-trimethyl-4,7,8,11-tetrahydrocyclodeca[b]furan | C15H20O | 216 | 6.58 |
14 | 17.67 | (R,5E,9E)-8-Methoxy-3,6,10-trimethyl-4,7,8,11-tetrahydrocyclodeca[b]furan | C16H22O2 | 246 | 5.62 |
15 | 17.73 | 3-ethyl-2,6-naphthlenediol | C12H12O2 | 188 | 1.20 |
16 | 17.80 | Santamarine | C15H20O3 | 248 | 0.17 |
18 | 18.51 | á-Guaiene | C15H24 | 204 | 0.74 |
19 | 18.67 | Cholan-24-oic acid, 3,7,12-trihydroxy-, (3à,5á,7à,12à)- | C24H40O5 | 408 | 0.38 |
20 | 18.83 | 1,4A,7,7-tetramethyldecahydrocyclopropa[7,8]azuleno[3a,4-b]oxirene | C15H24O | 220 | 0.85 |
21 | 19.07 | Tibolone | C21H28O2 | 312 | 0.10 |
22 | 19.33 | Acetic acid, 6-(1-hydroxymethyl-vinyl)-4,8a-dimethyl-3-oxo-1,2,3,5,6,7,8,8a-octahydronaphthalen-2-yl ester | C17H24O4 | 292 | 1.90 |
23 | 19.45 | Gazaniolide | C15H18O2 | 230 | 0.18 |
24 | 20.48 | Furosardonin A | C15H20O2 | 232 | 5.40 |
25 | 20.71 | 6á-Hydroxymethandienone | C20H28O3 | 316 | 0.18 |
28 | 21.58 | 4a-Methyl-1-methylene-1,2,3,4,4a,9,10,10a-octahydrophenanthrene | C16H20 | 212 | 6.13 |
30 | 22.12 | Furosardonin A | C15H20O2 | 232 | 2.9 |
31 | 22.69 | Pregn-4-EN-20-YN-3-one, 17-hydroxy-, (17à)- | C21H28O2 | 312 | 0.52 |
32 | 22.87 | Ethanone, 2-(2,2,4,6,6-pentamethylcyclohexylidene)-1-phenyl- | C19H26O | 270 | 1.5 |
33 | 23.18 | 8,11-Octadecadienoic acid, methyl ester | C19H34O2 | 294 | 0.61 |
34 | 23.28 | 10-Octadecenoic acid, methyl ester | C19H36O2 | 296 | 0.81 |
35 | 23.83 | (3E,7E,11E)-1-Isopropyl-4,8,12-trimethylcyclotetradeca-3,7,11-trienol | C20H34O | 290 | 0.68 |
36 | 24.01 | Isopropyl-1,5,9-trimethyl-15-oxabicyclo[10.2.1]pentadeca-5,9-dien-2-ol | C20H34O2 | 306 | 0.71 |
37 | 25.81 | 1-Heptatriacotanol | C37H76O | 536 | 1.16 |
38 | 26.50 | Androstan-17-one, 3-ethyl-3-hydroxy-, (5à)- | C21H34O2 | 318 | 0.2 |
39 | 34.21 | 24-Norursa-3,12-diene | C29H46 | 394 | 0.31 |
40 | 34.74 | Fucoxanthin | C42H58O6 | 658 | 1.41 |
41 | 35.46 | 24-Norursa-3,12-dien-11-one | C29H44O | 408 | 0.11 |
No. | RT | Chemical Name (99.98%) | M. F | M. Wt | Area (%) |
---|---|---|---|---|---|
1 | 9.38 | Cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1-methylethyl)-, (3R-trans)- | C15H24 | 204 | 1.01 |
2 | 10.14 | .alfa.-Copaene | C15H24 | 204 | 0.69 |
5 | 10.85 | 1H-cycloprop[e]azulene, 1A,2,3,4,4A,5,6,7B-OCTAHYDRO-1,1,4,7-tetramethyl-, [1AR-(1Aà,4à,4Aá,7Bà)]- | C15H24 | 204 | 4.22 |
6 | 11.05 | Caryophyllene | C15H24 | 204 | 9.48 |
7 | 11.42 | ç-Elemene | C15H24 | 204 | 1.07 |
8 | 12.34 | 1,6-cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-, [S-(E,E)]- | C15H24 | 204 | 1.32 |
9 | 12.45 | Naphthalene, decahydro-4a-methyl-1-methylene-7-(1-methylethenyl)-, [4AR-(4Aà,7à,8Aá)]- | C15H24 | 204 | 1.55 |
10 | 13.35 | Naphthalene, 1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-CIS)- | C15H24 | 204 | 1.56 |
12 | 15.27 | 3,5,8a-trimethyl-4,4a,8a,9-tetrahydronaphtho[2,3-b]furan | C15H18O | 214 | 2.66 |
13 | 16.13 | Naphthalene, 4-methoxy-1,2,6,8-tetramethyl- | C15H18O | 214 | 1.44 |
14 | 16.19 | (4aS,8aS)-3,8a-Dimethyl-5-methylene-4,4a,5,6,8a,9-hexahydronaphtho[2,3-b]furan | C15H18O | 214 | 32.41 |
15 | 16.29 | 5-isopropenyl-3,6-dimethyl-6-vinyl-4,5,6,7-tetrahydro-1-benzofuran | C15H20O | 216 | 4.46 |
16 | 16.49 | Cyclohexanemethanol, 4-ethenyl-à,à,4-trimethyl-3-(1-methylethenyl)-, acetate, [1R-(1à,3à,4á)]- | C17H28O2 | 264 | 0.57 |
17 | 16.85 | (R,5E,9E)-8-Methoxy-3,6,10-trimethyl-4,7,8,11-tetrahydrocyclodeca[b]furan | C16H22O2 | 246 | 1.99 |
18 | 17.40 | (R,5E,9E)-8-Methoxy-3,6,10-trimethyl-4,7,8,11-tetrahydrocyclodeca[b]furan | C16H22O2 | 246 | 6.84 |
19 | 17.70 | 7-tetracyclo[6.2.1.0(3.8)0(3.9)]undecanol, 4,4,11,11-tetramethyl- | C15H24O | 220 | 10.77 |
20 | 18.24 | Azulene, 1,2,3,4,5,6,7,8-octahydro-1,4-dimethyl-7-(1-methylethylidene)-, (1s-cis)- | C15H24 | 204 | 0.8 |
22 | 20.34 | Furosardonin A | C15H20O2 | 232 | 2.08 |
23 | 20.88 | Acetic acid, 6-(1-hydroxymethyl-vinyl)-4,8a-dimethyl-3-oxo-1,2,3,5,6,7,8,8a-octahydronaphthalen-2-yl ester | C17H24O4 | 292 | 4.89 |
24 | 21.49 | 4a-Methyl-1-methylene-1,2,3,4,4a,9,10,10a-octahydrophenanthrene | C16H20 | 212 | 1.00 |
25 | 21.63 | Meso 1,1′-BI(5,5′-dimethoxy-2,2,2′,2′-tetramethylindan) | C24H30O2 | 350 | 1.62 |
26 | 21.98 | 4-(bicyclo[4.1.0]hept-7-ylidenemethyl)phenyl methyl ether | C15H18O | 214 | 1.84 |
27 | 22.69 | (5R,6S,8S,Z)-8-Methoxy-3,6,10-trimethyl-4-oxo-4,5,6,7,8,11-hexahydrocyclodeca[b]furan-5-yl acetate | C18H24O5 | 320 | 1.44 |
28 | 22.90 | Morphina-2,4,6á-triol, N-formyl- | C17H21NO4 | 303 | 1.96 |
29 | 23.96 | Isopropyl-1,5,9-trimethyl-15-oxabicyclo[10.2.1]pentadeca-5,9-dien-2-ol | C20H34O2 | 306 | 1.62 |
Plant Solvent | Conc. (ppm) | Mortality % (Mean ± SE) | Adult Emergence % | ||
---|---|---|---|---|---|
Larval | Pupal | Larval–Pupal * | |||
Acetone | Control | 0.00 ± 0.0 f | 1.67 ± 1.67 d | 1.67 ± 1.67 f | 98.33 ± 1.67 a |
100 | 15.00 ± 2.89 e | 5.00 ± 1.61 bc | 20.00 ± 5.77 e | 80.00 ± 2.89 b | |
200 | 41.67 ± 3.33 d | 8.33 ± 1.69 b | 50.00 ± 2.89 d | 50.00 ± 5.77 c | |
300 | 61.67 ± 1.67 c | 13.33 ± 0.98 a | 75.00 ± 0.00 c | 25.00 ± 2.89 d | |
500 | 75.00 ± 2.89 b | 13.33 ± 1.33 a | 88.33 ± 1.67 b | 11.67 ± 1.67 e | |
1000 | 95.00 ± 2.89 a | 3.33 ± 0.87 cd | 98.33 ± 1.67 a | 1.67 ± 1.67 f | |
Methanol | Control | 0.00 ± 0.0 f | 3.33 ± 1.67 c | 3.33 ± 1.67 f | 96.67 ± 1.67 a |
100 | 11.67 ± 1.67 e | 3.33 ± 1.91 c | 15.00 ± 2.89 e | 85.00 ± 5.77 b | |
200 | 35.00 ± 5.00 d | 8.33 ± 1.47 ab | 43.33 ± 4.41 d | 56.67 ± 3.33 c | |
300 | 56.67 ± 1.67 c | 11.66 ± 1.34 a | 68.33 ± 1.67 c | 31.67 ± 4.41 d | |
500 | 73.33 ± 1.67 b | 11.67 ± 1.01 a | 85.00 ± 2.89 b | 15.00 ± 2.89 e | |
1000 | 90.00 ± 2.89 a | 5.00 ± 0.40 bc | 95.00 ± 2.89 a | 5.00 ± 2.89 f | |
Chloroform | Control | 0.00 ± 0.0 f | 1.67 ± 1.67 c | 1.67 ± 1.67 e | 98.33 ± 1.67 a |
100 | 16.67 ± 1.67 e | 8.33 ± 1.09 b | 25.00 ± 2.89 d | 75.00 ± 2.89 b | |
200 | 43.33 ± 4.41 d | 16.67 ± 1.29 a | 60.00 ± 5.77 c | 40.00 ± 2.89 c | |
300 | 65.00 ± 2.89 c | 18.33 ± 7.05 a | 83.33 ± 3.33 b | 16.67 ± 3.33 d | |
500 | 80.00 ± 5.00 b | 16.67 ± 4.22 a | 96.67 ± 6.01 a | 3.33 ± 1.67 e | |
1000 | 100.00 ± 0.0 a | 0.00 ± 0.0 c | 100.00 ± 0.0 a | 0.00 ± 0.0 f |
Plant Extract | Conc. (ppm) | Mortality (%) | LC50 (Low.–Up.) | LC90 (Low.–Up.) | LC95 (Low.–Up.) | Slope | X2 |
---|---|---|---|---|---|---|---|
Acetone | Control | 0.00 ± 0.0 f | 246.28 (218.67–275.15) | 788.05 (663.69–984.91) | 1095.83 (889.04–1445.83) | 2.537 ± 0.204 | 1.135 |
100 | 15.00 ± 2.89 e | ||||||
200 | 41.67 ± 3.33 d | ||||||
300 | 61.67 ± 1.67 c | ||||||
500 | 75.00 ± 2.89 b | ||||||
1000 | 95.00 ± 2.89 a | ||||||
Methanol | Control | 0.00 ± 0.0 f | 281.83 (250.40–316.23) | 923.76 (760.43–1197.88) | 1293.35 (1021.25–1782.63) | 2.485 ± 0.212 | 1.109 |
100 | 11.67 ± 1.67 e | ||||||
200 | 35.00 ± 5.00 d | ||||||
300 | 56.67 ± 1.67 c | ||||||
500 | 73.33 ± 1.67 b | ||||||
1000 | 90.00 ± 2.89 a | ||||||
Chloroform | Control | 0.00 ± 0.0 f | 224.36 (201.01–248.50) | 608.39 (522.65–740.97) | 807.21 (671.68–1030.38) | 2.958 ± 0.242 | 4.744 |
100 | 16.67 ± 2.89 e | ||||||
200 | 43.33 ± 7.64 d | ||||||
300 | 65.00 ± 5.00 c | ||||||
500 | 80.00 ± 8.66 b | ||||||
1000 | 100.00 ± 0.0 a |
Plant Extract | Conc. (ppm) | Mortality (%) | LC50 (Low.–Up.) | LC90 (Low.–Up.) | LC95 (Low.–Up.) | Slope | X2 |
---|---|---|---|---|---|---|---|
Acetone | Control | 1.67 ± 1.67 f | 176.07 (156.05–195.70) | 461.32 (400.57–554.22) | 606.16 (510.35–763.33) | 3.063 ± 0.265 | 1.545 |
100 | 25.00 ± 2.89 e | ||||||
200 | 58.33 ± 7.26 d | ||||||
300 | 73.33 ± 4.41 c | ||||||
500 | 91.67 ± 4.41 b | ||||||
1000 | 100.00 ± 0.0 a | ||||||
Methanol | Control | 1.67 ± 1.67 f | 203.30 (179.88–226.93) | 593.38 (505.82–731.56) | 803.90 (661.42–1045.10) | 2.754 ± 0.235 | 0.323 |
100 | 20.00 ± 2.89 e | ||||||
200 | 51.67 ± 4.41 d | ||||||
300 | 68.33 ± 1.67 c | ||||||
500 | 86.67 ± 1.67 b | ||||||
1000 | 96.67 ± 3.33 a | ||||||
Chloroform | Control | 1.67 ± 2.89 f | 159.29 (141.15–176.72) | 398.56 (353.83–461.62) | 516.89 (447.85–624.30) | 3.217 ± 0.253 | 0.670 |
100 | 28.33 ± 5.77 e | ||||||
200 | 61.67 ± 10.4 d | ||||||
300 | 80.00 ± 5.00 c | ||||||
500 | 96.67 ± 2.89 b | ||||||
1000 | 100.00 ± 0.0 a |
Plant Extract | Conc. (ppm) | Mortality (%) | LC50 (Low.–Up.) | LC90 (Low.–Up.) | LC95 (Low.–Up.) | Slope | X2 |
---|---|---|---|---|---|---|---|
Acetone | Control | 3.33 ± 1.67 e | 127.67 (111.54–142.43) | 291.03 (257.55–341.23) | 367.60 (316.89–450.38) | 3.581 ± 0.349 | 2.590 |
100 | 38.33 ± 4.41 d | ||||||
200 | 76.67 ± 6.01 c | ||||||
300 | 88.33 ± 7.26 b | ||||||
500 | 100.0 ± 0.0 a | ||||||
1000 | 100.0 ± 0.0 a | ||||||
Methanol | Control | 3.33 ± 1.67 e | 142.13 (125.72–157.49) | 323.33 (285.27–381.31) | 408.16 (350.44–503.09) | 3.590 ± 0.343 | 4.496 |
100 | 33.33 ± 3.33 d | ||||||
200 | 70.00 ± 5.0 c | ||||||
300 | 85.00 ± 5.0 b | ||||||
500 | 100.0 ± 0.0 a | ||||||
1000 | 100.0 ± 0.0 a | ||||||
Chloroform | Control | 1.67 ± 2.89 e | 118.33 (103.58–131.64) | 251.14 (224.64–289.64) | 310.86 (271.90–372.67) | 3.921 ± 0.384 | 0.817 |
100 | 40.00 ± 5.0 d | ||||||
200 | 81.67 ± 5.77 c | ||||||
300 | 96.67 ± 5.77 b | ||||||
500 | 100.0 ± 0.0 a | ||||||
1000 | 100.0 ± 0.0 a |
Plant Extract | Conc. (ppm) | No. of Eggs Laid | Hatching (%) | Fecundity (%) | Non-Hatching (%) | No. of Non-Hatched Eggs | |
---|---|---|---|---|---|---|---|
Embryo (%) | Non-Embryo (%) | ||||||
Acetone | Control | 1412.00 a | 95.33 a | 100.00 a | 4.67 d | 1.35 c | 3.33 b |
100 | 1372.00 a | 95.85 a | 97.17 ab | 4.15 d | 1.82 b | 4.45 b | |
200 | 1285.00 a | 91.60 ab | 91.01 b | 8.40 cd | 1.32 c | 7.08 b | |
300 | 1023.00 b | 82.99 ab | 72.45 c | 17.01 bcd | 1.96 b | 15.05 b | |
500 | 702.00 c | 74.07 b | 49.72 d | 25.93 bc | 1.85 b | 24.07 b | |
1000 | 382.00 d | 49.74 c | 27.05 e | 50.26 a | 2.62 a | 55.76 a | |
Methanol | Control | 1454.00 a | 97.94 a | 100.00 a | 2.06 b | 0.96 d | 1.10 b |
100 | 1433.00 a | 97.00 a | 98.56 a | 3.00 b | 1.47 bc | 1.54 b | |
200 | 1386.00 ab | 93.22 a | 95.32 ab | 6.78 b | 1.37 bc | 5.34 ab | |
300 | 1240.00 b | 91.69 a | 85.28 b | 8.31 b | 1.29 cd | 7.02 ab | |
500 | 811.00 c | 86.19 ab | 55.78 c | 13.81 ab | 1.73 ab | 12.08 ab | |
1000 | 424.00 d | 69.58 b | 29.16 d | 30.42 a | 1.89 a | 28.54 a | |
Chloroform | Control | 1513.00 a | 97.22 a | 100.00 a | 2.78 c | 0.86 c | 1.92 c |
100 | 1475.00 a | 95.80 a | 97.49 a | 4.20 c | 0.75 c | 5.49 c | |
200 | 1251.00 b | 89.21 a | 82.68 b | 10.79 c | 0.72 c | 10.07 c | |
300 | 1001.00 c | 83.12 a | 66.16 c | 16.88 bc | 0.80 c | 17.18 c | |
500 | 466.00 d | 68.03 b | 30.80 d | 31.97 b | 1.29 b | 45.71 b | |
1000 | 234.00 e | 12.82 c | 15.47 e | 87.18 a | 1.71 a | 98.29 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashlawi, A.M.; Bosly, H.; Alshammari, A.N.; Alanazi, N.A.H.; Akeel, M.A.; Alhejely, A.; Alshammari, F.A.; Jeraiby, M.A.; Alkenani, N.A.; Salama, S.A. Larvicidal Effects and Phytochemical Analysis of Myrrh, Commiphora myrrh Chloroform, Methanol, and Acetone Extracts Against Dengue Vector Aedes aegypti L. (Diptera: Culicidae). Int. J. Mol. Sci. 2025, 26, 8050. https://doi.org/10.3390/ijms26168050
Mashlawi AM, Bosly H, Alshammari AN, Alanazi NAH, Akeel MA, Alhejely A, Alshammari FA, Jeraiby MA, Alkenani NA, Salama SA. Larvicidal Effects and Phytochemical Analysis of Myrrh, Commiphora myrrh Chloroform, Methanol, and Acetone Extracts Against Dengue Vector Aedes aegypti L. (Diptera: Culicidae). International Journal of Molecular Sciences. 2025; 26(16):8050. https://doi.org/10.3390/ijms26168050
Chicago/Turabian StyleMashlawi, Abadi M., Hanan Bosly, Amal Naif Alshammari, Naimah Asid H. Alanazi, Mohammed A. Akeel, Amani Alhejely, Fahdah Ayed Alshammari, Mohammed Abdullah Jeraiby, Naser Ahmed Alkenani, and Salama A. Salama. 2025. "Larvicidal Effects and Phytochemical Analysis of Myrrh, Commiphora myrrh Chloroform, Methanol, and Acetone Extracts Against Dengue Vector Aedes aegypti L. (Diptera: Culicidae)" International Journal of Molecular Sciences 26, no. 16: 8050. https://doi.org/10.3390/ijms26168050
APA StyleMashlawi, A. M., Bosly, H., Alshammari, A. N., Alanazi, N. A. H., Akeel, M. A., Alhejely, A., Alshammari, F. A., Jeraiby, M. A., Alkenani, N. A., & Salama, S. A. (2025). Larvicidal Effects and Phytochemical Analysis of Myrrh, Commiphora myrrh Chloroform, Methanol, and Acetone Extracts Against Dengue Vector Aedes aegypti L. (Diptera: Culicidae). International Journal of Molecular Sciences, 26(16), 8050. https://doi.org/10.3390/ijms26168050