Photodithazine-Mediated Antimicrobial Photodynamic Therapy: A Systematic Review of Efficacy and Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Focused Question
2.2. Search Strategy
2.3. Study Selection Process
2.4. Assessment of Risk of Bias in Included Studies
2.5. Quality Assessment
2.6. Data Extraction
2.7. Study Selection
3. Results
3.1. Data Presentation
3.2. Overview of Study Characteristics
3.3. Main Study Outcomes
3.4. Characteristics of Light Sources and Photosensitizer Used in aPDT
4. Discussion
4.1. Results in the Context of Other Evidence
4.2. Limitations of the Evidence
4.3. Limitations of the Review Process
4.4. Implications for Practice, Policy, and Future Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance, A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Coque, T.M.; Cantón, R.; Pérez-Cobas, A.E.; Fernández-de-Bobadilla, M.D.; Baquero, F. Antimicrobial Resistance in the Global Health Network, Known Unknowns and Challenges for Efficient Responses in the 21st Century. Microorganisms 2023, 11, 1050. [Google Scholar] [CrossRef] [PubMed]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development, A Narrative Review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Antunes, W.; Mota, S.; Madureira-Carvalho, Á.; Dinis-Oliveira, R.J.; Dias da Silva, D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024, 12, 1920. [Google Scholar] [CrossRef]
- Donlan, R.M.; Costerton, J.W. Biofilms, Survival Mechanisms of Clinically Relevant Microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef]
- Gulati, M.; Nobile, C.J. Candida albicans Biofilms, Development, Regulation, and Molecular Mechanisms. Microbes Infect. 2016, 18, 310–321. [Google Scholar] [CrossRef]
- Drago, L.; Fidanza, A.; Giannetti, A.; Ciuffoletti, A.; Logroscino, G.; Romanò, C.L. Correction: Drago et al. Bacteria Living in Biofilms in Fluids, Could Chemical Antibiofilm Pretreatment of Culture Represent a Paradigm Shift in Diagnostics? Microorganisms 2024, 12, 2577. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, R.; Zaat, S.A.J.; Breukink, E.; Heger, M. Antibacterial Photodynamic Therapy, Overview of a Promising Approach to Fight Antibiotic-Resistant Bacterial Infections. J. Clin. Transl. Res. 2015, 1, 140–167. [Google Scholar]
- Youf, R.; Müller, M.; Balasini, A.; Thétiot, F.; Müller, M.; Hascoët, A.; Jonas, U.; Schönherr, H.; Lemercier, G.; Montier, T.; et al. Antimicrobial Photodynamic Therapy, Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021, 13, 1995. [Google Scholar] [CrossRef]
- Afrasiabi, S.; Partoazar, A.; Chiniforush, N.; Goudarzi, R. The Potential Application of Natural Photosensitizers Used in Antimicrobial Photodynamic Therapy Against Oral Infections. Pharmaceuticals 2022, 15, 767. [Google Scholar] [CrossRef]
- Kashef, N.; Hamblin, M.R. Can Microbial Cells Develop Resistance to Oxidative Stress in Antimicrobial Photodynamic Inactivation? Drug Resist. Updates 2017, 31, 31–42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silva, L.B.B.D.; Castilho, I.G.; Souza Silva, F.A.D.; Ghannoum, M.; Garcia, M.T.; Carmo, P.H.F.D. Antimicrobial Photodynamic Therapy for Superficial, Skin, and Mucosal Fungal Infections, An Update. Microorganisms 2025, 13, 1406. [Google Scholar] [CrossRef]
- Michalak, M.; Szymczyk, J.; Pawska, A.; Wysocki, M.; Janiak, D.; Ziental, D.; Ptaszek, M.; Güzel, E.; Sobotta, L. Chlorin Activity Enhancers for Photodynamic Therapy. Molecules 2025, 30, 2810. [Google Scholar] [CrossRef]
- Pires, L.; Bosco Sde, M.; da Silva, N.F., Jr.; Kurachi, C. Photodynamic Therapy for Pythiosis. Vet. Dermatol. 2013, 24, 130. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.C.; Pinto, J.G.; Pereira, A.H.C.; Soares, C.P.; Raniero, L.J.; Ferreira-Strixino, J. Photodithazine Photodynamic Effect on Viability of 9L/lacZ Gliosarcoma Cell Line. Lasers Med. Sci. 2017, 32, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Fiegler-Rudol, J.; Kapłon, K.; Kotucha, K.; Moś, M.; Skaba, D.; Kawczyk-Krupka, A.; Wiench, R. Hypocrellin-Mediated PDT: A Systematic Review of Its Efficacy, Applications, and Outcomes. Int. J. Mol. Sci. 2025, 26, 4038. [Google Scholar] [CrossRef] [PubMed]
- Turubanova, V.D.; Balalaeva, I.V.; Mishchenko, T.A.; Catanzaro, E.; Alzeibak, R.; Peskova, N.N.; Efimova, I.; Bachert, C.; Mitroshina, E.V.; Krysko, O.; et al. Immunogenic Cell Death Induced by a New Photodynamic Therapy Based on Photosens and Photodithazine. J. Immunother. Cancer 2019, 7, 350. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santos Vitorio, G.D.; de Almeida, R.M.S.; Pinto, J.G.; Fontana, L.C.; Ferreira-Strixino, J. Analysis of the Effects of Photodynamic Therapy with Photodithazine on the Treatment of 9l/lacZ Cells, In Vitro Study. Photodiagn. Photodyn. Ther. 2021, 34, 102233. [Google Scholar] [CrossRef]
- Szewczyk, G.; Mokrzyński, K. Concentration-Dependent Photoproduction of Singlet Oxygen by Common Photosensitizers. Molecules 2025, 30, 1130. [Google Scholar] [CrossRef]
- Buzzá, H.H.; Silva, L.V.; Moriyama, L.T.; Bagnato, V.S.; Kurachi, C. Evaluation of Vascular Effect of Photodynamic Therapy in Chorioallantoic Membrane Using Different Photosensitizers. J. Photochem. Photobiol. B 2014, 138, 1–7. [Google Scholar] [CrossRef]
- Fiegler-Rudol, J.; Skaba, D.; Wiench, R. Antimicrobial Efficacy of Nd:YAG Laser in Polymicrobial Root Canal Infections: A Systematic Review of In Vitro Studies. Int. J. Mol. Sci. 2025, 26, 5631. [Google Scholar] [CrossRef]
- Abreu-Pereira, C.A.; Gorayb-Pereira, A.L.; Jordão, C.C.; Bitencourt, G.P.; Cilli, E.M.; Pavarina, A.C. Efficiency of the Extracellular Polymeric Matrix Disruptor Zerumbone in Combination with Photodithazine® in the Photodynamic Inactivation of Monospecies Biofilms. Lasers Med. Sci. 2025, 40, 299. [Google Scholar] [CrossRef]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO Framework to Improve Searching PubMed for Clinical Questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Shamseer, L.; Tricco, A.C. Registration of Systematic Reviews in PROSPERO, 30,000 Records and Counting. Syst. Rev. 2018, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement, An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.F.; Petrie, A. Method Agreement Analysis, A Review of Correct Methodology. Theriogenology 2010, 73, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M. Welch Cochrane Handbook for Systematic Reviews of Interventions Version 6.4. Cochrane. 2023. Available online: www.training.cochrane.org/handbook (accessed on 20 October 2024).
- Abreu-Pereira, C.A.; Gorayb-Pereira, A.L.; Jordão, C.C.; Paro, C.B.; Barbugli, P.A.; Pavarina, A.C. Zerumbone Enhances the Photodynamic Effect Against Biofilms of Fluconazole-Resistant Candida albicans Clinical Isolates. J. Dent. 2025, 155, 105631. [Google Scholar] [CrossRef]
- Alves, F.; Carmello, J.C.; Alonso, G.C.; Mima, E.G.O.; Bagnato, V.S.; Pavarina, A.C. A Randomized Clinical Trial Evaluating Photodithazine-Mediated Antimicrobial Photodynamic Therapy as a Treatment for Denture Stomatitis. Photodiagn. Photodyn. Ther. 2020, 32, 102041. [Google Scholar] [CrossRef]
- Carmello, J.C.; Alves, F.; GBasso, F.; de Souza Costa, C.A.; Bagnato, V.S.; de Oliveira Mima, E.G.; Pavarina, A.C. Treatment of Oral Candidiasis Using Photodithazine®-Mediated Photodynamic Therapy In Vivo. PLoS ONE 2016, 11, e0156947. [Google Scholar] [CrossRef]
- Dias, L.M.; Klein, M.I.; Jordão, C.C.; Carmello, J.C.; Bellini, A.; Pavarina, A.C. Successive Applications of Antimicrobial Photodynamic Therapy Effects the Susceptibility of Candida albicans Grown in Medium with or Without Fluconazole. Photodiagn. Photodyn. Ther. 2020, 32, 102018. [Google Scholar] [CrossRef]
- Dias, L.M.; Klein, M.I.; Ferrisse, T.M.; Medeiros, K.S.; Jordão, C.C.; Bellini, A.; Pavarina, A.C. The Effect of Sub-Lethal Successive Applications of Photodynamic Therapy on Candida albicans Biofilm Depends on the Photosensitizer. J. Fungi 2023, 9, 111. [Google Scholar] [CrossRef]
- Jordão, C.C.; de Sousa, T.V.; Klein, M.I.; Dias, L.M.; Pavarina, A.C.; Carmello, J.C. Antimicrobial Photodynamic Therapy Reduces Gene Expression of Candida albicans in Biofilms. Photodiagn. Photodyn. Ther. 2020, 31, 101825. [Google Scholar] [CrossRef]
- Jordão, C.C.; Klein, M.I.; Barbugli, P.A.; Mima, E.G.D.O.; de Sousa, T.V.; Ferrisse, T.M.; Pavarina, A.C. DNase Improves the Efficacy of Antimicrobial Photodynamic Therapy in the Treatment of Candidiasis Induced with Candida albicans. Front. Microbiol. 2023, 14, 1274201. [Google Scholar] [CrossRef]
- Jordão, C.C.; Klein, M.I.; Barbugli, P.A.; Ferrisse, T.M.; de Moraes, J.C.G.; Pavarina, A.C. The Association of DNase I with Antimicrobial Photodynamic Therapy Affects Candida albicans Gene Expression and Promotes Immunomodulatory Effects in Mice with Candidiasis. Photochem. Photobiol. Sci. 2025, 24, 791–802. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, S.-H.; Kim, Z.; Lee, J.-B. Photodynamic Effects of Topical Photosensitizer, Photodithazine Using Micro-LED for Acne Bacteria Induced Inflammation. Ann. Dermatol. 2024, 36, 329–340. [Google Scholar] [CrossRef]
- Quishida, C.C.C.; Mima, E.G.O.; Dovigo, L.N.; Jorge, J.H.; Bagnato, V.S.; Pavarina, A.C. Photodynamic Inactivation of a Multispecies Biofilm Using Photodithazine® and LED Light After One and Three Successive Applications. Lasers Med. Sci. 2015, 30, 2303–2312. [Google Scholar] [CrossRef] [PubMed]
- Souza, B.M.N.; Pinto, J.G.; Pereira, A.H.C.; Miñán, A.G.; Ferreira-Strixino, J. Efficiency of Antimicrobial Photodynamic Therapy with Photodithazine® on MSSA and MRSA Strains. Antibiotics 2021, 10, 869. [Google Scholar] [CrossRef] [PubMed]
- Souza, B.M.N.; Miñán, A.G.; Brambilla, I.R.; Pinto, J.G.; Garcia, M.T.; Junqueira, J.C.; Ferreira-Strixino, J. Effects of Antimicrobial Photodynamic Therapy with Photodithazine® on Methicillin-Resistant Staphylococcus aureus (MRSA), Studies in Biofilms and Experimental Model with Galleria mellonella. J. Photochem. Photobiol. B 2024, 252, 112860. [Google Scholar] [CrossRef] [PubMed]
- Tavares, L.J.; de Avila, E.D.; Klein, M.I.; Panariello, B.H.D.; Spolidorio, D.M.P.; Pavarina, A.C. Antimicrobial Photodynamic Therapy Alone or in Combination with Antibiotic Local Administration Against Biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis. J. Photochem. Photobiol. B 2018, 188, 135–145. [Google Scholar] [CrossRef]
- Alves, F.; Alonso, G.C.; Carmello, J.C.; Mima, E.G.O.; Bagnato, V.S.; Pavarina, A.C. Antimicrobial Photodynamic Therapy Mediated by Photodithazine® in the Treatment of Denture Stomatitis, A Case Report. Photodiagn. Photodyn. Ther. 2018, 21, 168–171. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Tao, H.; Feng, C.; Wang, P.; Zhang, L.; Liu, X.; Chen, Y.; Wang, X. A Chlorin e6 Derivative-Mediated Photodynamic Therapy for Mild to Moderate Acne, A Prospective, Single-Blind, Randomized, Split-Face Controlled Study. Photodiagn. Photodyn. Ther. 2024, 49, 104304. [Google Scholar] [CrossRef]
- Potapov, A.; Matveev, L.; Moiseev, A.; Sedova, E.; Loginova, M.; Karabut, M.; Kuznetsova, I.; Levchenko, V.; Grebenkina, E.; Gamayunov, S.; et al. Multimodal OCT Control for Early Histological Signs of Vulvar Lichen Sclerosus Recurrence After Systemic PDT, Pilot Study. Int. J. Mol. Sci. 2023, 24, 13967. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.; Menezesa, P.F.C.; Sibatac, C.H.; Allison, R.R.; Zucoloto, S.; Castro e Silva, O., Jr.; Bagnato, V.S. Can Efficiency of the Photosensitizer Be Predicted by Its Photostability in Solution? Laser Phys. 2009, 19, 1932–1938. [Google Scholar] [CrossRef]
- Łopaciński, M.; Fiegler-Rudol, J.; Niemczyk, W.; Skaba, D.; Wiench, R. Riboflavin- and Hypericin-Mediated Antimicrobial Photodynamic Therapy as Alternative Treatments for Oral Candidiasis, A Systematic Review. Pharmaceutics 2025, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Wiench, R.; Nowicka, J.; Pajączkowska, M.; Kuropka, P.; Skaba, D.; Kruczek-Kazibudzka, A.; Kuśka-Kiełbratowska, A.; Grzech-Leśniak, K. Influence of Incubation Time on Ortho-Toluidine Blue Mediated Antimicrobial Photodynamic Therapy Directed Against Selected Candida Strains—An In Vitro Study. Int. J. Mol. Sci. 2021, 22, 10971. [Google Scholar] [CrossRef]
- Kubizna, M.; Dawiec, G.; Wiench, R. Efficacy of Curcumin-Mediated Antimicrobial Photodynamic Therapy on Candida spp., A Systematic Review. Int. J. Mol. Sci. 2024, 25, 8136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fiegler-Rudol, J.; Grzech-Leśniak, Z.; Tkaczyk, M.; Grzech-Leśniak, K.; Zawilska, A.; Wiench, R. Enhancing Root Canal Disinfection with Er:YAG Laser, A Systematic Review. Dent. J. 2025, 13, 101. [Google Scholar] [CrossRef]
- Dembicka-Mączka, D.; Kępa, M.; Fiegler-Rudol, J.; Grzech-Leśniak, Z.; Matys, J.; Grzech-Leśniak, K.; Wiench, R. Evaluation of the Disinfection Efficacy of Er: YAG Laser Light on Single-Species Candida Biofilms—An In Vitro Study. Dent. J. 2025, 13, 88. [Google Scholar] [CrossRef]
- Quishida, C.C.; Carmello, J.C.; Mima, E.G.; Bagnato, V.S.; Machado, A.L.; Pavarina, A.C. Susceptibility of Multispecies Biofilm to Photodynamic Therapy Using Photodithazine®. Lasers Med. Sci. 2015, 30, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xuan, Y.; Koide, Y.; Zhiyentayev, T.; Tanaka, M.; Hamblin, M.R. Type I and Type II Mechanisms of Antimicrobial Photodynamic Therapy, An In Vitro Study on Gram-Negative and Gram-Positive Bacteria. Lasers Surg. Med. 2012, 44, 490–499. [Google Scholar] [CrossRef]
- Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic Therapy. J. Natl. Cancer Inst. 1998, 90, 889–905. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Zhang, H.; Zhai, W.; Shi, X.; Li, C. A Hypoxia-Activatable Theranostic Agent with Intrinsic Endoplasmic Reticulum Affinity and Type-I Photosensitivity. J. Mater. Chem. B 2023, 11, 3835–3844. [Google Scholar] [CrossRef]
- Mima, E.G.; Vergani, C.E.; Machado, A.L.; Massucato, E.M.; Colombo, A.L.; Bagnato, V.S.; Pavarina, A.C. Comparison of Photodynamic Therapy Versus Conventional Antifungal Therapy for the Treatment of Denture Stomatitis, A Randomized Clinical Trial. Clin. Microbiol. Infect. 2012, 18, E380–E388. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Misra, S.R.; Panda, S.; Sokolowski, G.; Mishra, L.; Das, R.; Lapinska, B. Nystatin Effectiveness in Oral Candidiasis Treatment, A Systematic Review & Meta-Analysis of Clinical Trials. Life 2022, 12, 1677. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dovigo, L.N.; Carmello, J.C.; de Souza Costa, C.A.; Vergani, C.E.; Brunetti, I.L.; Bagnato, V.S.; Pavarina, A.C. Curcumin-Mediated Photodynamic Inactivation of Candida albicans in a Murine Model of Oral Candidiasis. Med. Mycol. 2013, 51, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic Therapy of Cancer, An Update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Hong, L.; Li, J.; Luo, Y.; Guo, T.; Zhang, C.; Ou, S.; Long, Y.; Hu, Z. Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy. Biomolecules 2022, 12, 81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mallidi, S.; Anbil, S.; Bulin, A.L.; Obaid, G.; Ichikawa, M.; Hasan, T. Beyond the Barriers of Light Penetration, Strategies, Perspectives and Possibilities for Photodynamic Therapy. Theranostics 2016, 6, 2458–2487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamblin, M.R. Photodynamic Therapy for Cancer, What’s Past is Prologue. Photochem. Photobiol. 2020, 96, 506–516. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gubarkova, E.V.; Feldchtein, F.I.; Zagaynova, E.V.; Gamayunov, S.V.; Sirotkina, M.A.; Sedova, E.S.; Kuznetsov, S.S.; Moiseev, A.A.; Matveev, L.A.; Zaitsev, V.Y.; et al. Optical Coherence Angiography for Pre-Treatment Assessment and Treatment Monitoring Following Photodynamic Therapy, A Basal Cell Carcinoma Patient Study. Sci. Rep. 2019, 9, 18670. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, J.; Jin, F.; Xiao, J.; Lan, N.; Xu, Z.; Yue, X.; Li, Z.; Li, C.; Cao, D.; et al. Fiber-Optic Drug Delivery Strategy for Synergistic Cancer Photothermal-Chemotherapy. Light Sci. Appl. 2024, 13, 228. [Google Scholar] [CrossRef]
- Overchuk, M.; Weersink, R.A.; Wilson, B.C.; Zheng, G. Photodynamic and Photothermal Therapies, Synergy Opportunities for Nanomedicine. ACS Nano 2023, 17, 7436–7489. [Google Scholar] [CrossRef]
- Wiench, R.; Kuśka-Kiełbratowska, A.; Kępa, M.; Grzech-Leśniak, Z.; Jabłoński, M.; Kiryk, J.; Grzech-Leśniak, K.; Skaba, D. Comparison of the Efficacy of Simple and Combined Oral Rinses with Chlorhexidine Digluconate Against Selected Bacterial and Yeast Species, An In Vitro Study. Dent. Med. Probl. 2025. [Google Scholar] [CrossRef]
Source | Search Term | Number of Results |
---|---|---|
PubMed | (“Photodynamic Therapy” [MeSH Terms] or “photodynamic therapy” [tiab] or “photodynamic inactivation” [tiab] or “light-based antimicrobial therapy” [tiab] or “aPDT” [tiab] or “photoactivated disinfection” [tiab] or “photo-inactivation” [tiab] or “photoantimicrobial” [tiab]) and (“Photodiathazine” [tiab] or photodithazine [tiab] or “PDZ” [tiab]) and (“Anti-Infective Agents” [MeSH Terms] or “microbial infection” [tiab] or “bacterial infection” [tiab] or “fungal infection” [tiab] or “biofilm” [tiab] or “Candida” [tiab] or “Staphylococcus” [tiab] or “Pseudomonas” [tiab] or “Escherichia coli” [tiab] or “antibacterial” [tiab] or “antifungal” [tiab] or “disinfection” [tiab] or “infection control” [tiab]) | 32 |
Embase | (‘photodynamic therapy’/exp or ‘photodynamic therapy’:ti,ab or ‘photodynamic inactivation’:ti,ab or ‘light-based antimicrobial therapy’:ti,ab or apdt:ti,ab or ‘photoactivated disinfection’:ti,ab or ‘photo-inactivation’:ti,ab or photoantimicrobial:ti,ab) and (‘photodiathazine’:ti,ab or photodithazine:ti,ab or pdz:ti,ab) and (‘antiinfective agent’/exp OR ‘microbial infection’:ti,ab or ‘bacterial infection’:ti,ab or ‘fungal infection’:ti,ab or biofilm:ti,ab or candida:ti,ab or staphylococcus:ti,ab or pseudomonas:ti,ab or ‘escherichia coli’:ti,ab or antibacterial:ti,ab or antifungal:ti,ab or disinfection:ti,ab or ‘infection control’:ti,ab) | 46 |
Scopus | (TITLE-ABS-KEY(“photodynamic therapy” or “photodynamic inactivation” or “light-based antimicrobial therapy” or “aPDT” or “photoactivated disinfection” or “photo-inactivation” or “photoantimicrobial”)) and (TITLE-ABS-KEY(“photodiathazine” or “photodithazine” or “PDZ”)) and (TITLE-ABS-KEY(“anti-infective agents” or “microbial infection” or “bacterial infection” or “fungal infection” or “biofilm” or “Candida” or “Staphylococcus” or “Pseudomonas” or “Escherichia coli” or “antibacterial” or “antifungal” or “disinfection” OR “infection control”)) | 41 |
Cochrane Library | (“photodiathazine” or “photodithazine” or “PDZ”) and (“photodynamic therapy” or “PDT” or “photodynamic inactivation” or “photoactivated disinfection” or “photo-inactivation” or “photoantimicrobial” or “light-based antimicrobial therapy”) and (“microbial infection” or “bacterial infection” or “fungal infection” or “biofilm” or “Candida” or “Staphylococcus” or “Pseudomonas” or “Escherichia coli” or “antibacterial” or “antifungal” or “disinfection” or “infection control”) | 8 |
Criteria | [28] | [29] | [30] | [31] | [32] | [33] | [34] | [35] | [36] | [37] | [38] | [39] | [40] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
4. | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
5. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
6. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
7. | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
8. | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
9. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
Total Score | 6 | 7 | 8 | 7 | 8 | 7 | 8 | 8 | 5 | 7 | 9 | 9 | 8 |
Risk of Bias | Moderate | Low | Low | Low | Low | Low | Low | Low | Moderate | Low | Low | Low | Low |
Study | Country | Type | Site | Aims |
---|---|---|---|---|
Abreu-Pereira et al., 2025 [28] | Brazil | In vitro | - | To evaluate the effect of ZER combined with PDZ-aPDT on biofilms formed by fluconazole-resistant and -susceptible Candida albicans, including clinical isolates. |
Alves et al., 2020 [29] | Brazil | RCT | - | To evaluate the efficacy of PDZ-aPDT as a treatment for denture stomatitis in patients, compared to conventional topical nystatin therapy, through a randomized clinical trial. |
Carmello et al., 2016 [30] | Brazil | In vivo | Tongue | To evaluate the effectiveness of PDZ-aPDT in treating oral candidiasis in an immunosuppressed mouse model by comparing it with nystatin treatment and assessing its effects on fungal viability, lesion remission, tissue response, and inflammatory cytokine expression. |
Dias et al., 2020 [31] | Brazil | In vitro | - | To evaluate whether successive applications of PDZ-aPDT affect the susceptibility, resistance, or tolerance of Candida albicans in planktonic cultures and biofilms, and to assess the influence of fluconazole on fungal recovery after treatment. |
Dias et al., 2023 [32] | Brazil | In vitro | - | To evaluate the effect of ten consecutive applications of sub-lethal aPDT, mediated by PDZ and CUR, on the viability, ROS production, and gene expression of Candida albicans in both planktonic cultures and biofilms. |
Jordão et al., 2020 [33] | Brazil | In vitro | - | To evaluate whether PDZ-aPDT or CUR affects the expression of Candida albicans genes related to adhesion, biofilm formation, and oxidative stress responses in biofilms. |
Jordão et al., 2023 [34] | Brazil | In vivo | Tongue | To evaluate whether the application of DNase I enzyme could enhance the efficacy of PDZ-aPDT in treating oral candidiasis in mice infected with fluconazole-susceptible and -resistant Candida albicans strains. |
Jordão et al., 2024 [35] | Brazil | In vivo | Tongue | To evaluate the effects of combining DNase I with aPDT on Candida albicans gene expression and the local inflammatory response in mice with oral candidiasis. |
Lee et al., 2024 [36] | Korea | In vivo | Acne lesions | To evaluate the effectiveness of aPDT using a topical Photodithazine gel and micro-LED irradiation in reducing inflammation caused by acne bacteria (Cutibacterium acnes) in a mouse model. |
Quishida et al., 2015 [37] | Brazil | In vitro | - | To evaluate the effectiveness of one and three successive applications of PDZ-aPDT and LED light against a multispecies biofilm of Candida albicans, Candida glabrata, and Streptococcus mutans formed on denture base acrylic resin. |
Souza et al., 2021 [38] | Brazil | In vitro | - | To analyze, in vitro, the effect of PDZ-aPDT on the viability, metabolism, and ROS production of MSSA and MRSA strains. |
Souza et al., 2024 [39] | Brazil | In vitro and in vivo | Larvae | To analyze, both in vitro and in vivo, the effects of PDZ-aPDT on MRSA, evaluating its impact on biofilms and in an experimental infection model using Galleria mellonella larvae. |
Tavaresa et al., 2018 [40] | Brazil | In vitro | - | To evaluate the effects of PDZ-aPDT, alone or in combination with metronidazole administration, against biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis. |
Study | Study Groups | Main Outcomes |
---|---|---|
Abreu-Pereira et al., 2025 [28] | Control, ZER, PDZ, LED, ZER + aPDT, ZER + PDZ, ZER + LED, and aPDT |
|
Alves et al., 2020 [29] | aPDT, NYS |
|
Carmello et al., 2016 [30] | aPDT (P+L+), NYS, control (P-L-), light only (P-L+), PDZ only (P+L-), and NC |
|
Dias et al., 2020 [31] | P+L+ (photosensitizer + light), P+L- (photosensitizer only), P-L+ (light only), and P-L- (no treatment), with and without fluconazole |
|
Dias et al., 2023 [32] | P+L+ (PDZ + red LED), C+L+ (CUR + blue LED), P+L- (PDZ only), C+L- (CUR only), P-L+ (red LED only), C-L+ (blue LED only), P-L- (no treatment), and C-L- (no treatment) |
|
Jordão et al., 2020 [33] | P+L+ (PDZ + LED), P+L- (PDZ only), P-L+ (LED only), P-L- (no treatment), P+L+ (CUR + LED), P+L− (CUR only), P-L+ (LED only), and P−L− (no treatment) (each with varying concentrations and fluences) |
|
Jordão et al., 2023 [34] | DNase+P+L+ (DNase + PDZ-aPDT), P+L+ (PDZ-aPDT), P+L− (PDZ only), P−L+ (LED only), DNase (DNase only), P−L− (no treatment), NIC+ (healthy, immunosuppressed), and NIC− (healthy, not immunosuppressed) |
|
Jordão et al., 2024 [35] | NIC (healthy control), P−L− (infected, untreated), P+L+ (PDZ-aPDT), P−L+ (LED only), P+L− (PDZ only), DNase (DNase only), and DNase+P+L+ (DNase + PDZ-aPDT) |
|
Lee et al., 2024 [36] | Normal control, C. acnes only, FDT gel only, LED 10 min, LED 15 min, aPDT 10 min (FDT gel + LED), and aPDT 15 min (FDT gel + LED) |
|
Quishida et al., 2015 [37] | P+L+ (PDZ + light), P+L− (PDZ only), P−L+ (light only), and P−L− (untreated control), each with one or three applications |
|
Souza et al., 2021 [38] | aPDT (PDZ + light), PDZ only, light only, and untreated control, each with MSSA and MRSA, and varying PDZ concentrations and light fluences |
|
Souza et al., 2024 [39] | aPDT (PDZ + light), PDZ only, light only, untreated control (PBS), and MRSA only (infection), each with varying PDZ concentrations and light fluences, both in vitro and in vivo (Galleria mellonella) |
|
Tavaresa et al., 2018 [40] | aPDT (PDZ + light), PDZ only, light only, untreated control, MTZ only, and aPDT + MTZ (combination therapy), each at varying PDZ and MTZ concentrations, for both F. nucleatum and P. gingivalis biofilms |
|
Study | Light Source | Wavelength [nm] | Energy Fluence [J/cm2] | PS Dose/Concentration and Administration | Incubation Time |
---|---|---|---|---|---|
Abreu-Pereira et al., 2025 [28] | LED | 600 | 50 | PDZ 200 mg/L, after ZER pretreatment | 20 min (ZER), then PDZ |
Alves et al., 2020 [29] | LED | 660 | 50 | PDZ 200 mg/L, topical on palate/denture | 20 min |
Carmello et al., 2016 [30] | LED | 660 | 50 | PDZ 200 mg/L, topical | 20 min |
Dias et al., 2020 [31] | LED | 660 | 34 | PDZ 25 mg/L, planktonic/biofilm | 20 min (pre-irr.), exposure time not specified |
Dias et al., 2023 [32] | Red LED | 660 | 18 | PDZ 25 mg/L, in PBS | 20 min (pre-irr.), 9 min LED |
Jordão et al., 2020 [33] | LED | 660 | 37.5, 50 | PDZ 100 or 200 mg/L, applied to biofilms | 20 min (standard for group; check methods for confirmation) |
Jordão et al., 2023 [34] | LED | 660 | 50 | PDZ 200 mg/L, applied after DNase | 20 min (PDZ), 5 min (DNase) |
Jordão et al., 2024 [35] | LED | 660 | 50 | PDZ 200 mg/L, applied after DNase | 20 min (PDZ), 5 min (DNase) |
Lee et al., 2024 [36] | Micro-LED | 650 | Not stated | PDZ, topical gel (conc. not stated) | Not stated |
Quishida et al., 2015 [37] | LED | 660 | 37.5 | PDZ 175 or 200 mg/L, applied to biofilms | 20 min |
Souza et al., 2021 [38] | Not stated | Not stated | 25, 50, and 100 | PDZ: 25, 50, 75, and 100 mg/L; planktonic MSSA/MRSA strains | 15 min |
Souza et al., 2024 [39] | Biotable Biopdi660 (LED array) | 660 | 25, 50, and 100 (in vitro); 10 (in vivo) | PDZ: 50, 75 μg/mL (in vitro biofilm); 5, 0.25, and 2.5 × 10−7 μg/mL (in vivo) | 15 min (in vitro and in vivo) |
Tavaresa et al., 2018 [40] | LED | 660 | 50 | PDZ: 50, 75, and 100 mg/L; 5-day biofilm (F. nucleatum, P. gingivalis) | 10 min (in darkness) |
Property | Description/Details |
---|---|
Chemical Structure | Chlorin e6 derivative (second-generation photosensitizer) |
Solubility | Water-soluble |
Activation Wavelength | Red light, typically 660 nm |
Mechanism of Action | Upon irradiation produces singlet oxygen and reactive oxygen species (ROS) that damage cell walls |
Spectrum of Activity | Effective against Gram-positive and Gram-negative bacteria, fungi (Candida spp.), and biofilms |
Formulation | Used as solution or topical gel |
Typical Concentration | 10–100 mg/L for in vitro studies; clinical gels up to 1% |
Application/Incubation | Applied for 10–20 min before irradiation (pre-irradiation phase) |
Light Dose Used | Typically 50 J/cm2 |
Advantages | High antimicrobial efficacy, low dark cytotoxicity, acts on drug-resistant microbes, and biofilm action |
Brand Name | Photodithazine® |
Safety | Low toxicity in the absence of light |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiench, R.; Fiegler-Rudol, J.; Grzech-Leśniak, K.; Skaba, D.; Arnabat-Dominguez, J. Photodithazine-Mediated Antimicrobial Photodynamic Therapy: A Systematic Review of Efficacy and Applications. Int. J. Mol. Sci. 2025, 26, 8049. https://doi.org/10.3390/ijms26168049
Wiench R, Fiegler-Rudol J, Grzech-Leśniak K, Skaba D, Arnabat-Dominguez J. Photodithazine-Mediated Antimicrobial Photodynamic Therapy: A Systematic Review of Efficacy and Applications. International Journal of Molecular Sciences. 2025; 26(16):8049. https://doi.org/10.3390/ijms26168049
Chicago/Turabian StyleWiench, Rafał, Jakub Fiegler-Rudol, Kinga Grzech-Leśniak, Dariusz Skaba, and Josep Arnabat-Dominguez. 2025. "Photodithazine-Mediated Antimicrobial Photodynamic Therapy: A Systematic Review of Efficacy and Applications" International Journal of Molecular Sciences 26, no. 16: 8049. https://doi.org/10.3390/ijms26168049
APA StyleWiench, R., Fiegler-Rudol, J., Grzech-Leśniak, K., Skaba, D., & Arnabat-Dominguez, J. (2025). Photodithazine-Mediated Antimicrobial Photodynamic Therapy: A Systematic Review of Efficacy and Applications. International Journal of Molecular Sciences, 26(16), 8049. https://doi.org/10.3390/ijms26168049