Impact of Soil Drought on Yield and Leaf Sugar Content in Wheat: Genotypic and Phenotypic Relationships Compared Using a Doubled Haploid Population
Abstract
1. Introduction
2. Results
2.1. Phenotypic Variation
2.2. Phenotypic Analysis of Individual Traits
2.2.1. Yield
2.2.2. Biomass
2.2.3. TGW
2.2.4. Soluble Sugar Content (DUBOIS)
2.2.5. Glucose
2.2.6. Fructose
2.2.7. Sucrose
2.2.8. Maltose
2.3. Total Genotype Selection Index
2.4. Phenotypic Associations Amongst Agronomic and Sugar Traits
2.5. DArTseq-Extended Genetic Map
2.6. QTL Analyses and Reliability of QTL Detection Using 90 DHLs
2.6.1. Localisation of QTLs for Agronomic Traits
2.6.2. QTLs for Yield (Yld)
2.6.3. QTLs for Biomass (Bio)
2.6.4. QTLs for Thousand Grain Weight (TGW)
2.6.5. QTLs for Flag Leaf Soluble Sugar Contents (DUBOIS)
2.6.6. QTLs for Individual Water-Soluble Carbohydrates (WSC)
2.6.7. QTLs for Flag Leaf Glucose Content
2.6.8. QTLs for Flag Leaf Fructose Content
2.6.9. QTLs for Flag Leaf Sucrose Content
2.6.10. QTLs for Flag Leaf Maltose Content
2.7. Coincident QTLs for WSC, Individual Carbohydrates, and Agronomic Traits
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Experimental Design and Plant Growth
4.3. Biochemical Measurements
4.4. Measurement of Soluble Sugar Content (Dubois) Using a Spectrophotometric Method
4.5. Measurement of Selected Water-Soluble Carbohydrates Content (WSC) Using Liquid Chromatography
4.6. Agronomic Traits
4.7. Genotypic Measurements
4.8. Statistical and QTL Analyses
4.9. QTL Frequencies for Grain Yield, TGW, and Aboveground Biomass from Other CSDH Population Trials
4.10. Candidate Gene Searches for Key QTL Regions
4.11. Impact of Population Size on QTL Detection
4.11.1. Comparison of Phenotypic and Genotypic Trait Correlations
4.11.2. Comparison of QTL Detection with Full and Reduced DHL Datasets
4.11.3. Candidate Genes Identified Using QTL Analysis with CSDH Population Trials
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiao, M.Y.; Hong, C.H.; Jiao, Y.J.; Hou, S.J.; Gao, H.B. Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants 2024, 13, 1808. [Google Scholar] [CrossRef]
- Schnyder, H. The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling—A review. New Phytol. 1993, 123, 233–245. [Google Scholar] [CrossRef]
- Rebetzke, G.J.; van Herwaarden, A.F.; Jenkins, C.; Weiss, M.; Lewis, D.; Ruuska, S.; Tabe, L.; Fettell, N.A.; Richards, R.A. Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat. Aust. J. Agric. Res. 2008, 59, 891–905. [Google Scholar] [CrossRef]
- Ruuska, S.A.; Rebetzke, G.J.; van Herwaarden, A.F.; Richards, R.A.; Fettell, N.A.; Tabe, L.; Jenkins, C.L.D. Genotypic variation in water-soluble carbohydrate accumulation in wheat. Funct. Plant Biol. 2006, 33, 799–809. [Google Scholar] [CrossRef]
- Kiniry, J.R. Nonstructural carbohydrate utilization by wheat shaded during grain growth. J. Agron. 1993, 85, 844–849. [Google Scholar] [CrossRef]
- Takahashi, T.; Chevalier, P.M.; Rupp, R.A. Storage and remobilization of soluble carbohydrates after heading in different plant parts of a winter wheat cultivar. Plant Prod. Sci. 2001, 4, 160–165. [Google Scholar] [CrossRef]
- Teulat, B.; Borries, C.; This, D. New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor. Appl. Genet. 2001, 103, 161–170. [Google Scholar] [CrossRef]
- Ehdaie, B.; Alloush, G.A.; Madore, M.A.; Waines, J.G. Genotypic variation for stem reserves and mobilization in wheat: II. Postanthesis changes in internode water-soluble carbohydrates. Crop Sci. 2006, 46, 2093–2103. [Google Scholar] [CrossRef]
- Zhang, J.J.; Xu, Y.J.; Chen, W.; Dell, B.; Vergauwen, R.; Biddulph, B.; Khan, N.; Luo, H.; Appels, R.; Van den Ende, W. A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought. New Phytol. 2015, 205, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Bartels, D.; Sunkar, R. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 2005, 24, 23–58. [Google Scholar] [CrossRef]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.H.; Zhu, J.K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45, 523–539. [Google Scholar] [CrossRef]
- Ho, S.L.; Chao, Y.C.; Tong, W.F.; Yu, S.M. Sugar coordinately and differentially regulates growth- and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiol. 2001, 125, 877–890. [Google Scholar] [CrossRef]
- Price, J.; Laxmi, A.; St Martin, S.K.; Jang, J.C. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 2004, 16, 2128–2150. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Lee, K.K.; Walsh, S.; Smith, C.; Hadingham, S.; Sorefan, K.; Cawley, G.; Bevan, M.W. Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine. Genome Res. 2006, 16, 414–427. [Google Scholar] [CrossRef] [PubMed]
- Goggin, D.E.; Setter, T.L. Fructosyltransferase activity and fructan accumulation during development in wheat exposed to terminal drought. Funct. Plant Biol. 2004, 31, 11–21. [Google Scholar] [CrossRef]
- Gaur, A.; Sharma, D.; Sheoran, S.; Chahal, S.; Chaudhary, K.; Singh, G.; Singh, G.P. Role of water soluble carbohydrates in improving drought stress tolerance in wheat: An overview. J. Cereal Res. 2021, 14, 1–16. [Google Scholar] [CrossRef]
- Reynolds, M.P.; Saint Pierre, C.; Saad, A.S.I.; Vargas, M.; Condon, A.G. Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci. 2007, 47, S172–S189. [Google Scholar] [CrossRef]
- Yang, D.L.; Jing, R.L.; Chang, X.P.; Li, W. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Tiiticum aestivum L.) stems. Genetics 2007, 176, 571–584. [Google Scholar] [CrossRef]
- Thévenot, C.; Simond-Côte, E.; Reyss, A.; Manicacci, D.; Trouverie, J.; Le Guilloux, M.; Ginhoux, V.; Sidicina, F.; Prioul, J.L. QTLs for enzyme activities and soluble carbohydrates involved in starch accumulation during grain filling in maize. J. Exp. Bot. 2005, 56, 945–958. [Google Scholar] [CrossRef]
- Bocianowski, J.; Nowosad, K.; Rejek, D. Genotype-environment interaction for grain yield in maize (Zea mays L.) using the additive main effects and multiplicative interaction (AMMI) model. J. Appl. Genet. 2024, 65, 653–664. [Google Scholar] [CrossRef]
- Bocianowski, J.; Wielkopolan, B.; Jakubowska, M. AMMI analysis of the effects of different insecticidal treatments against Agrotis spp. on the technological yield from sugar beet. Agriculture 2022, 12, 157. [Google Scholar] [CrossRef]
- Tian, T.; Liu, Y.; Zhang, P.-P.; Chen, T.; Wang, C.-X.; Cheng, H.-B.; Li, M.-F.; Yang, D.-L. Meta-analysis of QTL and prediction of candidate genes for water-soluble carbohydrate content in wheat (Triticum aestivum) stem. J. Agric. Biotechnol. 2021, 29, 836–846. [Google Scholar]
- Farokhzadeh, S.; Fakheri, B.A.; Nezhad, N.M.; Tahmasebi, S.; Mirsoleimani, A. Mapping QTLs of flag leaf morphological and physiological traits related to aluminum tolerance in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 2019, 25, 975–990. [Google Scholar] [CrossRef]
- Quarrie, S.A.; Steed, A.; Calestani, C.; Semikhodskii, A.; Lebreton, C.; Chinoy, C.; Steele, N.; Pljevljakusic, D.; Waterman, E.; Weyen, J.; et al. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor. Appl. Genet. 2005, 110, 865–880. [Google Scholar] [CrossRef]
- Czyczylo-Mysza, I.; Tyrka, M.; Marcinska, I.; Skrzypek, E.; Karbarz, M.; Dziurka, M.; Hura, T.; Dziurka, K.; Quarrie, S.A. Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol. Breed. 2013, 32, 189–210. [Google Scholar] [CrossRef]
- Razmjoo, K.; Heydarizadeh, P.; Sabzalian, M.R. Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomile. Int. J. Agric. Biol. 2008, 10, 451–454. [Google Scholar]
- Ehdaie, B.; Alloush, G.A.; Waines, J.G. Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Res. 2008, 106, 34–43. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Scott, R.K.; Sylvester-Bradley, R. The ability of wheat cultivars to withstand drought in UK conditions: Formation of grain yield. J. Agric. Sci. 2002, 138, 153–169. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Sylvester-Bradley, R.; Weightman, R.; Snape, J.W. Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crops Res. 2007, 103, 11–24. [Google Scholar] [CrossRef]
- Nicolas, M.E.; Turner, N.C. Use of chemical desiccants and senescing agents to select wheat lines maintaining stable grain-size during post-anthesis drought. Field Crops Res. 1993, 31, 155–171. [Google Scholar] [CrossRef]
- Van Herwaarden, A.; Richards, R.; Farquhar, G.; Angus, J. ‘Haying-off’, the negative grain yield response of dryland wheat to nitrogen fertiliser III. The influence of water deficit and heat shock. Aust. J. Agric. Res. 1998, 49, 1095–1110. [Google Scholar] [CrossRef]
- van Herwaarden, A.; Richards, R.; Angus, J. Water soluble carbohydrates and yield in wheat. In Proceedings of the 11th Australian Agronomy Conference, Geelong, Victoria, 2–6 February 2003; The Australian Society of Agronomy: Geelong, Victoria, 2003. [Google Scholar]
- Xue, G.P.; McIntyre, C.L.; Jenkins, C.L.D.; Glassop, D.; van Herwaarden, A.F.; Shorter, R. Molecular dissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulation in stems of wheat. Plant Physiol. 2008, 146, 441–454. [Google Scholar] [CrossRef]
- Huynh, B.L. Genetic Characterization and QTL Mapping for Grain Fructan in Wheat (Triticum aestivum L.). Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2008. [Google Scholar]
- Bennett, D.; Izanloo, A.; Reynolds, M.; Kuchel, H.; Langridge, P.; Schnurbusch, T. Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor. Appl. Genet. 2012, 125, 255–271. [Google Scholar] [CrossRef]
- Bouffier, B. Genetic and Ecophysiological Dissection of Tolerance to Drought and Heat Stress in Bread Wheat: From Environmental Characterization to QTL Detection. Ph.D. Thesis, Université Blaise Pascal, Clermont-Ferrand, France, 2014. [Google Scholar]
- Li, W.; Zhang, B.; Li, R.; Chang, X.; Jing, R. Favorable alleles for stem water-soluble carbohydrates identified by association analysis contribute to grain weight under drought stress conditions in wheat. PLoS ONE 2015, 10, e0119438. [Google Scholar] [CrossRef]
- McIntyre, C.L.; Mathews, K.L.; Rattey, A.; Chapman, S.C.; Drenth, J.; Ghaderi, M.; Reynolds, M.; Shorter, R. Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor. Appl. Genet. 2010, 120, 527–541. [Google Scholar] [CrossRef]
- Snape, J.W.; Foulkes, M.J.; Simmonds, J.; Leverington, M.; Fish, L.J.; Wang, Y.; Ciavarrella, M. Dissecting gene × environmental effects on wheat yields via QTL and physiological analysis. Euphytica 2007, 154, 401–408. [Google Scholar] [CrossRef]
- Valluru, R. Studies on Water-Soluble Carbohydrates in Wheat (Triticum aestivum L.): Regulating Traits, Model Analysis, Early Chilling Effects, and Future Perspectives. Ph.D. Thesis, University of Hohenheim, Stuttgart, Germany, 2009. [Google Scholar]
- Yang, J.; Zhang, J.; Wang, Z.; Zhu, Q.; Liu, L. Activities of fructan-and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta 2004, 220, 331–343. [Google Scholar] [CrossRef]
- Müller, T.; Lentzsch, P.; Müller, M.E.H. Carbohydrate dynamics in leaves of rapeseed (Brassica napus) under drought. J. Agron. Crop Sci. 2012, 198, 207–217. [Google Scholar] [CrossRef]
- Nguyen, G.N.; Hailstones, D.L.; Wilkes, M.; Sutton, B.G. Role of carbohydrate metabolism in drought-induced male sterility in rice anthers. J. Agron. Crop Sci. 2010, 196, 346–357. [Google Scholar] [CrossRef]
- Chaves, M.M.; Oliveira, M.M. Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. J. Exp. Bot. 2004, 55, 2365–2384. [Google Scholar] [CrossRef] [PubMed]
- Verspreet, J.; Hemdane, S.; Dornez, E.; Cuyvers, S.; Pollet, A.; Delcour, J.A.; Courtin, C.M. Analysis of storage and structural carbohydrates in developing wheat (Triticum aestivum L.) grains using quantitative analysis and microscopy. J. Agric. Food Chem. 2013, 61, 9251–9259. [Google Scholar] [CrossRef]
- Ji, X.M.; Shiran, B.; Wan, J.L.; Lewis, D.C.; Jenkins, C.L.D.; Condon, A.G.; Richards, R.A.; Dolferus, R. Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environ. 2010, 33, 926–942. [Google Scholar] [CrossRef]
- Keeling, P.L.; Wood, J.R.; Tyson, R.H.; Bridges, I.G. Starch biosynthesis in developing wheat grain: Evidence against the direct involvement of triose phosphates in the metabolic pathway. Plant Physiol. 1988, 87, 311–319. [Google Scholar] [CrossRef]
- Kim, M.-C.; Lee, K.-S.; Lee, B.-J.; Kwon, B.-G.; Ju, J.-I.; Gu, J.-H.; Oh, M.-J. Changes in the physicochemical characteristics of green wheat during maturation. J. Korean Soc. Food Sci. Nutr. 2007, 36, 1307–1313. [Google Scholar] [CrossRef]
- Gąsiorowski, H. Weglowodany w ziarnie pszenicy i przetworach pszennych. [Cz. I]. Przegląd Zbożowo-Młynarski 2004, 48, 19–20. [Google Scholar]
- Yu, J.D.; Zhang, R.; Li, X.X.; Dong, D.; Wang, S.N. Sugar metabolism and transport in response to drought–rehydration in Poa pratensis. Agronomy 2025, 15, 320. [Google Scholar] [CrossRef]
- Živanović, B.; Komić, S.M.; Tosti, T.; Vidović, M.; Prokić, L.; Jovanović, S.V. Leaf soluble sugars and free amino acids as important components of abscisic acid-mediated drought response in tomato. Plants 2020, 9, 1147. [Google Scholar] [CrossRef]
- Vergara-Diaz, O.; Vatter, T.; Vicente, R.; Obata, T.; Nieto-Taladriz, M.T.; Aparicio, N.; Kefauver, S.C.; Fernie, A.; Araus, J.L. Metabolome profiling supports the key role of the spike in wheat yield performance. Cells 2020, 9, 1025. [Google Scholar] [CrossRef]
- Ahmed, S.A.S.; Zhang, J.J.; Farhan, H.; Zhang, Y.Q.; Yu, Z.T.; Islam, S.; Chen, J.S.; Cricelli, S.; Foreman, A.; Van den Ende, W.; et al. Diurnal changes in water soluble carbohydrate components in leaves and sucrose associated TaSUT1 gene expression during grain development in wheat. Int. J. Mol. Sci. 2020, 21, 8726. [Google Scholar] [CrossRef]
- Dreccer, M.F.; van Herwaarden, A.F.; Chapman, S.C. Grain number and grain weight in wheat lines contrasting for stem water soluble carbohydrate concentration. Field Crops Res. 2009, 112, 43–54. [Google Scholar] [CrossRef]
- Ovenden, B.; Milgate, A.; Lisle, C.; Wade, L.J.; Rebetzke, G.J.; Holland, J.B. Selection for water-soluble carbohydrate accumulation and investigation of genetic × environment interactions in an elite wheat breeding population. Theor. Appl. Genet. 2017, 130, 2445–2461. [Google Scholar] [CrossRef]
- Uzík, M.; Zofajová, A. Translocation and accumulation of dry matter in winter wheat genotypes. Cereal Res. Commun. 2006, 34, 1013–1020. [Google Scholar] [CrossRef]
- Robins, J.G.; Bushman, B.S.; Feuerstein, U.; Blaser, G. Variation and correlations among european and north american orchardgrass germplasm for herbage yield and nutritive value. Agronomy 2016, 6, 61. [Google Scholar] [CrossRef]
- Habash, D.Z.; Bernard, S.; Schondelmaier, J.; Weyen, J.; Quarrie, S.A. The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor. Appl. Genet. 2007, 114, 403–419. [Google Scholar] [CrossRef]
- Dashti, H.; Yazdi-Samadi, B.; Ghannadha, M.; Naghavi, M.R.; Quarri, S. QTL analysis for drought resistance in wheat using doubled haploid lines. Int. J. Agric. Biol 2007, 9, 98–102. [Google Scholar]
- Quarrie, S.A.; Quarrie, S.P.; Radosevic, R.; Rancic, D.; Kaminska, A.; Barnes, J.D.; Leverington, M.; Ceoloni, C.; Dodig, D. Dissecting a wheat QTL for yield present in a range of environments: From the QTL to candidate genes. J. Exp. Bot. 2006, 57, 2627–2637. [Google Scholar] [CrossRef]
- Teulat, B.; Monneveux, P.; Wery, J.; Borries, C.; Souyris, I.; Charrier, A.; This, D. Relationships between relative water content and growth parameters under water stress in barley: A QTL study. New Phytol. 1997, 137, 99–107. [Google Scholar] [CrossRef]
- Sanchez, A.C.; Subudhi, P.K.; Rosenow, D.T.; Nguyen, H.T. Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol. Biol. 2002, 48, 713–726. [Google Scholar] [CrossRef]
- Bernier, J.; Atlin, G.N.; Serraj, R.; Kumar, A.; Spaner, D. Breeding upland rice for drought resistance. J. Sci. Food Agric. 2008, 88, 927–939. [Google Scholar] [CrossRef]
- Sari-Gorla, M.; Krajewski, P.; Di Fonzo, N.; Villa, M.; Frova, C. Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor. Appl. Genet. 1999, 99, 289–295. [Google Scholar] [CrossRef]
- Börner, A.; Schumann, E.; Fürste, A.; Cöster, H.; Leithold, B.; Röder, M.S.; Weber, W.E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 2002, 105, 921–936. [Google Scholar] [CrossRef]
- Kumar, N.; Kulwal, P.L.; Gaur, A.; Tyagi, A.K.; Khurana, J.P.; Khurana, P.; Balyan, H.S.; Gupta, P.K. QTL analysis for grain weight in common wheat. Euphytica 2006, 151, 135–144. [Google Scholar] [CrossRef]
- Maccaferri, M.; Sanguineti, M.C.; Demontis, A.; El-Ahmed, A.; del Moral, L.G.; Maalouf, F.; Nachit, M.; Nserallah, N.; Ouabbou, H.; Rhouma, S.; et al. Association mapping in durum wheat grown across a broad range of water regimes. J. Exp. Bot. 2011, 62, 409–438. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.; Yang, R.C.; Navabi, A.; Iqbal, M.; Kamran, A.; Lara, E.P.; Randhawa, H.; Pozniak, C.; Spaner, D. Mapping QTL, selection differentials, and the effect of Rht-B1 under organic and conventionally managed systems in the Attila × CDC go spring wheat mapping population. Crop Sci. 2015, 55, 1129–1142. [Google Scholar] [CrossRef]
- Wu, J.W.; Wang, X.Y.; Yan, R.Y.; Zheng, G.M.; Zhang, L.; Wang, Y.; Zhao, Y.J.; Wang, B.H.; Pu, M.L.; Zhang, X.S.; et al. A MYB-related transcription factor ZmMYBR29 is involved in grain filling. BMC Plant Biol. 2024, 24, 14. [Google Scholar] [CrossRef]
- Zhao, D.H.; Yang, L.; Liu, D.; Zeng, J.Q.; Cao, S.H.; Xia, X.C.; Yan, J.; Song, X.Y.; He, Z.H.; Zhang, Y. Fine mapping and validation of a major QTL for grain weight on chromosome 5B in bread wheat. Theor. Appl. Genet. 2021, 134, 3731–3741. [Google Scholar] [CrossRef]
- Cerit, M.; Wang, Z.; Dogan, M.; Yu, S.H.; Valenzuela-Antelo, J.L.; Chu, C.G.; Wang, S.C.; Xue, Q.W.; Ibrahim, A.M.H.; Rudd, J.C.; et al. Mapping QTL for yield and its component traits using wheat (Triticum aestivum L.) RIL mapping population from TAM 113 × Gallagher. Agronomy 2023, 13, 2402. [Google Scholar] [CrossRef]
- Ali, U.; Lu, S.P.; Fadlalla, T.; Iqbal, S.; Yue, H.; Yang, B.; Hong, Y.Y.; Wang, X.M.; Guo, L. The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Prog. Lipid Res. 2022, 86, 101158. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.M.; Liu, H.W.; Li, Y.H.; Zhang, Z.H.; Wang, T.; Liang, C.; Wang, C.L.; Li, C.X.; Liao, W.B. SlNAP1 promotes tomato fruit ripening by regulating carbohydrate metabolism. Plant Physiol. Biochem. 2024, 215, 8. [Google Scholar] [CrossRef]
- Xue, G.P.; Way, H.M.; Richardson, T.; Drenth, J.; Joyce, P.A.; McIntyre, C.L. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol. Plant. 2011, 4, 697–712. [Google Scholar] [CrossRef]
- Tura, H.; Edwards, J.; Gahlaut, V.; Garcia, M.; Sznajder, B.; Baumann, U.; Shahinnia, F.; Reynolds, M.; Langridge, P.; Balyan, H.S.; et al. QTL analysis and fine mapping of a QTL for yield-related traits in wheat grown in dry and hot environments. Theor. Appl. Genet. 2020, 133, 239–257. [Google Scholar] [CrossRef]
- Van den Ende, W.; Van Laere, A. Fructan metabolism in monocots: A perfect model system for the study of non-structural carbohydrate partitioning. Plant Physiol. Biochem. 1996, 34, 567–577. [Google Scholar]
- Lasseur, B.; Lothier, J.; Djoumad, A.; De Coninck, B.; Smeekens, S.; Van Laere, A.; Morvan-Bertrand, A.; Van den Ende, W.; Prud’homme, M.-P. Molecular and functional characterization of a cDNA encoding fructan: Fructan 6G-fructosyltransferase (6G-FFT)/fructan: Fructan 1-fructosyltransferase (1-FFT) from perennial ryegrass (Lolium perenne L.). J. Exp. Bot. 2006, 57, 2719–2734. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.L.; Gao, J.G.; Qin, Z.L.; Sun, H.; Wang, H.X.; Yuan, S.H.; Zhang, F.T.; Yang, W.B. Genome-wide identification and expression analysis of sucrose transporter gene family in wheat lines under heat stress. Agronomy 2024, 14, 1549. [Google Scholar] [CrossRef]
- Jędzura, S.; Bocianowski, J.; Matysik, P. The AMMI model application to analyze the genotype-environmental interaction of spring wheat grain yield for the breeding program purposes. Cereal Res. Commun. 2023, 51, 197–205. [Google Scholar] [CrossRef]
- Pluta, M.; Kurasiak-Popowska, D.; Nawracala, J.; Bocianowski, J.; Mikolajczyk, S. Estimation of stem-solidness and yield components in selected spring wheat genotypes. Agronomy 2021, 11, 1640. [Google Scholar] [CrossRef]
- Bayisa, T.; Abera, M.; Letta, T.; Mulugeta, B. Stability analysis of bread wheat genotypes using the AMMI stability model at Southeast Oromia. Food Sci. Nutr. Technol. 2020, 7, 000277. [Google Scholar]
- Bocianowski, J.; Radkowski, A.; Nowosad, K.; Radkowska, I.; Zielinski, A. The impact of genotype-by-environment interaction on the dry matter yield and chemical composition in timothy (Phleum pratense L.) examined by using the additive main effects and multiplicative interaction model. Grass Forage Sci. 2021, 76, 463–484. [Google Scholar] [CrossRef]
- Małek, K.; Czyczyło-Mysza, I.; Marcińska, I.; Dziurka, M. Mapowanie QTL plonu i zawartości sacharozy w stresie suszy u pszenicy. Episteme 2012, 14, 357–364. [Google Scholar]
- Dubois, M.; Gilles, K.; Hamilton, J.K.; Rebers, P.A.; Smith, F. A colorimetric method for the determination of sugars. Nature 1951, 168, 167. [Google Scholar] [CrossRef]
- Janeczko, A.; Biesaga-Kościelniak, J.; Oklest’ková, J.; Filek, M.; Dziurka, M.; Szarek-Łukaszewska, G.; Kościelniak, J. Role of 24-epibrassinolide in wheat production: Physiological effects and uptake. J. Agron. Crop Sci. 2010, 196, 311–321. [Google Scholar] [CrossRef]
- Milligan, B. Plant DNA isolation. In Molecular Genetic Analysis of Populations: A Practical Approach; Hoelzel, A., Ed.; IRL Press: Oxford, UK, 1992; pp. 59–88. [Google Scholar]
- Van Ooijen, J.W. JoinMap, version 4. Software for calculation of genetic linkage maps in experimental populations. Kyazma B.V.: Wageningen, The Netherlands, 2006.
- Gauch, H.G.; Zobel, R.W. Imputing missing yield trial data. Theor. Appl. Genet. 1990, 79, 753–761. [Google Scholar] [CrossRef]
- Bocianowski, J.; Prazak, R. Genotype by year interaction for selected quantitative traits in hybrid lines of Triticum aestivum L. with Aegilops kotschyi Boiss. and Ae. variabilis Eig. using the additive main effects and multiplicative interaction model. Euphytica 2022, 218, 11. [Google Scholar] [CrossRef]
- Purchase, J.; Hatting, H.; Van Deventer, C. Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. S. Afr. J. Plant Soil 2000, 17, 101–107. [Google Scholar] [CrossRef]
- Bocianowski, J.; Ksiezak, J.; Nowosad, K. Genotype by environment interaction for seeds yield in pea (Pisum sativum L.) using additive main effects and multiplicative interaction model. Euphytica 2019, 215, 191. [Google Scholar] [CrossRef]
- Bocianowski, J.; Niemann, J.; Nowosad, K. Genotype-by-environment interaction for seed quality traits in interspecific cross-derived Brassica lines using additive main effects and multiplicative interaction model. Euphytica 2019, 215, 7. [Google Scholar] [CrossRef]
- Farshadfar, E.; Sutka, J. Locating QTLs controlling adaptation in wheat using AMMI model. Cereal Res. Commun. 2003, 31, 249–256. [Google Scholar] [CrossRef]
- VSN International Genstat for Windows 23nd Edition; VSN International: Hemel Hempstead, UK, 2023.
- Wang, S.; Basten, C.J.; Zeng, Z.-B. Windows QTL Cartographer, version 2.5; Department of Statistics, North Carolina State University: Raleigh, NC, USA, 2011.
- Mao, H.; Li, S.; Chen, B.; Jian, C.; Mei, F.; Zhang, Y.; Li, F.; Chen, N.; Li, T.; Du, L.; et al. Varia-tion in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Mol. Plant 2022, 15, 276–292. [Google Scholar] [CrossRef] [PubMed]
- Beavis, W.D. QTL analyses: Power, precision, and accuracy. In Molecular Dissection of Complex Traits; Paterson, A.H., Ed.; CRC Press: New York, NY, USA, 1998; pp. 145–162. [Google Scholar]
- Czyczylo-Mysza, I.; Marcinska, I.; Skrzypek, E.; Bocianowski, J.; Dziurka, K.; Rančić, D.; Radošević, R.; Pekić-Quarrie, S.; Dodig, D.; Quarrie, S.A. Genetic analysis of water loss of excised leaves associated with drought tolerance in wheat. PeerJ 2018, 6, e5063. [Google Scholar] [CrossRef] [PubMed]
- Semikhodskii, A.G. Mapping Quantitative Traits for Salinity Responses in Wheat (Triticum aestivum L.). Ph.D. Thesis, University of East Anglia, Norwich, UK, 1997. [Google Scholar]
- Quarrie, S.; Kaminska, A.; Dodmani, A.; Gonzalez, I.; Bilsborrow, P.; Barnes, J.; Gillespie, C. QTLs governing ozone impacts on wheat yield. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 146, S261. [Google Scholar] [CrossRef]
- Czyczyło-Mysza, I.M.; Cyganek, K.; Dziurka, K.; Quarrie, S.; Skrzypek, E.; Marcińska, I.; Myśków, B.; Dziurka, M.; Warchoł, M.; Kapłoniak, K.; et al. Genetic parameters and QTLs for total phenolic content and yield of wheat mapping population of CSDH lines under drought stress. Int. J. Mol. Sci. 2019, 20, 6064. [Google Scholar] [CrossRef]
- Cyganek, K. Identification of Quantitative Trait Loci (QTL) Determining the Yield and Sugar Content of Wheat Under Drought Conditions. Ph.D. Thesis, Instytut Fizjologii Roślin Im. Franciszka Górskiego Polskiej Akademii Nauk, Krakow, Poland, 2018. (In Polish). [Google Scholar]
- Baga, M.; Chodaparambil, S.V.; Limin, A.E.; Pecar, M.; Fowler, D.B.; Chibbar, R.N. Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct. Integr. Genom. 2007, 7, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Beales, J.; Turner, A.; Griffiths, S.; Snape, J.W.; Laurie, D.A. A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 2007, 115, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Chartrain, L.; Brading, P.A.; Brown, J.K.M. Presence of the Stb6 gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat-breeding programmes worldwide. Plant Pathol. 2005, 54, 134–143. [Google Scholar] [CrossRef]
- Fan, H.; Xu, J.; Ao, D.; Jia, T.; Shi, Y.; Li, N.; Jing, R.; Sun, D. QTL mapping of trichome traits and analysis of candidate genes in leaves of wheat (Triticum aestivum L.). Genes 2024, 15, 42. [Google Scholar] [CrossRef]
- Khlestkina, E.K.; Kumar, U.; Röder, M.S. Ent-kaurenoic acid oxidase genes in wheat. Mol. Breed. 2010, 25, 251–258. [Google Scholar] [CrossRef]
- Krattinger, S.G.; Lagudah, E.S.; Spielmeyer, W.; Singh, R.; Huerta-Espino, J.; McFadden, H.; Bossolini, E.; Selter, L.L.; Keller, B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 2009, 323, 1360–1363. [Google Scholar] [CrossRef]
- Mehla, S.; Kumar, U.; Kapoor, P.; Singh, Y.; Sihag, P.; Sagwal, V.; Balyan, P.; Kumar, A.; Ahalawat, N.; Lakra, N.; et al. Structural and functional insights into the candidate genes associated with different developmental stages of flag leaf in bread wheat (Triticum aestivum L.). Front. Genet. 2022, 13, 933560. [Google Scholar] [CrossRef]
- Pearce, P.; Zhu, J.; Boldizsár, A.; Vágújfalvi, A.; Burke, A.; Garland-Campbell, K.; Galiba, G.; Dubcovsky, J. Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat. Theor. Appl. Genet. 2013, 126, 2683–2697. [Google Scholar] [CrossRef]
- Peng, J.; Richards, D.E.; Hartley, N.M.; Murphy, G.P.; Devos, K.M.; Flintham, J.E.; Beales, J.; Fish, L.J.; Worland, A.J.; Pelica, F.; et al. ‘Green Revolution’ genes encode mutant gibberellin response modulators. Nature 1999, 400, 256–261. [Google Scholar] [CrossRef]
- Phan, H.T.T.; Furuki, E.; Hunziker, L.; Rybak, K.; Tan, K.-C. GWAS analysis reveals distinct pathogenicity profiles of Australian Parastagonospora nodorum isolates and identification of marker-trait-associations to septoria nodorum blotch. Nat. Sci. Rep. 2021, 11, 10085. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.L.; Huttly, A.K.; Alarcón-Reverte, R.; Clark, S.J.; Jaworek, P.; Tarkowská, D.; Sokolowska, P.; Steele, D.; Riche, A.; Hawkesford, M.J.; et al. GIBBERELLIN 3-OXIDASE genes regulate height and grain size in bread wheat. J. Exp. Bot. 2025. [Google Scholar] [CrossRef] [PubMed]
- Simons, K.J.; Fellers, J.P.; Trick, H.N.; Zhang, Z.; Tai, Y.-S.; Gill, B.S.; Faris, J.D. Molecular characterization of the major wheat domestication gene Q. Genetics 2006, 172, 547–555. [Google Scholar] [CrossRef]
- Wang, W.; Simmonds, J.; Pan, Q.; Davidson, D.; He, F.; Battal, A.; Akhunova, A.; Trick, H.N.; Uauy, C.; Akhunov, E. Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theor. Appl. Genet. 2018, 131, 2463–2475. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Deng, Z.Y.; Kong, X.C.; Wang, F.; Guan, J.T.; Cui, D.; Sun, G.; Liao, R.; Fu, M.; Che, Y.; et al. InDels identification and association analysis with spike and awn length in Chinese wheat mini-core collection. Int. J. Mol. Sci. 2022, 23, 5587. [Google Scholar] [CrossRef]
- Xie, Q.; Li, N.; Yang, Y.; Lv, Y.; Yao, H.; Wei, R.; Sparkes, D.L.; Ma, Z. Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology. Planta 2018, 247, 1089–1098. [Google Scholar] [CrossRef]
- Xu, D.; Jia, C.; Lyu, X.; Yang, T.; Qin, H.; Wang, Y.; Qianlin Hao, Q.; Liu, W.; Dai, X.; Zeng, J.; et al. In silico curation of QTL-rich clusters and candidate gene identification for plant height of bread wheat. Crop J. 2023, 11, 1480–1490. [Google Scholar] [CrossRef]
- Yan, L.; Loukoianov, A.; Tranquilli, G.; Helguera, M.; Fahima, T.; Dubcovsky, J. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 2003, 100, 6263–6268. [Google Scholar] [CrossRef]
- Yan, L.; Fu, D.; Li, C.; Blechl, A.; Tranquilli, G.; Bonafede, M.; Sanchez, A.; Valarik, M.; Yasuda, S.; Dubcovsky, J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 2006, 103, 19581–19586. [Google Scholar] [CrossRef]
- Yao, F.Q.; Li, X.H.; Wang, H.; Song, Y.N.; Li, Z.Q.; Li, X.G.; Gao, X.-Q.; Zhang, X.S.; Bie, X.M. Down-expression of TaPIN1s Increases the tiller number and grain yield in wheat. BMC Plant Biol. 2021, 21, 443. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhou, Y.; Zhang, Y.; Hu, W.; Wu, Q.; Chen, Y.; Wang, X.; Guo, G.; Liu, Z.; Cao, T.; et al. Cloning, characterization of TaGS3 and identification of allelic variation associated with kernel traits in wheat (Triticum aestivum L.). BMC Genet. 2019, 20, 98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Friesen, T.L.; Xu, S.S.; Shi, G.; Liu, Z.; Rasmussen, J.B.; Faris, J.D. Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum. Plant J. 2011, 65, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Xiong, H.; Fu, M.; Guo, H.; Zhao, L.; Xie, Y.; Gu, J.; Zhao, S.; Ding, Y.; Li, Y.; et al. Genetic mapping and identification of Rht8-B1 that regulates plant height in wheat. BMC Plant Biol. 2023, 23, 33. [Google Scholar] [CrossRef] [PubMed]
Trait | Yield | Biomass | TGW | DUBOIS | Glucose | Fructose | Sucrose | Maltose | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source of Variation | d.f. | Mean Square | ve | Mean Square | ve | Mean Square | ve | Mean Square | ve | Mean Square | ve | Mean Square | ve | Mean Square | ve | Mean Square | ve | |
Treatments | 551 | 3.11 *** | 91.30 | 9.96 *** | 93.62 | 112.8 *** | 75.27 | 2443 *** | 85.02 | 231.3 *** | 91.51 | 273.7 *** | 91.46 | 2200 *** | 93.07 | 220 *** | 91.16 | |
Genotypes, G | 91 | 1.16 *** | 5.63 | 6.11 *** | 9.49 | 168.2 *** | 18.54 | 2217 *** | 12.74 | 297.6 *** | 19.45 | 384 *** | 21.19 | 1046 *** | 7.31 | 205 *** | 14.00 | |
Environments, E | 5 | 275.14 *** | 73.23 | 871.8 *** | 74.40 | 5134 *** | 31.09 | 135,620 *** | 42.84 | 9558.4 *** | 34.32 | 9279 *** | 28.13 | 172,584 *** | 66.25 | 10,748 *** | 40.37 | |
Block | 12 | 0.24 | 0.15 | 0.98 *** | 0.20 | 45 ** | 0.65 | 672 *** | 0.51 | 23.5 ** | 0.20 | 16.2 | 0.12 | 390 *** | 0.36 | 62 *** | 0.56 | |
GE Interactions | 455 | 0.51 *** | 12.44 | 1.25 *** | 9.75 | 46.5 *** | 25.64 | 1024 *** | 29.44 | 115.5 *** | 37.75 | 152.7 *** | 42.14 | 558 *** | 19.51 | 108 *** | 36.80 | |
Interaction | IPCA 1 | 95 | 0.92 *** | 37.40 | 1.95 *** | 32.40 | 71 *** | 31.84 | 2129 *** | 43.39 | 251.9 *** | 45.51 | 393 *** | 53.72 | 1370 *** | 51.22 | 246 *** | 47.73 |
IPCA 2 | 93 | 0.67 *** | 26.79 | 1.62 *** | 26.27 | 61.2 *** | 26.87 | 1034 *** | 20.62 | 142.2 *** | 25.15 | 165.1 *** | 22.10 | 666 *** | 24.38 | 130 *** | 24.60 | |
IPCA 3 | 91 | 0.5 *** | 19.55 | 1.36 *** | 21.72 | 48.6 *** | 20.90 | 766 *** | 14.95 | 96.5 *** | 16.70 | 106.1 *** | 13.89 | 288 *** | 10.33 | 68 *** | 12.71 | |
Residuals | 176 | 0.22 *** | 16.26 | 0.63 *** | 19.44 | 24.5 ** | 20.39 | 557 *** | 21.03 | 37.7 *** | 12.64 | 40.6 *** | 10.28 | 203 *** | 14.08 | 42 *** | 14.96 | |
Error | 1091 | 0.15 | 0.33 | 18.2 | 210 | 10.6 | 12.7 | 78 | 10 |
Traits | Treatments | Parents (Mean ± SD) | DH Lines | ||||||
---|---|---|---|---|---|---|---|---|---|
CS | SQ1 | Mean | Min. | Max. | Skew. | Kurt. | |||
Yield [g] | C | 2.198 ± 1.15 | 2.343 ± 0.62 | 2.457 | 0.396 | 4.829 | 0.1767 | −0.8287 | |
D | 0.868 ± 0.74 | 0.879 ± 0.63 | 0.994 | 0.023 | 4.021 | 1.0566 | 1.6539 | ||
Biomass [g] | C | 4.624 ± 2.15 | 4.098 ± 1.07 | 4.774 | 1.375 | 9.231 | 0.0522 | −0.877 | |
D | 2.529 ± 1.52 | 2.097 ± 0.82 | 2.321 | 0.181 | 7.692 | 0.9359 | 1.431 | ||
TGW [g] | C | 25.92 ± 3.28 | 36.74 ± 6.17 | 30.97 | 11.31 | 84.00 | 0.6683 | 6.746 | |
D | 19.65 ± 4.52 | 24.91 ± 6.82 | 24.75 | 10.82 | 47.00 | 0.3946 | −0.211 | ||
Content [μg/mg dry mass] | Dubois | C | 70.71 ± 33.6 | 76.42 ± 28.75 | 69.57 | 17.62 | 166.1 | 0.2663 | −0.501 |
D | 78.38 ± 47.72 | 59.21 ± 40.43 | 66.98 | 14.24 | 201.0 | 0.9965 | 0.6114 | ||
Glucose | C | 13.46 ± 9.81 | 12.75 ± 6.72 | 13.59 | 1.876 | 41.73 | 0.6982 | 0.267 | |
D | 11.02 ± 3.33 | 11.01 ± 3.97 | 17.80 | 2.062 | 58.50 | 1.0656 | 0.895 | ||
Fructose | C | 13.42 ± 10.17 | 12.78 ± 8.09 | 12.29 | 1.099 | 44.97 | 0.9562 | 1.513 | |
D | 12.25 ± 4.03 | 11.83 ± 4.03 | 18.81 | 1.985 | 92.00 | 1.6023 | 3.872 | ||
Sucrose | C | 72.69 ± 34.67 | 64.18 ± 26.45 | 55.56 | 10.57 | 123.5 | 0.1962 | −0.548 | |
D | 62.29 ± 35.73 | 34.16 ± 33.65 | 44.22 | 5.19 | 174.7 | 0.9864 | 0.654 | ||
Maltose | C | 14.46 ± 9.84 | 15.27 ± 6.37 | 14.25 | 0.324 | 41.52 | 0.3251 | −0.5207 | |
D | 15.58 ± 3.94 | 15.27 ± 6.4 | 15.08 | 0.251 | 50.16 | 0.5101 | 0.3808 |
Trait | Yield | Biomass | TGW | DUBOIS | Glucose | Fructose | Sucrose | Maltose |
---|---|---|---|---|---|---|---|---|
Yield | 1 | 0.824 *** | 0.233 * | 0.195 | 0.167 | 0.256 * | 0.122 | 0.146 |
Biomass | 0.857 *** | 1 | 0.203 | 0.178 | 0.253 * | 0.349 *** | 0.019 | 0.127 |
TGW | 0.018 | 0.032 | 1 | 0.318 ** | 0.382 *** | 0.382 *** | 0.017 | 0.226 * |
DUBOIS | 0.187 | 0.284 ** | 0.104 | 1 | 0.471 *** | 0.499 *** | 0.669 *** | 0.456 *** |
glucose | 0.432 *** | 0.493 *** | 0.111 | 0.633 *** | 1 | 0.948 *** | 0.041 | 0.290 ** |
fructose | 0.374 *** | 0.455 *** | 0.153 | 0.638 *** | 0.962 *** | 1 | 0.123 | 0.370 *** |
sucrose | −0.118 | 0.007 | 0.185 | 0.596 *** | 0.02 | 0.069 | 1 | 0.252 * |
maltose | 0.164 | 0.242 * | −0.04 | 0.230 * | 0.248 * | 0.249 * | 0.097 | 1 |
Traits | Treatment/Year | Chrom Group | Genome | QTL | Marker | Field QTL Peak No. ** | Pot QTL Peak No. | QTL Position (cM) * | LOD Max. | R2 (%) | Additive |
---|---|---|---|---|---|---|---|---|---|---|---|
YIELD | C/2010 | 19 | 7A | QYld(C10).csdh-7A | barc108LjK | 0 | −2 | 151 | 4.00 | 14.50 | −0.32 |
C/2012 | 3 | 1D | QYld(C12).csdh-1D.1 | 3952240 | 7 | 3 | 61 | 4.01 | 12.55 | 0.24 | |
3 | 1D | QYld(C12).csdh-1D.2 | 978479 | 3 | 1 | 68 | 4.16 | 14.07 | 0.26 | ||
15 | 5D | QYld(C12).csdh-5D | cfd7 | 6 | 2 | 107 | 4.39 | 14.03 | 0.25 | ||
C/2013 | 14 | 5B | QYld(C13).csdh-5B.1 | psp3037 | −2 | −1 | 75 | 5.36 | 17.94 | −0.21 | |
14 | 5B | QYld(C13).csdh-5B.2 | 1091024 | 0 | 1 | 98 | 3.22 | 10.83 | 0.17 | ||
19 | 7A | QYld(C13).csdh-7A.1 | gwm635b | 3 | 1 | 40 | 3.13 | 10.43 | 0.13 | ||
19 | 7A | QYld(C13).csdh-7A.2 | 2260931 | 1 | 2 | 47 | 3.84 | 12.57 | 0.15 | ||
19 | 7A | QYld(C13).csdh-7A.3 | 5050390 | −5 | −3 | 106 | 3.19 | 10.26 | −0.13 | ||
D/2012 | 11 | 4B | QYld(D12).csdh-4B | Rht-B1 | 4 | 10 | 56 | 3.17 | 9.25 | 0.17 | |
14 | 5B | QYld(D12).csdh-5B | wPt-9814 | −1 | −1 | 47 | 4.19 | 12.24 | −0.20 | ||
15 | 5D | QYld(D12).csdh-5D | cfd3 | −1 | −1 | 112 | 3.24 | 9.23 | −0.18 | ||
D/2013 | 4 | 2A | QYld(D13).csdh-2A | wmc177 | −3 | −5 | 62 | 3.24 | 10.20 | −0.11 | |
BIOMASS | C/2010 | 19 | 7A | QBio(C10).csdh-7A | 2255021 | 0 | −3 | 129 | 3.47 | 11.37 | −0.50 |
C/2013 | 5 | 2B | QBio(C13).csdh-2B | 5411238 | −2 | −2 | 64 | 4.59 | 14.42 | −0.30 | |
13 | 5A | QBio(C13).csdh-5A.1 | 995510 | 0 | 1 | 109 | 3.52 | 10.00 | 0.25 | ||
13 | 5A | QBio(C13).csdh-5A.2 | 2334260 | 1 | 1 | 119 | 4.29 | 11.80 | 0.28 | ||
14 | 5B | QBio(C13).csdh-5B | 1028405 | 0 | −2 | 45 | 4.94 | 13.80 | −0.30 | ||
21 | 7D | QBio(C13).csdh-7D | barc154 | 0 | −2 | 57 | 6.07 | 17.70 | −0.33 | ||
D/2010 | 10 | 4A | QBio(D10).csdh-4A | dupw004a | −1 | −1 | 60 | 4.20 | 14.49 | −0.37 | |
16 | 6A | QBio(D10).csdh-6A | 5411292 | −1 | −1 | 39 | 3.30 | 11.37 | −0.32 | ||
D/2013 | 1 | 1A | QBio(D13).csdh-1A | 5323867 | 0 | 1 | 62 | 3.55 | 8.74 | 0.17 | |
11 | 4B | QBio(D13).csdh-4B.1 | wmc47 | 0 | 1 | 101 | 4.05 | 13.72 | 0.35 | ||
11 | 4B | QBio(D13).csdh-4B.2 | 1020423 | 0 | −1 | 120 | 3.74 | 12.95 | −0.27 | ||
15 | 5D | QBio(D13).csdh-5D.1 | 1091493 | 0 | 1 | 207 | 4.47 | 16.46 | 0.33 | ||
15 | 5D | QBio(D13).csdh-5D.2 | rPt-3825 | −1 | −1 | 220 | 6.56 | 23.21 | −0.46 | ||
TGW | C/2010 | 12 | 4D | QTGW(C10).csdh-4D.1 | 1089425 | 0 | 1 | 35 | 4.58 | 14.81 | 2.16 |
12 | 4D | QTGW(C10).csdh-4D.2 | 5328849 | 1 | 1 | 41 | 3.80 | 12.65 | 1.94 | ||
14 | 5B | QTGW(C10).csdh-5B.1 | 3950923 | −1 | −1 | 81 | 4.23 | 14.32 | −2.06 | ||
14 | 5B | QTGW(C10).csdh-5B.2 | 4988916 | −2 | −3 | 88 | 5.12 | 16.86 | −2.22 | ||
C/2013 | 4 | 2A | QTGW(C13).csdh-2A.1 | psr332 | 0 | 1 | 60 | 4.40 | 15.56 | 3.19 | |
4 | 2A | QTGW(C13).csdh-2A.2 | 991804 | 0 | −2 | 73 | 3.26 | 10.21 | −2.61 | ||
7 | 3A | QTGW(C13).csdh-3A | 4909617 | −1 | −1 | 88 | 4.00 | 12.68 | −1.93 | ||
16 | 6A | QTGW(C13).csdh-6A | 1006957 | 0 | −3 | 62 | 4.20 | 13.53 | −2.04 | ||
D/2010 | 5 | 2B | QTGW(D10).csdh-2B | m86p65.2_2B | −1 | −1 | 130 | 4.30 | 14.10 | −3.32 | |
14 | 5B | QTGW(D10).csdh-5B | 1144428 | −2 | −1 | 87 | 4.20 | 12.87 | −1.97 | ||
16 | 6A | QTGW(D10).csdh-6A | 3533299 | 0 | −2 | 67 | 3.90 | 11.89 | −1.90 | ||
D/2012 | 18 | 6D | QTGW(D12).csdh-6D | 1108725 | 0 | −2 | 165 | 4.40 | 15.53 | −2.95 | |
D/2013 | 19 | 7A | QTGW(D13).csdh-7A.1 | 4010137 | 0 | 1 | 26 | 5.94 | 21.98 | 5.11 | |
19 | 7A | QTGW(D13).csdh-7A.2 | 1097869 | −1 | −1 | 43 | 7.77 | 31.26 | −5.80 | ||
DUBOIS | C/2012 | 13 | 5A | QDUB(C10).csdh-5A | 979392 | n/a | n/a | 39 | 3.67 | 11.68 | 6.17 |
17 | 6B | QDUB(C10).csdh-6B | wmc397 | n/a | n/a | 71 | 4.30 | 13.31 | −6.37 | ||
C/2013 | 19 | 7A | QDUB(C13).csdh-7A.1 | 3935390 | n/a | n/a | 64 | 3.56 | 11.97 | −8.63 | |
19 | 7A | QDUB(C13).csdh-7A.2 | 1128327 | n/a | n/a | 75 | 7.08 | 24.44 | 12.79 | ||
20 | 7B | QDUB(C13).csdh-7B | wPt-4309 | n/a | n/a | 0 | 4.13 | 12.89 | −5.42 | ||
D/2010 | 3 | 1D | QDUB(D10).csdh-1D | wPt-729826 | n/a | n/a | 121 | 3.78 | 8.37 | −6.72 | |
7 | 3A | QDUB(D10).csdh-3A | 995376 | n/a | n/a | 107 | 5.24 | 14.62 | 8.75 | ||
15 | 5D | QDUB(D10).csdh-5D | 2264251 | n/a | n/a | 167 | 8.86 | 26.30 | 11.58 | ||
D/2012 | 5 | 2B | QDUB(D10).csdh-2B | 3956411 | n/a | n/a | 0.00 | 5.01 | 18.76 | −7.06 | |
GLUCOSE | C/2012 | 17 | 6B | QGLU(D12).csdh-6B | wmc397 | n/a | n/a | 71 | 5.14 | 15.19 | −1.97 |
C/2013 | 2 | 1B | QGLU(C13).csdh-1B | 7491713 | n/a | n/a | 3 | 2.78 | 10.32 | 1.77 | |
D/2010 | 11 | 4B | QGLU(D10).csdh-4B | Rht-B1 | n/a | n/a | 51 | 4.99 | 17.42 | 3.59 | |
D/2012 | 6 | 2D | QGLU(D12).csdh-2D | 978402 | n/a | n/a | 92 | 5.13 | 16.55 | 1.88 | |
D/2013 | 4 | 2A | QGLU(D13).csdh-2A | GS2_463fxrt | n/a | n/a | 145 | 3.81 | 10.75 | −3.60 | |
14 | 5B | QGLU(D13).csdh-5B.1 | 3950923 | n/a | n/a | 81 | 5.52 | 16.55 | −4.31 | ||
14 | 5B | QGLU(D13).csdh-5B.2 | 1125268 | n/a | n/a | 90 | 4.94 | 15.03 | −4.11 | ||
21 | 7D | QGLU(D13).csdh-7D | 3534296 | n/a | n/a | 65 | 3.49 | 10.29 | −3.32 | ||
FRUCTOSE | C/2010 | 5 | 2B | QFRU(C10).csdh-2B | gwm429/3028596 | n/a | n/a | 80 | 4.96 | 15.80 | 2.56 |
17 | 6B | QFRU(C12).csdh-6B | wPt-4164/4407762 | n/a | n/a | 135 | 3.79 | 11.09 | −2.13 | ||
C/2012 | 17 | 6B | QFRU(C12).csdh-6B.1 | wmc397 | n/a | n/a | 74 | 4.81 | 14.29 | −1.55 | |
17 | 6B | QFRU(C12).csdh-6B.2 | 3064436 | n/a | n/a | 83 | 3.54 | 10.72 | −1.37 | ||
C/2013 | 2 | 1B | QFRU(C13).csdh-1B | 7491713 | n/a | n/a | 3 | 3.51 | 12.44 | 2.71 | |
21 | 7D | QFRU(C13).csdh-7D | wPt-0789/1276810 | n/a | n/a | 71 | 3.19 | 11.62 | −2.54 | ||
D/2010 | 11 | 4B | QFRU(D10).csdh-4B | Rht-B1 | n/a | n/a | 55 | 3.43 | 10.52 | 3.04 | |
17 | 6B | QFRU(D10).csdh-6B | wPt-4910887 | n/a | n/a | 78 | 4.37 | 13.02 | −3.39 | ||
D/2012 | 6 | 2D | QFRU(D12).csdh-2D | 978402 | n/a | n/a | 92 | 5.27 | 16.66 | 1.60 | |
17 | 6B | QFRU(D12).csdh-6B | 1250557 | n/a | n/a | 66 | 4.77 | 13.64 | −1.45 | ||
D/2013 | 10 | 4A | QFRU(D13).csdh-4A | dupw004a | n/a | n/a | 60 | 3.65 | 11.40 | −4.78 | |
14 | 5B | QFRU(D13).csdh-5B.1 | psp3037 | n/a | n/a | 75 | 4.59 | 16.11 | −5.87 | ||
14 | 5B | QFRU(D13).csdh-5B.2 | 3950923 | n/a | n/a | 81 | 6.24 | 21.04 | −6.50 | ||
14 | 5B | QFRU(D13).csdh-5B.3 | 1125268 | n/a | n/a | 90 | 4.40 | 15.55 | −5.48 | ||
21 | 7D | QFRU(D13).csdh-7D.1 | 2249010 | n/a | n/a | 52 | 4.17 | 14.00 | −5.16 | ||
21 | 7D | QFRU(D13).csdh-7D.2 | m71p77.7_7D/1079529 | n/a | n/a | 176 | 3.61 | 11.09 | 5.84 | ||
SUCROSE | C/2010 | 5 | 2B | QSUC(C10).csdh-2B | 5411238 | n/a | n/a | 76 | 4.67 | 15.87 | 2.38 |
13 | 5A | QSUC(C10).csdh-5A.1 | m43p78.9a_5A | n/a | n/a | 113 | 6.74 | 20.82 | 2.77 | ||
13 | 5A | QSUC(C10).csdh-5A.2 | 1205781 | n/a | n/a | 123 | 4.76 | 15.41 | 2.42 | ||
17 | 6B | QSUC(C10).csdh-6B | wPt-4164/4407762 | n/a | n/a | 134 | 3.93 | 12.10 | −2.05 | ||
C/2012 | 7 | 3A | QSUC(C12).csdh-3A | 1255724 | n/a | n/a | 63 | 7.52 | 26.98 | −5.90 | |
D/2010 | 5 | 2B | QSUC(D10).csdh-2B | 4911226 | n/a | n/a | 14 | 5.97 | 18.30 | −16.69 | |
10 | 4A | QSUC(D10).csdh-4A.1 | m68p78.y | n/a | n/a | 120 | 4.21 | 11.77 | 8.95 | ||
10 | 4A | QSUC(D10).csdh-4A.2 | 1210223 | n/a | n/a | 130 | 3.42 | 9.75 | 8.16 | ||
D/2012 | 1 | 1A | QSUC(D12).csdh-1A | 4991333 | n/a | n/a | 78 | 3.63 | 11.66 | 5.07 | |
D/2013 | 14 | 5B | QSUC(D13).csdh-5B | m72p78.3 | n/a | n/a | 6 | 4.42 | 15.58 | −1.93 | |
17 | 6B | QSUC(D13).csdh-6B | wPt-6247/6037846 | n/a | n/a | 60 | 3.94 | 13.07 | −1.70 | ||
MALTOSE | C/2010 | 5 | 2B | QMAL(C10).csdh-2B | wmc257 | n/a | n/a | 31 | 4.79 | 16.26 | 6.68 |
19 | 7A | QMAL(C10).csdh-7A | 2260931 | n/a | n/a | 47 | 4.82 | 16.38 | 5.63 | ||
C/2012 | 3 | 1D | QMAL(C12).csdh-1D | wPt-6316 | n/a | n/a | 77 | 5.07 | 19.21 | −1.69 | |
C/2013 | 18 | 6D | QMAL(C13).csdh-6D | cfd49 | n/a | n/a | 1 | 5.28 | 17.47 | −1.61 | |
D/2010 | 10 | 4A | QMAL(D10).csdh-4A.1 | wPt-8275 | n/a | n/a | 115 | 5.78 | 21.12 | −4.97 | |
10 | 4A | QMAL(D10).csdh-4A.2 | 1210223 | n/a | n/a | 130 | 12.94 | 39.96 | −6.92 | ||
D/2012 | 15 | 5D | QMAL(D12).csdh-5D | 1863032 | n/a | n/a | 55 | 4.29 | 13.11 | −2.24 | |
D/2013 | 14 | 5B | QMAL(D13).csdh-5B | m72p78.3 | n/a | n/a | 6 | 4.42 | 15.58 | −1.93 | |
17 | 6B | QMAL(D13).csdh-6B | wPt-6247/6037846 | n/a | n/a | 60 | 3.94 | 13.07 | −1.70 |
Chromosome | Marker | Phenotypic Traits | Environment (Well-Watered—C, Drought—D) |
---|---|---|---|
1B | 7491713 | Glucose, fructose | C |
2A | psr322—wmc177 | Yield, TGW | C,D |
2B | 5411238—gwm429 | Fructose, sucrose | C |
2D | 978402 | Glucose, fructose | D |
4A | dupw004a | Biomass, fructose | D |
4A | 1210223 | Sucrose, maltose | D |
4B | Rht-B1 | Yield, glucose, fructose | D |
5A | 995510—m43p78.9a_5A | Biomass, sucrose | C |
5A | 2334260—1205781 | Biomass, sucrose | C |
5B | m72p78.3 | Sucrose, maltose | D |
5B | 1028405—wPt-9814 | Yield, biomass | C,D |
5B | psp3037 | Yield, fructose | C,D |
5B | 3950923 | TGW, glucose, fructose | C,D |
5B | 1144428—1125268 | TGW, glucose, fructose | C,D |
5D | cfd7-cfd3 | Yield | C,D |
6B | wPt-6247—1250557 | Fructose, sucrose, maltose | D |
6B | wmc397 | Dubois, glucose, fructose | C,D |
6B | wPt-4164—4407762 | Fructose, sucrose | C |
7A | gwm635b—1097869 | Yield, TGW | C,D |
7A | 2260931 | Yield, maltose | C |
7D | 2249010—barc154 | Biomass, fructose | C,D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grela, M.; Quarrie, S.; Cyganek, K.; Bocianowski, J.; Karbarz, M.; Tyrka, M.; Habash, D.; Dziurka, M.; Kowalczyk, E.; Szarski, W.; et al. Impact of Soil Drought on Yield and Leaf Sugar Content in Wheat: Genotypic and Phenotypic Relationships Compared Using a Doubled Haploid Population. Int. J. Mol. Sci. 2025, 26, 7833. https://doi.org/10.3390/ijms26167833
Grela M, Quarrie S, Cyganek K, Bocianowski J, Karbarz M, Tyrka M, Habash D, Dziurka M, Kowalczyk E, Szarski W, et al. Impact of Soil Drought on Yield and Leaf Sugar Content in Wheat: Genotypic and Phenotypic Relationships Compared Using a Doubled Haploid Population. International Journal of Molecular Sciences. 2025; 26(16):7833. https://doi.org/10.3390/ijms26167833
Chicago/Turabian StyleGrela, Magdalena, Steve Quarrie, Katarzyna Cyganek, Jan Bocianowski, Małgorzata Karbarz, Mirosław Tyrka, Dimah Habash, Michał Dziurka, Edyta Kowalczyk, Wojciech Szarski, and et al. 2025. "Impact of Soil Drought on Yield and Leaf Sugar Content in Wheat: Genotypic and Phenotypic Relationships Compared Using a Doubled Haploid Population" International Journal of Molecular Sciences 26, no. 16: 7833. https://doi.org/10.3390/ijms26167833
APA StyleGrela, M., Quarrie, S., Cyganek, K., Bocianowski, J., Karbarz, M., Tyrka, M., Habash, D., Dziurka, M., Kowalczyk, E., Szarski, W., & Czyczyło-Mysza, I. M. (2025). Impact of Soil Drought on Yield and Leaf Sugar Content in Wheat: Genotypic and Phenotypic Relationships Compared Using a Doubled Haploid Population. International Journal of Molecular Sciences, 26(16), 7833. https://doi.org/10.3390/ijms26167833