Formulation of Honokiol- and Magnolol-Loaded Nanoemulsions for Head and Neck Cancer Adjuvant Therapy: Evaluation of Radiation Sterilization Effects on Active Substance Properties
Abstract
1. Introduction
2. Results and Discussion
2.1. Formulation and Characterization of Nanoemulsions
2.1.1. Physiochemical Characterization
2.1.2. Biological Activity of HON and MAG in Nanoemulsions
2.1.3. Cell Uptake of HON and MAG from Nanoemulsions
2.2. Evaluation of the Impact of Radiation Sterilization on the Stability of HON and MAG
2.2.1. Visual Examination, PXRD, DSC, and TGA Analysis
2.2.2. EPR Analysis
2.2.3. FT-IR, NMR, and HPLC Analysis
2.3. Limitations and Future Perspective
3. Materials and Methods
3.1. Materials
3.2. Methods
Preparation of IV Nanoemulsions
3.3. Characterization of Developed IV Nanoemulsions
3.3.1. Mean Droplet Diameter (MDD), Polydispersity Index (PDI), and Zeta Potential (ZP) Analysis
3.3.2. Entrapment Efficiency (EE%)
3.3.3. The Effect of Developed IV Nanoemulsions on Cell Viability
3.3.4. Cellular Uptake of HON and MAG from Developed IV Nanoemulsions
3.4. Development of HON and MAG Sterilization Method
3.5. Assessment of Irradiated HON and MAG
3.5.1. Powder Diffraction Experiments (PXRD)
3.5.2. Differential Scanning Calorimetry (DSC)
3.5.3. Thermogravimetry (TGA)
3.5.4. Electron Paramagnetic Resonance (EPR) Spectroscopy
3.5.5. Fourier-Transform Infrared (FT-IR) Spectroscopy
3.5.6. Nuclear Magnetic Resonance (NMR)
3.5.7. High-Performance Liquid Chromatography (HPLC)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Precision/Recovery | |||||
---|---|---|---|---|---|
Intra-Day | Inter-Day | ||||
Series I n = 9 | Series II n = 9 | Series I–II n = 18 | |||
Concentration [μg/mL] | RSD [%] Recovery [%] | Concentration [μg/mL] | RSD [%] Recovery [%] | RSD [%] Recovery [%] | |
HON | 100.3 | 1.57 103.13 ± 1.24 | 100.1 | 1.73 99.92 ± 1.33 | 2.28 101.52 ± 1.15 |
MAG | 100.0 | 1.52 101.23 ± 1.28 | 100.3 | 1.42 100.13 ± 1.19 | 1.53 100.68 ± 0.82 |
References
- Sarrica, A.; Kirika, N.; Romeo, M.; Salmona, M.; Diomede, L. Safety and Toxicology of Magnolol and Honokiol. Planta Med. 2018, 84, 1151–1164. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Huang, X.; Shi, W.; Zhang, R.; Chen, M.; Huang, H.; Wu, L. Insights on the Multifunctional Activities of Magnolol. BioMed Res Int. 2019, 2019, 1847130. [Google Scholar] [CrossRef]
- Rauf, A.; Olatunde, A.; Imran, M.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Khan, S.A.; Uddin, M.S.; Mitra, S.; Emran, T.B.; Khayrullin, M.; et al. Honokiol: A Review of Its Pharmacological Potential and Therapeutic Insights. Phytomedicine 2021, 90, 153647. [Google Scholar] [CrossRef]
- Dominiak, K.; Gostyńska, A.; Szulc, M.; Stawny, M. The Anticancer Application of Delivery Systems for Honokiol and Magnolol. Cancers 2024, 16, 2257. [Google Scholar] [CrossRef] [PubMed]
- Elhabak, M.; Osman, R.; Mohamed, M.; El-Borady, O.M.; Awad, G.A.S.; Mortada, N. Near IR responsive targeted integrated lipid polymer nanoconstruct for enhanced magnolol cytotoxicity in breast cancer. Sci. Rep. 2020, 10, 8771. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, C.; Huang, L.; Liu, M.; Li, L.; Wang, X.; Wang, L.; Sun, S.; Xu, H.; Ma, G.; et al. Magnolol-loaded cholesteryl biguanide conjugate hydrochloride nanoparticles for triple-negative breast cancer therapy. Int. J. Pharm. 2022, 615, 121509. [Google Scholar] [CrossRef]
- Kleszcz, R.; Dorna, D.; Stawny, M.; Paluszczak, J. Honokiol Is More Potent than Magnolol in Reducing Head and Neck Cancer Cell Growth. Curr. Issues Mol. Biol. 2024, 46, 10731–10744. [Google Scholar] [CrossRef]
- Preeti; Sambhakar, S.; Malik, R.; Bhatia, S.; Al Harrasi, A.; Rani, C.; Saharan, R.; Kumar, S.; Geeta; Sehrawat, R. Nanoemulsion: An Emerging Novel Technology for Improving the Bioavailability of Drugs. Scientifica 2023, 2023, 6640103. [Google Scholar] [CrossRef] [PubMed]
- Sampieri-Morán, J.M.; Bravo-Alfaro, D.A.; Uribe-Lam, E.; Luna-Barcenas, G.; Montiel-Sánchez, M.; Velasco-Rodríguez, L.D.C.; Acosta-Osorio, A.A.; Ferrer, M.; García, H.S. Delivery of Magnolia Bark Extract in Nanoemulsions Formed by High and Low Energy Methods Improves the Bioavailability of Honokiol and Magnolol. Eur. J. Pharm. Biopharm. 2025, 208, 114627. [Google Scholar] [CrossRef]
- Bharti, B.; Li, H.; Ren, Z.; Zhu, R.; Zhu, Z. Recent advances in sterilization and disinfection technology: A review. Chemosphere 2022, 308 Pt 3, 136404. [Google Scholar] [CrossRef]
- Gostyńska, A.; Czerniel, J.; Kuźmińska, J.; Żółnowska, I.; Brzozowski, J.; Krajka-Kuźniak, V.; Stawny, M. The Development of Magnolol-Loaded Intravenous Emulsion with Low Hepatotoxic Potential. Pharmaceuticals 2023, 16, 1262. [Google Scholar] [CrossRef] [PubMed]
- Candiloro, F.; Borioli, V.; Borsellino, G.; Picozza, M.; Pellini, R.; Cereda, E.; Gargano, F.; Caraccia, M.; Nardi, M.T.; Bellu, L.; et al. Influence of different lipid emulsions on specific immune cell functions in head and neck cancer patients receiving supplemental parenteral nutrition: An exploratory analysis. Nutrition 2021, 86, 111178. [Google Scholar] [CrossRef]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Ye, S.; He, Y.; Wang, S.; Xiao, Y.; Xiang, X.; Deng, M.; Luo, W.; Chen, X.; Wang, X. Fatty acids and lipid mediators in inflammatory bowel disease: From mechanism to treatment. Front. Immunol. 2023, 14, 1286667. [Google Scholar] [CrossRef]
- Canhada, S.; Castro, K.; Perry, I.S.; Luft, V.C. Omega-3 fatty acids’ supplementation in Alzheimer’s disease: A systematic review. Nutr. Neurosci. 2018, 21, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.D.S.; Campos, M.M. Protective Effects of Omega-3 Fatty Acids in Cancer-Related Complications. Nutrients 2019, 11, 945. [Google Scholar] [CrossRef]
- Matsui, R.; Sagawa, M.; Sano, A.; Sakai, M.; Hiraoka, S.I.; Tabei, I.; Imai, T.; Matsumoto, H.; Onogawa, S.; Sonoi, N.; et al. Impact of Perioperative Immunonutrition on Postoperative Outcomes for Patients Undergoing Head and Neck or Gastrointestinal Cancer Surgeries: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Ann. Surg. 2024, 279, 419–428. [Google Scholar] [CrossRef]
- Aslan, C.; Maralbashi, S.; Shekari, N.; Javadian, M.; Shomali, N.; Kazemi, T. Differential effects of docosahexaenoic acid (DHA) and linoleic acid (LA) on miR-101 and miR-342 tumor suppressor microRNAs in Taxol-treated HER2-positive breast cancer cells. Clin. Nutr. ESPEN 2024, 63, 502–507. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Hueng, D.Y.; Huang, H.Y.; Chen, J.Y.; Chen, Y. Magnolol and honokiol exert a synergistic anti-tumor effect through autophagy and apoptosis in human glioblastomas. Oncotarget 2016, 7, 29116–29130. [Google Scholar] [CrossRef]
- Wang, H.-H.; Chen, Y.; Changchien, C.-Y.; Chang, H.-H.; Lu, P.-J.; Mariadas, H.; Cheng, Y.-C.; Wu, S.-T. Pharmaceutical Evaluation of Honokiol and Magnolol on Apoptosis and Migration Inhibition in Human Bladder Cancer Cells. Front. Pharmacol. 2020, 11, 549338. [Google Scholar] [CrossRef]
- Carrillo, C.; Cavia, M.D.M.; Alonso-Torre, S.R. Antitumor effect of oleic acid; mechanisms of action: A review. Nutr. Hosp. 2012, 27, 1860–1865. [Google Scholar]
- Moon, H.S.; Batirel, S.; Mantzoros, C.S. Alpha linolenic acid and oleic acid additively down-regulate malignant potential and positively cross-regulate AMPK/S6 axis in OE19 and OE33 esophageal cancer cells. Metabolism 2014, 63, 1447–1454. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, W.; He, Q.; Wu, Y.; Lu, Z.; Sun, J.; Liu, Z.; Shao, Y.; Wang, A. Oleic acid induces apoptosis and autophagy in the treatment of Tongue Squamous cell carcinomas. Sci. Rep. 2017, 7, 11277. [Google Scholar] [CrossRef] [PubMed]
- Deutscher Apotheker Verlag. European Pharmacopea, 10th ed.; Deutscher Apotheker Verlag: Strasbourg, France, 2019. [Google Scholar]
- Marciniec, B.; Stawny, M.; Kozak, M.; Naskrent, M. Theeffect of ionizing radiation on chloramphenicol. J. Therm. Anal. Calorim. 2006, 84, 741–746. [Google Scholar] [CrossRef]
- Marciniec, B.; Kozak, M.; Naskrent, M.; Hofman, M.; Dettlaff, K.; Stawny, M. DSC and EPR analysis of some radiation sterilized alkaloids. J. Therm. Anal. Calorim. 2009, 102, 261–267. [Google Scholar] [CrossRef]
- Katušin-Ražem, B.; Hamitouche, K.; Maltar-Strmečki, N.; Kos, K.; Pucić, I.; Britvić-Budicin, S.; Ražem, D. Radiation sterilization of ketoprofen. Radiat. Phys. Chem. 2005, 73, 111–116. [Google Scholar] [CrossRef]
- Janiaczyk, M.; Jelińska, A.; Woźniak-Braszak, A.; Bilski, P.; Popielarz-Brzezińska, M.; Wachowiak, M.; Baranowski, M.; Tomczak, S.; Ogrodowczyk, M. Electron Beam Radiation as a Safe Method for the Sterilization of Aceclofenac and Diclofenac-The Usefulness of EPR and 1H-NMR Methods in Determination of Molecular Structure and Dynamics. Pharmaceutics 2022, 14, 1331. [Google Scholar] [CrossRef]
- Bakhrushina, E.O.; Afonina, A.M.; Mikhel, I.B.; Demina, N.B.; Plakhotnaya, O.N.; Belyatskaya, A.V.; Krasnyuk, I.I.; Krasnyuk, I.I. Role of Sterilization on In Situ Gel-Forming Polymer Stability. Polymers 2024, 16, 2943. [Google Scholar] [CrossRef]
- Van Cauwenbergh, T.; Theys, E.; Stroeykens, D.; Croonenborghs, B.; Gillet, A.; DeMent, A.; Van Schepdael, A.; Haghedooren, E. The Effect of Gamma and Ethylene Oxide Sterilization on a Selection of Active Pharmaceutical Ingredients for Ophthalmics. J. Pharm. Sci. 2022, 111, 2011–2017. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, M.; Lee, J.; Chen, F. Molecular and Crystal Structure of Magnolol—C18 H18 O2. J. Chin. Chem. Soc. 1983, 30, 215–221. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Lu, X.; Lu, X.; Zhang, Z.; Lv, H. Preparation and Characterization of Honokiol Nanosuspensions and Preliminary Evaluation of Anti-Inflammatory Effect. AAPS PharmSciTech 2020, 21, 62. [Google Scholar] [CrossRef]
- Han, M.; Yu, X.; Guo, Y.; Wang, Y.; Kuang, H.; Wang, X. Honokiol nanosuspensions: Preparation, increased oral bioavailability and dramatically enhanced biodistribution in the cardio-cerebro-vascular system. Colloids Surf. B Biointerfaces 2014, 116, 114–120. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Hou, X.; Guo, J.; He, Z.; Guo, T.; Liu, Y.; Zhang, Y.; Zhang, J.; Feng, N. Activation of a gamma–cyclodextrin–based metal–organic framework using supercritical carbon dioxide for high–efficient delivery of honokiol. Carbohydr. Polym. 2020, 235, 115935. [Google Scholar] [CrossRef] [PubMed]
- Gonet, M.; Baranowski, M.; Czechowski, T.; Kucinska, M.; Plewinski, A.; Szczepanik, P.; Jurga, S.; Murias, M. Multiharmonic electron paramagnetic resonance imaging as an innovative approach for in vivo studies. Free Radic. Biol. Med. 2020, 152, 271–279. [Google Scholar] [CrossRef]
- Bloembergen, N.; Purcell, E.M.; Pound, R.V. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Phys. Rev. 1948, 73, 679–712. [Google Scholar] [CrossRef]
- Kubo, R.; Tomita, K. A General Theory of Magnetic Resonance Absorption. J. Phys. Soc. Jpn. 1954, 9, 888–919. [Google Scholar] [CrossRef]
- ICH Q2(R2) Validation of Analytical Procedures—Scientific Guideline European Medicines Agency. Available online: https://www.ema.europa.eu/en/ich-q2r2-validation-analytical-procedures-scientific-guideline (accessed on 29 February 2024).
Sample | MDD ± SD [nm] | PDI ± SD | ZP ± SD [mV] | EE%± SD [%] |
---|---|---|---|---|
Results upon preparation | ||||
Clinoleic | 243.1 ± 0.7 | 0.097 ± 0.018 | −27.9 ± 0.8 | - |
Lipidem | 210.7 ± 5.1 | 0.075 ± 0.009 | −28.9 ± 0.5 | - |
HON–Clinoleic | 239.3 ± 4.6 | 0.103 ± 0.008 | −26.1 ± 0.7 | 97.45 ± 3.98 |
HON–Lipidem | 208.4 ± 3.6 | 0.102 ± 0.008 | −27.7 ± 0.6 | 101.17 ± 0.75 |
MAG–Clinoleic | 238.4 ± 2.5 | 0.121 ± 0.006 | −29.0 ± 0.6 | 100.31 ± 0.34 |
MAG–Lipidem | 209.3 ± 2.0 | 0.101 ± 0.006 | −31.3 ± 2.9 | 101.11 ± 0.21 |
HON-MAG–Clinoleic | 241.2 ± 2.3 | 0.137 ± 0.011 | −30.7 ± 0.6 | 97.02 ± 3.59 (HON) 100.59 ± 3.70 (MAG) |
HON-MAG–Lipidem | 209.0 ± 3.2 | 0.082 ± 0.016 | −31.3 ± 1.4 | 96.75 ± 1.97 (HON) 99.95 ± 1.17 (MAG) |
Results after 3 months of storage | ||||
Clinoleic | 224.1 ± 2.8 | 0.090 ± 0.005 | −23.6 ± 0.5 | - |
Lipidem | 196.9 ± 2.4 | 0.064 ± 0.018 | −25.9 ± 0.6 | - |
HON–Clinoleic | 236.6 ± 1.2 | 0.107 ± 0.015 | −27.1 ± 0.7 | 97.18 ± 5.09 |
HON–Lipidem | 203.5 ± 2.0 | 0.098 ± 0.018 | −27.8 ± 0.5 | 99.26 ± 0.25 |
MAG–Clinoleic | 231.2 ± 1.3 | 0.089 ± 0.005 | −27.0 ± 0.5 | 99.24 ± 2.55 |
MAG–Lipidem | 203.0 ± 0.8 | 0.095 ± 0.007 | −28.9 ± 1.8 | 100.07 ± 1.03 |
HON-MAG–Clinoleic | 231.0 ± 4.6 | 0.121 ± 0.024 | −29.1 ± 0.7 | 97.87 ± 2.39 (HON) 99.57 ± 5.49 (MAG) |
HON-MAG–Lipidem | 203.1 ± 1.5 | 0.090 ± 0.005 | −30.0 ± 0.3 | 95.79 ± 0.25 (HON) 99.79 ± 0.46 (MAG) |
Parameter | Irradiation Dose [kGy] | |||||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 100 | 400 | 0 | 25 | 100 | 400 | |
HON | MAG | |||||||
g-factor | 2.0031 | 2.0032 | 2.0030 | 2.0030 | 2.0028 | 2.0034 | 2.0030 | 2.0026 |
dH [mT] | 1.01 | 1.08 | 1.07 | 1.04 | 1.10 | 1.12 | 1.10 | 1.25 |
Signal amplitude | 5.7 | 9.4 | 29.8 | 71.2 | 3.2 | 9.5 | 13.7 | 28.8 |
Signal amplitude after 3 months | 0.4 | 3.8 | 5.8 | 15.0 | 2.3 | 2.7 | 3.4 | 6.5 |
Line center [mT] | 337.43 | 337.34 | 337.41 | 337.43 | 337.53 | 337.31 | 337.51 | 337.49 |
Sample | Motion | τ0 [s] | Eak [kJ/mol] | ΔM2k [Gs2] |
---|---|---|---|---|
MAG 0 kGy | 1st | 4.45 × 10−12 | 12.77 | 0.036 |
2nd | 2.12 × 10−14 | 19.55 | 0.110 | |
3rd | 5.83 × 10−14 | 9.66 | 0.003 | |
MAG 400 kGy | 1st | 6.25 × 10−12 | 12.09 | 0.039 |
2nd | 2.72 × 10−14 | 19.09 | 0.101 | |
3rd | 2.07 × 10−12 | 7.19 | 0.004 | |
4th | 1.41 × 10−12 | 1.85 | 0.164 | |
HON 0 kGy | 1st | 9.99 × 10−11 | 8.40 | 0.024 |
2nd | 7.24 × 10−12 | 8.49 | 0.033 | |
HON 400 kGy | 1st | 9.99 × 10−11 | 8.28 | 0.030 |
2nd | 1.10 × 10−11 | 7.85 | 0.058 | |
3rd | 2.31 × 10−12 | 6.07 | 0.004 |
Average Amount ± SD [%] | ||
---|---|---|
Dose of Radiation | HON | MAG |
0 kGy | 101.52 ± 2.32 * | 100.68 ± 1.54 * |
25 kGy | 95.99 ± 0.96 ** | 101.37 ± 0.97 ** |
100 kGy | 97.65 ± 1.44 ** | 98.40 ± 1.22 ** |
400 kGy | 95.78 ± 0.95 ** | 95.13 ± 0.97 ** |
Parameter | Value |
---|---|
Modulation frequency [kHz] | 100,000 |
Center field [mT] | 338 |
Sweep width [mT] | 15 |
Sweep time [s] | 60 |
Time constant [s] | 0.008 |
Second modulation amplitude [G] | 8 |
Radio frequency power [mW] | 0.291 |
Radio frequency [GHz] | 9.460048 |
Temperature [K] | 296.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominiak, K.; Gostyńska-Stawna, A.; Sobczak, A.; Paluszczak, J.; Woźniak-Braszak, A.; Baranowski, M.; Bilski, P.; Wicher, B.; Tykarska, E.; Jelińska, A.; et al. Formulation of Honokiol- and Magnolol-Loaded Nanoemulsions for Head and Neck Cancer Adjuvant Therapy: Evaluation of Radiation Sterilization Effects on Active Substance Properties. Int. J. Mol. Sci. 2025, 26, 8032. https://doi.org/10.3390/ijms26168032
Dominiak K, Gostyńska-Stawna A, Sobczak A, Paluszczak J, Woźniak-Braszak A, Baranowski M, Bilski P, Wicher B, Tykarska E, Jelińska A, et al. Formulation of Honokiol- and Magnolol-Loaded Nanoemulsions for Head and Neck Cancer Adjuvant Therapy: Evaluation of Radiation Sterilization Effects on Active Substance Properties. International Journal of Molecular Sciences. 2025; 26(16):8032. https://doi.org/10.3390/ijms26168032
Chicago/Turabian StyleDominiak, Katarzyna, Aleksandra Gostyńska-Stawna, Agnieszka Sobczak, Jarosław Paluszczak, Aneta Woźniak-Braszak, Mikołaj Baranowski, Paweł Bilski, Barbara Wicher, Ewa Tykarska, Anna Jelińska, and et al. 2025. "Formulation of Honokiol- and Magnolol-Loaded Nanoemulsions for Head and Neck Cancer Adjuvant Therapy: Evaluation of Radiation Sterilization Effects on Active Substance Properties" International Journal of Molecular Sciences 26, no. 16: 8032. https://doi.org/10.3390/ijms26168032
APA StyleDominiak, K., Gostyńska-Stawna, A., Sobczak, A., Paluszczak, J., Woźniak-Braszak, A., Baranowski, M., Bilski, P., Wicher, B., Tykarska, E., Jelińska, A., & Stawny, M. (2025). Formulation of Honokiol- and Magnolol-Loaded Nanoemulsions for Head and Neck Cancer Adjuvant Therapy: Evaluation of Radiation Sterilization Effects on Active Substance Properties. International Journal of Molecular Sciences, 26(16), 8032. https://doi.org/10.3390/ijms26168032