Resistant Starch and Microbiota-Derived Secondary Metabolites: A Focus on Postbiotic Pathways in Gut Health and Irritable Bowel Syndrome
Abstract
1. Introduction
2. Resistant Starch (RS)
2.1. Structure of RS
2.2. Types of RS
Focus on RS3
2.3. Occurrence and Modulation of Resistant Starch in Foods
2.4. Microbial Fermentation of RS and SCFAs Production
2.5. Other Microbial Metabolites Influenced by RS Fermentation
3. Irritable Bowel Syndrome (IBS)
3.1. Diagnostic Criteria and Subtypes
3.2. Ethiopathogenesis of IBS
3.2.1. Genetic Susceptibility and Mutations Implicated in IBS
3.2.2. Alterations in the Gut Microbiota as a Trigger for IBS
3.2.3. Microbial Metabolites and Their Impact on Intestinal Motility
3.2.4. Microbiota–Gut–Brain Axis and Visceral Pain Modulation
3.2.5. Inflammation and Intestinal Barrier Dysfunction in IBS
3.2.6. The Role of Stress and Psychosocial Triggers in IBS
3.2.7. The Role of Diet in IBS Pathogenesis
4. RS in IBS—Mechanisms and Clinical Application
4.1. Practical Use of Resistant Starch in IBS Management
4.2. Personalized Approaches in RS Therapy
4.3. Comparative Perspective: Resistant Starch, FODMAP Diet, Prebiotics, and Related Strategies
4.4. Future Perspectives on Resistant Starch in IBS Management
4.4.1. Long-Term Clinical Evaluation in IBS Populations
4.4.2. Standardization and Optimization of RS Preparations
4.4.3. Integration with Multimodal and Synbiotic Therapies
4.4.4. Toward Personalized Nutrition: Stratification and Predictive Models
5. Limitations and Gaps
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RS | Resistant starch |
IBS | Irritable bowel syndrome |
SCFA | Short-chain fatty acids |
QoL | Quality of life |
FODMAP | Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols |
AMY1 | Salivary amylase gene 1 |
GPR41 | G protein-coupled receptor 41 |
GPR43 | G protein-coupled receptor 43 |
RS1–RS5 | Types 1 to 5 of resistant starch |
RCT | Randomized controlled trial |
HDAC | Histone deacetylase |
PYY | Peptide YY |
GLP-1 | Glucagon-like peptide-1 |
CNS | Central nervous system |
SIBO | Small intestinal bacterial overgrowth |
BDNF | Brain-derived neurotrophic factor |
FMT | Fecal microbiota transplantation |
GI | Gastrointestinal |
VOC | Volatile organic compound |
References
- Sperber, A.D.; Bangdiwala, S.I.; Drossman, D.A.; Ghoshal, U.C.; Simren, M.; Tack, J.; Whitehead, W.E.; Dumitrascu, D.L.; Fang, X.; Fukudo, S.; et al. Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology 2021, 160, 99–114.e3. [Google Scholar] [CrossRef] [PubMed]
- Arif, T.B.; Ali, S.H.; Bhojwani, K.D.; Sadiq, M.; Siddiqui, A.A.; Ur-Rahman, A.; Khan, M.Z.; Hasan, F.; Shahzil, M. Global prevalence and risk factors of irritable bowel syndrome from 2006 to 2024 using the Rome III and IV criteria: A meta-analysis. Eur. J. Gastroenterol. Hepatol. 2025, 10–97. [Google Scholar] [CrossRef]
- Almario, C.V.; Sharabi, E.; Chey, W.D.; Lauzon, M.; Higgins, C.S.; Spiegel, B.M.R. Prevalence and Burden of Illness of Rome IV Irritable Bowel Syndrome in the United States: Results From a Nationwide Cross-Sectional Study. Gastroenterology 2023, 165, 1475–1487. [Google Scholar] [CrossRef] [PubMed]
- Manning, L.P.; Yao, C.K.; Biesiekierski, J.R. Therapy of IBS: Is a Low FODMAP Diet the Answer? Front. Psychiatry 2020, 11, 865. [Google Scholar] [CrossRef]
- Lovell, R.M.; Ford, A.C. Global Prevalence of and Risk Factors for Irritable Bowel Syndrome: A Meta-Analysis. Clin. Gastroenterol. Hepatol. 2012, 10, 712–721.e4. [Google Scholar] [CrossRef]
- Schmulson, M.J.; Drossman, D.A. What Is New in Rome IV. J. Neurogastroenterol. Motil. 2017, 23, 151–163. [Google Scholar] [CrossRef]
- Shin, A.; Kashyap, P.C. Multi-Omics for Biomarker Approaches in the Diagnostic Evaluation and Management of Abdominal Pain and Irritable Bowel Syndrome: What Lies Ahead. Gut Microbes 2023, 15, 2195792. [Google Scholar] [CrossRef]
- Hillestad, E.M.R.; van der Meeren, A.; Nagaraja, B.H.; Bjørsvik, B.R.; Haleem, N.; Benitez-Paez, A.; Sanz, Y.; Hausken, T.; Lied, G.A.; Lundervold, A.; et al. Gut Bless You: The Microbiota-Gut-Brain Axis in Irritable Bowel Syndrome. World J. Gastroenterol. 2022, 28, 412–431. [Google Scholar] [CrossRef]
- Riedl, A.; Schmidtmann, M.; Stengel, A.; Goebel, M.; Wisser, A.S.; Klapp, B.F.; Mönnikes, H. Somatic Comorbidities of Irritable Bowel Syndrome: A Systematic Analysis. J. Psychosom. Res. 2008, 64, 573–582. [Google Scholar] [CrossRef]
- Rajeev, R.; Seethalakshmi, P.S.; Jena, P.K.; Prathiviraj, R.; Kiran, G.S.; Selvin, J. Gut Microbiome Responses in the Metabolism of Human Dietary Components: Implications in Health and Homeostasis. Crit. Rev. Food Sci. Nutr. 2022, 62, 7615–7631. [Google Scholar] [CrossRef]
- Weaver, K.R.; Melkus, G.D.E.; Henderson, W.A. Irritable Bowel Syndrome. Am. J. Nurs. 2017, 117, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Lopetuso, L.R.; Scaldaferri, F.; Pulcini, G.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients 2019, 11, 2393. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Liang, S.; Jia, H.; Stadlmayr, A.; Tang, L.; Lan, Z.; Zhang, D.; Xia, H.; Xu, X.; Jie, Z.; et al. Gut Microbiome Development along the Colorectal Adenoma–Carcinoma Sequence. Nat. Commun. 2015, 6, 6528. [Google Scholar] [CrossRef] [PubMed]
- Halajzadeh, J.; Milajerdi, A.; Reiner, Ž.; Amirani, E.; Kolahdooz, F.; Barekat, M.; Mirzaei, H.; Mirhashemi, S.M.; Asemi, Z. Effects of Resistant Starch on Glycemic Control, Serum Lipoproteins and Systemic Inflammation in Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Crit. Rev. Food Sci. Nutr. 2020, 60, 3172–3184. [Google Scholar] [CrossRef]
- O’Riordan, K.J.; Aburto, M.R.; Nagpal, J.; Clarke, G.; Cryan, J.F. Microbiome: A Key Regulator of Body-Brain Interactions. In Brain-Body Connections; Tropea, D., Giacometti, E., Eds.; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2025; Volume 1477, pp. 139–203. [Google Scholar] [CrossRef]
- Lee, S.H.; Han, C.; Shin, C. IUPHAR Review: Microbiota-Gut-Brain Axis and Its Role in Neuropsychiatric Disorders. Pharmacol. Res. 2025, 216, 107749. [Google Scholar] [CrossRef]
- Parker, A.; Fonseca, S.; Carding, S.R. Gut Microbes and Metabolites as Modulators of Blood-Brain Barrier Integrity and Brain Health. Gut Microbes 2020, 11, 135–157. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Hudson, G.J.; Cummings, J.H. Measurement of Resistant Starch in Vitro and in Vivo. Br. J. Nutr. 1996, 75, 749–755. [Google Scholar] [CrossRef]
- Wong, M.Y.W.; Hebbard, G.; Gibson, P.R.; Burgell, R.E. Chronic Constipation and Abdominal Pain: Independent or Closely Interrelated Symptoms? J. Gastroenterol. Hepatol. 2020, 35, 1294–1301. [Google Scholar] [CrossRef]
- Feng, H.; Cheng, B.; Lim, J.; Li, B.; Li, C.; Zhang, X. Advancements in Enhancing Resistant Starch Type 3 (RS3) Content in Starchy Food and Its Impact on Gut Microbiota: A Review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13355. [Google Scholar] [CrossRef]
- Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef]
- Zhiguang, C.; Haixia, Z.; Min, C.; Fayong, G.; Jing, L. The Fine Structure of Starch: A Review. npj Sci. Food 2025, 9, 50. [Google Scholar] [CrossRef]
- Snelson, M.; Jong, J.; Manolas, D.; Kok, S.; Louise, A.; Stern, R.; Kellow, N.J. Metabolic Effects of Resistant Starch Type 2: A Systematic Literature Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019, 11, 1833. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.A.; Sarbini, S.R. The Potential of Resistant Starch as a Prebiotic. Crit. Rev. Biotechnol. 2016, 36, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Ariffin, F.; Bhat, R.; Karim, A.A. Progress in Starch Modification in the Last Decade. Food Hydrocoll. 2012, 26, 398–404. [Google Scholar] [CrossRef]
- Martens, B.M.J.; Gerrits, W.J.J.; Bruininx, E.M.A.M.; Schols, H.A. Amylopectin Structure and Crystallinity Explains Variation in Digestion Kinetics of Starches across Botanic Sources in an in Vitro Pig Model. J. Anim. Sci. Biotechnol. 2018, 9, 91. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, X.; Boye, J.I. Research Advances on the Formation Mechanism of Resistant Starch Type III: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 276–297. [Google Scholar] [CrossRef]
- Jane, J. Current Understanding on Starch Granule Structures. J. Appl. Glycosci. 2006, 53, 205–213. [Google Scholar] [CrossRef]
- Baptista, N.T.; Dessalles, R.; Illner, A.K.; Ville, P.; Ribet, L.; Anton, P.M.; Durand-Dubief, M. Harnessing the Power of Resistant Starch: A Narrative Review of Its Health Impact and Processing Challenges. Front. Nutr. 2024, 11, 1369950. [Google Scholar] [CrossRef]
- Farooq, M.A.; Yu, J. Recent Advances in Physical Processing Techniques to Enhance the Resistant Starch Content in Foods: A Review. Foods 2024, 13, 2770. [Google Scholar] [CrossRef]
- Han, J.; Wu, J.; Liu, X.; Shi, J.; Xu, J. Physiological Effects of Resistant Starch and Its Applications in Food: A Review. Food Prod. Process. Nutr. 2023, 5, 48. [Google Scholar] [CrossRef]
- Junejo, S.A.; Flanagan, B.M.; Zhang, B.; Dhital, S. Starch Structure and Nutritional Functionality—Past Revelations and Future Prospects. Carbohydr. Polym. 2022, 277, 118837. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Wang, L.; Gong, H.; Jia, S.; Guan, Q.; Li, L.; Cheng, H. Nutrition and Gut Health: Preparation and Efficacy of Resistant Starch. Foods 2025, 14, 471. [Google Scholar] [CrossRef] [PubMed]
- Kraithong, S.; Wang, S.; Junejo, S.A.; Fu, X.; Theppawong, A.; Zhang, B.; Huang, Q. Type 1 Resistant Starch: Nutritional Properties and Industry Applications. Food Hydrocoll. 2022, 125, 107369. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Gong, Y.; Xiao, S.; Yao, Z.; Deng, H.; Chen, X.; Yang, T. Factors and Modification Techniques Enhancing Starch Gel Structure and Their Applications in Foods:A Review. Food Chem. X 2024, 24, 102045. [Google Scholar] [CrossRef]
- Stewart, M.L.; Wilcox, M.L.; Bell, M.; Buggia, M.A.; Maki, K.C. Type-4 Resistant Starch in Substitution for Available Carbohydrate Reduces Postprandial Glycemic Response and Hunger in Acute, Randomized, Double-Blind, Controlled Study. Nutrients 2018, 10, 129. [Google Scholar] [CrossRef]
- Castro-Campos, F.G.; Esquivel-Fajardo, E.A.; Morales-Sánchez, E.; Rodríguez-García, M.E.; Barron-Garcia, O.Y.; Ramirez-Gutierrez, C.F.; Loarca-Piña, G.; Gaytán-Martínez, M. Resistant Starch Type 5 Formation by High Amylopectin Starch–Lipid Interaction. Foods 2024, 13, 3888. [Google Scholar] [CrossRef]
- Shen, Y.; An, Z.; Huyan, Z.; Shu, X.; Wu, D.; Zhang, N.; Pellegrini, N.; Rubert, J. Lipid Complexation Reduces Rice Starch Digestibility and Boosts Short-Chain Fatty Acid Production via Gut Microbiota. npj Sci. Food 2023, 7, 56. [Google Scholar] [CrossRef]
- Klostermann, C.E.; Buwalda, P.L.; Leemhuis, H.; de Vos, P.; Schols, H.A.; Bitter, J.H. Digestibility of Resistant Starch Type 3 Is Affected by Crystal Type, Molecular Weight and Molecular Weight Distribution. Carbohydr. Polym. 2021, 265, 118069. [Google Scholar] [CrossRef]
- Eerlingen, R.C.; Delcour, J.A. Formation, Analysis, Structure and Properties of Type III Enzyme Resistant Starch. J. Cereal Sci. 1995, 22, 129–138. [Google Scholar] [CrossRef]
- Li, C. Recent Progress in Understanding Starch Gelatinization—An Important Property Determining Food Quality. Carbohydr. Polym. 2022, 293, 119735. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Shao, S.; Yi, X.; Cao, S.; Yu, W.; Zhang, B.; Liu, H.; Gilbert, R.G. Influence of Storage Temperature on Starch Retrogradation and Digestion of Chinese Steamed Bread. Foods 2024, 13, 517. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Lu, X.Z.; Yang, X.X.; Wang, H.; Geng, H.Y.; Gong, G.; Zhan, Y.Y.; Kim, H.J.; Yang, Z.J. GHRL Gene Leu72Met Polymorphism and Type 2 Diabetes Mellitus: A Meta-Analysis Involving 8,194 Participants. Front. Endocrinol. 2019, 10, 559. [Google Scholar] [CrossRef] [PubMed]
- Gondalia, S.V.; Wymond, B.; Benassi-Evans, B.; Berbezy, P.; Bird, A.R.; Belobrajdic, D.P. Substitution of Refined Conventional Wheat Flour with Wheat High in Resistant Starch Modulates the Intestinal Microbiota and Fecal Metabolites in Healthy Adults: A Randomized, Controlled Trial. J. Nutr. 2022, 152, 1426–1437. [Google Scholar] [CrossRef]
- Munir, H.; Alam, H.; Nadeem, M.T.; Almalki, R.S.; Arshad, M.S.; Suleria, H.A.R. Green Banana Resistant Starch: A Promising Potential as Functional Ingredient against Certain Maladies. Food Sci. Nutr. 2024, 12, 3787–3805. [Google Scholar] [CrossRef]
- Fuentes-Zaragoza, E.; Riquelme-Navarrete, M.J.; Sánchez-Zapata, E.; Pérez-Álvarez, J.A. Resistant Starch as Functional Ingredient: A Review. Food Res. Int. 2010, 43, 931–942. [Google Scholar] [CrossRef]
- Deng, C.; Melnyk, O.; Luo, Y. Optimization of Heat-Moisture Treatment on Potato Starch and Study on Its Physicochemical Properties. Technol. Audit. Prod. Reserv. 2022, 3, 43–49. [Google Scholar] [CrossRef]
- Maniglia, B.C.; Lima, D.C.; Júnior, M.d.M.; Oge, A.; Le-Bail, P.; Augusto, P.E.D.; Le-Bail, A. Dry Heating Treatment: A Potential Tool to Improve the Wheat Starch Properties for 3D Food Printing Application. Food Res. Int. 2020, 137, 109731. [Google Scholar] [CrossRef]
- Kumar, Y.; Singh, L.; Sharanagat, V.S.; Patel, A.; Kumar, K. Effect of Microwave Treatment (Low Power and Varying Time) on Potato Starch: Microstructure, Thermo-Functional, Pasting and Rheological Properties. Int. J. Biol. Macromol. 2020, 155, 27–35. [Google Scholar] [CrossRef]
- Onyango, C.; Mutungi, C. Synthesis and in Vitro Digestion of Resistant Starch Type III from Enzymatically Hydrolysed Cassava Starch. Int. J. Food Sci. Technol. 2008, 43, 1860–1865. [Google Scholar] [CrossRef]
- Chen, P.; Xie, Q.T.; Wang, R.M.; Wang, S.Y.; Cheng, J.S.; Zhang, B. Effects of Pullulanase Enzymatic Hydrolysis on the Textural of Acorn Vermicelli and Its Influencing Mechanism on the Quality. Food Res. Int. 2022, 156, 111294. [Google Scholar] [CrossRef]
- Geng, D.H.; Tang, N.; Gan, J.; Cheng, Y. Two-Step Modification of Pullulanase and Transglucosidase: A Novel Way to Improve the Gel Strength and Reduce the Digestibility of Rice Starch. Int. J. Biol. Macromol. 2024, 266, 130992. [Google Scholar] [CrossRef]
- Wang, K.; Sui, J.; Gao, W.; Yu, B.; Yuan, C.; Guo, L.; Cui, B.; Abd El-Aty, A.M. Effects of Xanthan Gum and Sodium Alginate on Gelatinization and Gels Structure of Debranched Pea Starch by Pullulanase. Food Hydrocoll. 2022, 130, 107733. [Google Scholar] [CrossRef]
- Butt, N.A.; Ali, T.M.; Moin, A.; Hasnain, A. Comparative Study on Morphological, Rheological and Functional Characteristics of Extruded Rice Starch Citrates and Lactates. Int. J. Biol. Macromol. 2021, 180, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Sha, X.; Wang, X.; Zhao, R.; Khashaba, R.; Jane, J.L.; Jiang, H. Exploring Characteristics of Waxy Wheat Starches Cross-Linked at Low Levels: Insights from Pasting, Rheological, and Textural Properties. Food Biosci. 2024, 61, 104672. [Google Scholar] [CrossRef]
- Etchepare, M.d.A.; Raddatz, G.C.; Cichoski, A.J.; Flores, É.M.M.; Barin, J.S.; Zepka, L.Q.; Jacob-Lopes, E.; Grosso, C.R.F.; de Menezes, C.R. Effect of Resistant Starch (Hi-Maize) on the Survival of Lactobacillus Acidophilus Microencapsulated with Sodium Alginate. J. Funct. Foods 2016, 21, 321–329. [Google Scholar] [CrossRef]
- Jacobasch, G.; Dongowski, G.; Schmiedl, D.; Müller-Schmehl, K. Hydrothermal Treatment of Novelose 330 Results in High Yield of Resistant Starch Type 3 with Beneficial Prebiotic Properties and Decreased Secondary Bile Acid Formation in Rats. Br. J. Nutr. 2006, 95, 1063–1074. [Google Scholar] [CrossRef]
- Bush, J.R.; Baisley, J.; Harding, S.V.; Alfa, M.J. Consumption of Solnul™ Resistant Potato Starch Produces a Prebiotic Effect in a Randomized, Placebo-Controlled Clinical Trial. Nutrients 2023, 15, 1582. [Google Scholar] [CrossRef]
- Zhou, Z.; Cao, X.; Zhou, J.Y.H. Effect of Resistant Starch Structure on Short-Chain Fatty Acids Production by Human Gut Microbiota Fermentation in Vitro. Starch -Stärke 2013, 65, 509–516. [Google Scholar] [CrossRef]
- O’Riordan, K.J.; Collins, M.K.; Moloney, G.M.; Knox, E.G.; Aburto, M.R.; Fülling, C.; Morley, S.J.; Clarke, G.; Schellekens, H.; Cryan, J.F. Short Chain Fatty Acids: Microbial Metabolites for Gut-Brain Axis Signalling. Mol. Cell. Endocrinol. 2022, 546, 111572. [Google Scholar] [CrossRef]
- Topping, D.L.; Clifton, P.M. Short-Chain Fatty Acids and Human Colonic Function: Roles of Resistant Starch and Nonstarch Polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [CrossRef]
- Ikeda, T.; Nishida, A.; Yamano, M.; Kimura, I. Short-Chain Fatty Acid Receptors and Gut Microbiota as Therapeutic Targets in Metabolic, Immune, and Neurological Diseases. Pharmacol. Ther. 2022, 239, 108273. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, N.; Zhang, H.; Li, H.; Guo, J.; Zhang, Y.; Chen, Y.; Wang, Y.; Shi, N. Resistant Starch and the Gut Microbiome: Exploring Beneficial Interactions and Dietary Impacts. Food Chem. X 2024, 21, 101118. [Google Scholar] [CrossRef]
- Wu, W.; Sun, M.; Chen, F.; Cao, A.T.; Liu, H.; Zhao, Y.; Huang, X.; Xiao, Y.; Yao, S.; Zhao, Q.; et al. Microbiota Metabolite Short-Chain Fatty Acid Acetate Promotes Intestinal IgA Response to Microbiota Which Is Mediated by GPR43. Mucosal Immunol. 2017, 10, 946–956. [Google Scholar] [CrossRef] [PubMed]
- Fattahi, Y.; Heidari, H.R.; Khosroushahi, A.Y. Review of Short-Chain Fatty Acids Effects on the Immune System and Cancer. Food Biosci. 2020, 38, 100793. [Google Scholar] [CrossRef]
- Döring, C.; Basen, M. Propionate Production by Bacteroidia Gut Bacteria and Its Dependence on Substrate Concentrations Differs among Species. Biotechnol. Biofuels Bioprod. 2024, 17, 95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Jian, Y.P.; Zhang, Y.N.; Li, Y.; Gu, L.T.; Sun, H.H.; Liu, M.D.; Zhou, H.L.; Wang, Y.S.; Xu, Z.X. Short-Chain Fatty Acids in Diseases. Cell Commun. Signal. 2023, 21, 212. [Google Scholar] [CrossRef]
- Singh, V.; Lee, G.D.; Son, H.W.; Koh, H.; Kim, E.S.; Unno, T.; Shin, J.H. Butyrate Producers, “The Sentinel of Gut”: Their Intestinal Significance with and beyond Butyrate, and Prospective Use as Microbial Therapeutics. Front. Microbiol. 2023, 13, 1103836. [Google Scholar] [CrossRef]
- Mahony, R.; Ahmed, S.; Diskin, C.; Stevenson, N.J. SOCS3 Revisited: A Broad Regulator of Disease, Now Ready for Therapeutic Use? Cell. Mol. Life Sci. C 2016, 73, 3323–3336. [Google Scholar] [CrossRef]
- Hodgkinson, K.; El Abbar, F.; Dobranowski, P.; Manoogian, J.; Butcher, J.; Figeys, D.; Mack, D.; Stintzi, A. Butyrate’s Role in Human Health and the Current Progress towards Its Clinical Application to Treat Gastrointestinal Disease. Clin. Nutr. 2023, 42, 61–75. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A Double-Edged Sword for Health? Adv. Nutr. 2018, 9, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Barcenilla, A.; Pryde, S.E.; Martin, J.C.; Duncan, S.H.; Stewart, C.S.; Henderson, C.; Flint, H.J. Phylogenetic Relationships of Butyrate-Producing Bacteria from the Human Gut. Appl. Environ. Microbiol. 2000, 66, 1654–1661. [Google Scholar] [CrossRef]
- Vital, M.; Penton, C.R.; Wang, Q.; Young, V.B.; Antonopoulos, D.A.; Sogin, M.L.; Morrison, H.G.; Raffals, L.; Chang, E.B.; Huffnagle, G.B.; et al. A Gene-Targeted Approach to Investigate the Intestinal Butyrate-Producing Bacterial Community. Microbiome 2013, 1, 8. [Google Scholar] [CrossRef]
- Louis, P.; Duncan, S.H.; McCrae, S.I.; Millar, J.; Jackson, M.S.; Flint, H.J. Restricted Distribution of the Butyrate Kinase Pathway among Butyrate-Producing Bacteria from the Human Colon. J. Bacteriol. 2004, 186, 2099–2106. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Diversity, Metabolism and Microbial Ecology of Butyrate-Producing Bacteria from the Human Large Intestine. FEMS Microbiol. Lett. 2009, 294, 1–8. [Google Scholar] [CrossRef]
- Cisek, A.A.; Szymańska, E.; Aleksandrzak-Piekarczyk, T.; Cukrowska, B. The Role of Methanogenic Archaea in Inflammatory Bowel Disease—A Review. J. Pers. Med. 2024, 14, 196. [Google Scholar] [CrossRef]
- Hou, Y.; Li, J.; Ying, S. Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolism 2023, 13, 1166. [Google Scholar] [CrossRef]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef]
- Ridlon, J.M.; Kang, D.J.; Hylemon, P.B. Bile Salt Biotransformations by Human Intestinal Bacteria. J. Lipid Res. 2006, 47, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Zhan, K.; Wu, H.; Xu, Y.; Rao, K.; Zheng, H.; Qin, S.; Yang, Y.; Jia, R.; Chen, W.; Huang, S. The Function of the Gut Microbiota–Bile Acid–TGR5 Axis in Diarrhea-Predominant Irritable Bowel Syndrome. mSystems 2024, 9, e0129923. [Google Scholar] [CrossRef] [PubMed]
- Shariati, A.; Fallah, F.; Pormohammad, A.; Taghipour, A.; Safari, H.; Chirani, A.S.; Sabour, S.; Alizadeh-Sani, M.; Azimi, T. The Possible Role of Bacteria, Viruses, and Parasites in Initiation and Exacerbation of Irritable Bowel Syndrome. J. Cell. Physiol. 2018, 234, 8550–8569. [Google Scholar] [CrossRef]
- Turna, N.S.; Chung, R.; McIntyre, L. A Review of Biogenic Amines in Fermented Foods: Occurrence and Health Effects. Heliyon 2024, 10, e24501. [Google Scholar] [CrossRef] [PubMed]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 2015, 28, 203–209. [Google Scholar]
- Zhu, Z.; Chen, R.; Zhang, L. Simple Phenylpropanoids: Recent Advances in Biological Activities, Biosynthetic Pathways, and Microbial Production. Nat. Prod. Rep. 2024, 41, 6–24. [Google Scholar] [CrossRef] [PubMed]
- Luk-In, S.; Leepiyasakulchai, C.; Saelee, C.; Keeratichamroen, A.; Srisangwan, N.; Ponprachanuvut, P.; Chammari, K.; Chatsuwan, T.; Wannigama, D.L.; Shein, A.M.S.; et al. Impact of Resistant Starch Type 3 on Fecal Microbiota and Stool Frequency in Thai Adults with Chronic Constipation Randomized Clinical Trial. Sci. Rep. 2024, 14, 27944. [Google Scholar] [CrossRef]
- Bush, J.R.; Alfa, M.J. Consumption of Resistant Potato Starch Produces Changes in Gut Microbiota That Correlate with Improvements in Abnormal Bowel Symptoms: A Secondary Analysis of a Clinical Trial. BMC Nutr. 2024, 10, 152. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Vuksan, V.; Kendall, C.W.C.; Mehling, C.C.; Vidgen, E.; Augustin, L.S.A.; Wong, E.; Würsch, P.; Jeffcoat, R.; Waring, S. Physiological Effects of Resistant Starches on Fecal Bulk, Short Chain Fatty Acids, Blood Lipids and Glycemic Index. J. Am. Coll. Nutr. 1998, 17, 609–616. [Google Scholar] [CrossRef]
- Jordan, S.M.; Kiefer, E.D. The Irritable Colon. J. Am. Med. Assoc. 1929, 93, 592–595. [Google Scholar] [CrossRef]
- Brown, P.W. The Irritable Bowel Syndrome. J. Kans. Med. Soc. 1947, 48, 309–312. [Google Scholar]
- Ford, A.C.; Sperber, A.D.; Corsetti, M.; Camilleri, M. Irritable Bowel Syndrome. Lancet 2020, 396, 1675–1688. [Google Scholar] [CrossRef]
- Talley, N.J. What Causes Functional Gastrointestinal Disorders? A Proposed Disease Model. Am. J. Gastroenterol. 2020, 115, 41–48. [Google Scholar] [CrossRef]
- Plevy, S.; Silverberg, M.S.; Lockton, S.; Stockfisch, T.; Croner, L.; Stachelski, J.; Brown, M.; Triggs, C.; Chuang, E.; Princen, F.; et al. Combined Serological, Genetic, and Inflammatory Markers Differentiate Non-IBD, Crohn’s Disease, and Ulcerative Colitis Patients. Inflamm. Bowel Dis. 2013, 19, 1139–1148. [Google Scholar] [CrossRef]
- Nakov, R.; Snegarova, V.; Dimitrova-Yurukova, D.; Velikova, T. Biomarkers in Irritable Bowel Syndrome: Biological Rationale and Diagnostic Value. Dig. Dis. 2022, 40, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Manning, A.P.; Heaton, K.W.; Thompson, W.G.; Morris, A.F. Towards Positive Diagnosis of the Irritable Bowel. Br. Med. J. 1978, 2, 653–654. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence. Overview|Irritable Bowel Syndrome in Adults: Diagnosis and Management|Guidance|NICE. Available online: https://www.nice.org.uk/guidance/cg61 (accessed on 31 May 2025).
- Tibble, J.A.; Sigthorsson, G.; Foster, R.; Forgacs, I.; Bjarnason, I. Use of Surrogate Markers of Inflammation and Rome Criteria to Distinguish Organic from Nonorganic Intestinal Disease. Gastroenterology 2002, 123, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Lacy, B.E.; Mearin, F.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 150, 1393–1407.e5. [Google Scholar] [CrossRef]
- Staudacher, H.M.; Gibson, P.R. Traditional Dietary Advice, Low FODMAP Diet, or Gluten-Free Diet for IBS: Growing Understanding but Uncertainties Remain. Clin. Gastroenterol. Hepatol. 2023, 21, 1119–1120. [Google Scholar] [CrossRef]
- Spiller, R.; Garsed, K. Postinfectious Irritable Bowel Syndrome. Gastroenterology 2009, 136, 1979–1988. [Google Scholar] [CrossRef]
- Levy, R.L.; Jones, K.R.; Whitehead, W.E.; Feld, S.I.; Talley, N.J.; Corey, L.A. Irritable Bowel Syndrome in Twins: Heredity and Social Learning Both Contribute to Etiology. Gastroenterology 2001, 121, 799–804. [Google Scholar] [CrossRef]
- Beyder, A.; Mazzone, A.; Strege, P.R.; Tester, D.J.; Saito, Y.A.; Bernard, C.E.; Enders, F.T.; Ek, W.E.; Schmidt, P.T.; Dlugosz, A.; et al. Loss-of-Function of the Voltage-Gated Sodium Channel NaV1.5 (Channelopathies) in Patients with Irritable Bowel Syndrome. Gastroenterology 2014, 146, 1659–1668. [Google Scholar] [CrossRef]
- Banerjee, S.; Schlaeppi, K.; van der Heijden, M.G.A. Keystone Taxa as Drivers of Microbiome Structure and Functioning. Nat. Rev. Microbiol. 2018, 16, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.M. A Role for the Gut Microbiota in IBS. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 497–505. [Google Scholar] [CrossRef]
- Salem, A.E.; Singh, R.; Ayoub, Y.K.; Khairy, A.M.; Mullin, G.E. The Gut Microbiome and Irritable Bowel Syndrome: State of Art Review. Arab. J. Gastroenterol. 2018, 19, 136–141. [Google Scholar] [CrossRef]
- Rajilić-Stojanović, M.; Biagi, E.; Heilig, H.G.H.J.; Kajander, K.; Kekkonen, R.A.; Tims, S.; De Vos, W.M. Global and Deep Molecular Analysis of Microbiota Signatures in Fecal Samples from Patients with Irritable Bowel Syndrome. Gastroenterology 2011, 141, 1792–1801. [Google Scholar] [CrossRef]
- Zhuang, X.; Xiong, L.; Li, L.; Li, M.; Chen, M. Alterations of Gut Microbiota in Patients with Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. J. Gastroenterol. Hepatol. 2017, 32, 28–38. [Google Scholar] [CrossRef]
- Shrestha, B.; Patel, D.; Shah, H.; Hanna, K.S.; Kaur, H.; Alazzeh, M.S.; Thandavaram, A.; Channar, A.; Purohit, A.; Venugopal, S. The Role of Gut-Microbiota in the Pathophysiology and Therapy of Irritable Bowel Syndrome: A Systematic Review. Cureus 2022, 14, e28064. [Google Scholar] [CrossRef]
- Barandouzi, Z.A.; Lee, J.; Maas, K.; Starkweather, A.R.; Cong, X.S. Altered Gut Microbiota in Irritable Bowel Syndrome and Its Association with Food Components. J. Pers. Med. 2021, 11, 35. [Google Scholar] [CrossRef]
- Malinen, E.; Rinttilä, T.; Kajander, K.; Mättö, J.; Kassinen, A.; Krogius, L.; Saarela, M.; Korpela, R.; Palva, A. Analysis of the Fecal Microbiota of Irritable Bowel Syndrome Patients and Healthy Controls with Real-Time PCR. Am. J. Gastroenterol. 2005, 100, 373–382. [Google Scholar] [CrossRef]
- Parkes, G.C.; Rayment, N.B.; Hudspith, B.N.; Petrovska, L.; Lomer, M.C.; Brostoff, J.; Whelan, K.; Sanderson, J.D. Distinct Microbial Populations Exist in the Mucosa-Associated Microbiota of Sub-Groups of Irritable Bowel Syndrome. Neurogastroenterol. Motil. 2012, 24, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Jalanka-Tuovinen, J.; Salojärvi, J.; Salonen, A.; Immonen, O.; Garsed, K.; Kelly, F.M.; Zaitoun, A.; Palva, A.; Spiller, R.C.; De Vos, W.M. Faecal Microbiota Composition and Host-Microbe Cross-Talk Following Gastroenteritis and in Postinfectious Irritable Bowel Syndrome. Gut 2014, 63, 1737–1745. [Google Scholar] [CrossRef] [PubMed]
- Brun, P.; Giron, M.C.; Qesari, M.; Porzionato, A.; Caputi, V.; Zoppellaro, C.; Banzato, S.; Grillo, A.R.; Spagnol, L.; De Caro, R.; et al. Toll-like Receptor 2 Regulates Intestinal Inflammation by Controlling Integrity of the Enteric Nervous System. Gastroenterology 2013, 145, 1323–1333. [Google Scholar] [CrossRef]
- Dalziel, J.E.; Spencer, N.J.; Young, W. Microbial Signalling in Colonic Motility. Int. J. Biochem. Cell Biol. 2021, 134, 105963. [Google Scholar] [CrossRef]
- Zheng, Z.; Tang, J.; Hu, Y.; Zhang, W. Role of Gut Microbiota-Derived Signals in the Regulation of Gastrointestinal Motility. Front. Med. 2022, 9, 961703. [Google Scholar] [CrossRef]
- Christiansen, C.B.; Gabe, M.B.N.; Svendsen, B.; Dragsted, L.O.; Rosenkilde, M.M.; Holst, J.J. The Impact of Short-Chain Fatty Acids on Glp-1 and Pyy Secretion from the Isolated Perfused Rat Colon. Am. J. Physiol.-Gastrointest. Liver Physiol. 2018, 315, G53–G65. [Google Scholar] [CrossRef] [PubMed]
- Nishida, A.; Miyamoto, J.; Shimizu, H.; Kimura, I. Gut Microbial Short-Chain Fatty Acids-Mediated Olfactory Receptor 78 Stimulation Promotes Anorexigenic Gut Hormone Peptide YY Secretion in Mice. Biochem. Biophys. Res. Commun. 2021, 557, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Alemi, F.; Poole, D.P.; Chiu, J.; Schoonjans, K.; Cattaruzza, F.; Grider, J.R.; Bunnett, N.W.; Corvera, C.U. The Receptor TGR5 Mediates the Prokinetic Actions of Intestinal Bile Acids and Is Required for Normal Defecation in Mice. Gastroenterology 2013, 144, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Wang, X.L.; Huang, Y.; Chen, L.H.; Cheng, R.X.; Zhou, F.M.; Guo, R.; Li, J.C.; Liu, T. Peripheral and Spinal 5-HT Receptors Participate in Cholestatic Itch and Antinociception Induced by Bile Duct Ligation in Rats. Sci. Rep. 2016, 6, 36286. [Google Scholar] [CrossRef]
- Duboc, H.; Rainteau, D.; Rajca, S.; Humbert, L.; Farabos, D.; Maubert, M.; Grondin, V.; Jouet, P.; Bouhassira, D.; Seksik, P.; et al. Increase in Fecal Primary Bile Acids and Dysbiosis in Patients with Diarrhea-Predominant Irritable Bowel Syndrome. Neurogastroenterol. Motil. 2012, 24, 513-e247. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.; Wang, H.F.; Zhang, Y.L.; Niu, B.Y.; Yao, S.K. Altered Metabolism of Bile Acids Correlates with Clinical Parameters and the Gut Microbiota in Patients with Diarrhea-Predominant Irritable Bowel Syndrome. World J. Gastroenterol. 2020, 26, 7153–7172. [Google Scholar] [CrossRef]
- Foley, A.; Burgell, R.; Barrett, J.S.; Gibson, P.R. Management Strategies for Abdominal Bloating and Distension. Gastroenterol. Hepatol. 2014, 10, 561–571. [Google Scholar]
- Zhao, Y.; Zhu, S.; Dong, Y.; Xie, T.; Chai, Z.; Gao, X.; Dai, Y.; Wang, X. The Role of Gut Microbiome in Irritable Bowel Syndrome: Implications for Clinical Therapeutics. Biomolecules 2024, 14, 1643. [Google Scholar] [CrossRef] [PubMed]
- Ang, Z.; Ding, J.L. GPR41 and GPR43 in Obesity and Inflammation—Protective or Causative? Front. Immunol. 2016, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The Role of Short-Chain Fatty Acids in Microbiota–Gut–Brain Communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, Tryptophan Metabolism and the Brain-Gut-Microbiome Axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef]
- Macura, B.; Kiecka, A.; Szczepanik, M. Intestinal Permeability Disturbances: Causes, Diseases and Therapy. Clin. Exp. Med. 2024, 24, 232. [Google Scholar] [CrossRef]
- Camilleri, M.; Lasch, K.; Zhou, W. Irritable Bowel Syndrome: Methods, Mechanisms, and Pathophysiology. The Confluence of Increased Permeability, Inflammation, and Pain in Irritable Bowel Syndrome. Am. J. Physiol.-Gastrointest. Liver Physiol. 2012, 303, G775–G785. [Google Scholar] [CrossRef]
- Matricon, J.; Meleine, M.; Gelot, A.; Piche, T.; Dapoigny, M.; Muller, E.; Ardid, D. Review Article: Associations between Immune Activation, Intestinal Permeability and the Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2012, 36, 1009–1031. [Google Scholar] [CrossRef]
- Barbara, G.; Wang, B.; Stanghellini, V.; de Giorgio, R.; Cremon, C.; Di Nardo, G.; Trevisani, M.; Campi, B.; Geppetti, P.; Tonini, M.; et al. Mast Cell-Dependent Excitation of Visceral-Nociceptive Sensory Neurons in Irritable Bowel Syndrome. Gastroenterology 2007, 132, 26–37. [Google Scholar] [CrossRef]
- Kim, S.E.; Chang, L. Overlap between Functional GI Disorders and Other Functional Syndromes: What Are the Underlying Mechanisms? Neurogastroenterol. Motil. 2012, 24, 895–913. [Google Scholar] [CrossRef]
- Omarova, S.; Awad, K.; Moos, V.; Püning, C.; Gölz, G.; Schulzke, J.D.; Bücker, R. Intestinal Barrier in Post-Campylobacter Jejuni Irritable Bowel Syndrome. Biomolecules 2023, 13, 449. [Google Scholar] [CrossRef]
- Moloney, G.M.; Dinan, T.G.; Clarke, G.; Cryan, J.F. Microbial Regulation of MicroRNA Expression in the Brain–Gut Axis. Curr. Opin. Pharmacol. 2019, 48, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Marano, G.; Traversi, G.; Pola, R.; Gasbarrini, A.; Gaetani, E.; Mazza, M. Irritable Bowel Syndrome: A Hallmark of Psychological Distress in Women? Life 2025, 15, 277. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Doo, E.; Choi, J.M.; Jang, S.H.; Ryu, H.S.; Lee, J.Y.; Oh, J.H.; Park, J.H.; Kim, Y.S. The Increased Level of Depression and Anxiety in Irritable Bowel Syndrome Patients Compared with Healthy Controls: Systematic Review and Meta-Analysis. J. Neurogastroenterol. Motil. 2017, 23, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S. Irritable Bowel Syndrome or Psychiatric Disorders: Which Comes First? J. Neurogastroenterol. Motil. 2022, 28, 335–336. [Google Scholar] [CrossRef]
- Ford, A.C.; Lacy, B.E.; Harris, L.A.; Quigley, E.M.M.; Moayyedi, P. Effect of Antidepressants and Psychological Therapies in Irritable Bowel Syndrome: An Updated Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2019, 114, 21–39. [Google Scholar] [CrossRef]
- Whelan, K.; Martin, L.D.; Staudacher, H.M.; Lomer, M.C.E. The Low FODMAP Diet in the Management of Irritable Bowel Syndrome: An Evidence-Based Review of FODMAP Restriction, Reintroduction and Personalisation in Clinical Practice. J. Hum. Nutr. Diet. 2018, 31, 239–255. [Google Scholar] [CrossRef]
- El-Salhy, M.; Hatlebakk, J.G.; Hausken, T. Diet in Irritable Bowel Syndrome (IBS): Interaction with Gut Microbiota and Gut Hormones. Nutrients 2019, 11, 1824. [Google Scholar] [CrossRef]
- Staudacher, H.M.; Lomer, M.C.E.; Anderson, J.L.; Barrett, J.S.; Muir, J.G.; Irving, P.M.; Whelan, K. Fermentable Carbohydrate Restriction Reduces Luminal Bifidobacteria and Gastrointestinal Symptoms in Patients with Irritable Bowel Syndrome. J. Nutr. 2012, 142, 1510–1518. [Google Scholar] [CrossRef]
- Staudacher, H.M.; Scholz, M.; Lomer, M.C.; Ralph, F.S.; Irving, P.M.; Lindsay, J.O.; Fava, F.; Tuohy, K.; Whelan, K. Gut Microbiota Associations with Diet in Irritable Bowel Syndrome and the Effect of Low FODMAP Diet and Probiotics. Clin. Nutr. 2021, 40, 1861–1870. [Google Scholar] [CrossRef]
- Montroy, J.; Berjawi, R.; Lalu, M.M.; Podolsky, E.; Peixoto, C.; Sahin, L.; Stintzi, A.; Mack, D.; Fergusson, D.A. The Effects of Resistant Starches on Inflammatory Bowel Disease in Preclinical and Clinical Settings: A Systematic Review and Meta-Analysis. BMC Gastroenterol. 2020, 20, 372. [Google Scholar] [CrossRef]
- Vahdat, M.; Hosseini, S.A.; Mohseni, G.K.; Heshmati, J.; Rahimlou, M. Effects of Resistant Starch Interventions on Circulating Inflammatory Biomarkers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. J. 2020, 19, 33. [Google Scholar] [CrossRef]
- Xiong, K.; Wang, J.; Kang, T.; Xu, F.; Ma, A. Effects of Resistant Starch on Glycaemic Control: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2021, 125, 1260–1269. [Google Scholar] [CrossRef]
- Shen, D.; Bai, H.; Li, Z.; Yu, Y.; Zhang, H.; Chen, L. Positive Effects of Resistant Starch Supplementation on Bowel Function in Healthy Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Food Sci. Nutr. 2017, 68, 149–157. [Google Scholar] [CrossRef]
- Hanes, D.; Nowinski, B.; Lamb, J.J.; Larson, I.A.; McDonald, D.; Knight, R.; Song, S.J.; Patno, N. The Gastrointestinal and Microbiome Impact of a Resistant Starch Blend from Potato, Banana, and Apple Fibers: A Randomized Clinical Trial Using Smart Caps. Front. Nutr. 2022, 9, 987216. [Google Scholar] [CrossRef] [PubMed]
- So, D.; Yao, C.K.; Gibson, P.R.; Muir, J.G. Evaluating Tolerability of Resistant Starch 2, Alone and in Combination with Minimally Fermented Fibre for Patients with Irritable Bowel Syndrome: A Pilot Randomised Controlled Cross-over Trial. J. Nutr. Sci. 2022, 11, e15. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Carbohydrates and Dietary Fibre. EFSA J. 2010, 8, 1462. [Google Scholar] [CrossRef]
- Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef]
- Dobranowski, P.A.; Stintzi, A. Resistant Starch, Microbiome, and Precision Modulation. Gut Microbes 2021, 13, 1926842. [Google Scholar] [CrossRef]
- Bindels, L.B.; Walter, J.; Ramer-Tait, A.E. Resistant Starches for the Management of Metabolic Diseases. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 559–565. [Google Scholar] [CrossRef]
- Becker, A.; Schmartz, G.P.; Gröger, L.; Grammes, N.; Galata, V.; Philippeit, H.; Weiland, J.; Ludwig, N.; Meese, E.; Tierling, S.; et al. Effects of Resistant Starch on Symptoms, Fecal Markers and Gut Microbiota in Parkinson’s Disease—The RESISTA-PD Trial. medRxiv 2021. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, X.; Meng, Y.; Wang, Q.; Xu, H.; Chen, L. The Effects of Resistant Starch on Biomarkers of Inflammation and Oxidative Stress: A Systematic Review and Meta-Analysis. Nutr. Cancer 2022, 74, 2337–2350. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant Starch: Promise for Improving Human Health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef]
- Haran, J.P.; McCormick, B.A. Aging, Frailty, and the Microbiome—How Dysbiosis Influences Human Aging and Disease. Gastroenterology 2020, 160, 507–523. [Google Scholar] [CrossRef]
- Kim, S.E. Colonic Slow Transit Can Cause Changes in the Gut Environment Observed in the Elderly. J. Neurogastroenterol. Motil. 2017, 23, 3–4. [Google Scholar] [CrossRef]
- Ordiz, M.I.; May, T.D.; Mihindukulasuriya, K.; Martin, J.; Crowley, J.; Tarr, P.I.; Ryan, K.; Mortimer, E.; Gopalsamy, G.; Maleta, K.; et al. The Effect of Dietary Resistant Starch Type 2 on the Microbiota and Markers of Gut Inflammation in Rural Malawi Children. Microbiome 2015, 3, 37. [Google Scholar] [CrossRef]
- Lejk, A.; Myśliwiec, M.; Myśliwiec, A. Effect of Eating Resistant Starch on the Development of Overweight, Obesity, and Disorders of Carbohydrate Metabolism in Children. Pediatr. Endocrinol. Diabetes Metab. 2019, 25, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Kovatcheva-Datchary, P.; Nilsson, A.; Akrami, R.; Lee, Y.S.; De Vadder, F.; Arora, T.; Hallen, A.; Martens, E.; Björck, I.; Bäckhed, F. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab. 2015, 22, 971–982. [Google Scholar] [CrossRef] [PubMed]
- Hichri, F.; Omri Hichri, A.; Maha, M.; Saad Mana Hossan, A.; Flamini, G.; Ben Jannet, H. Chemical Composition, Antibacterial, Antioxidant and in Vitro Antidiabetic Activities of Essential Oils from Eruca Vesicaria. Chem. Biodivers. 2019, 16, e1900183. [Google Scholar] [CrossRef] [PubMed]
- Gibson, P.R. The Evidence Base for Efficacy of the Low FODMAP Diet in Irritable Bowel Syndrome: Is It Ready for Prime Time as a First-Line Therapy? J. Gastroenterol. Hepatol. 2017, 32, 32–35. [Google Scholar] [CrossRef]
- Halmos, E.P.; Gibson, P.R. Controversies and Reality of the FODMAP Diet for Patients with Irritable Bowel Syndrome. J. Gastroenterol. Hepatol. 2019, 34, 1134–1142. [Google Scholar] [CrossRef]
- Zhu, J.; Zhuang, J.; Liu, H.; Chen, Z.; Li, C. Recent Understanding of Resistant Starch Type 5 (RS5) and Its Role in Modulating Gut Microbiota. Food Chem. 2025, 487, 144685. [Google Scholar] [CrossRef] [PubMed]
- Kwaśny, D.; Borczak, B.; Sikora, M.; Kapusta-Duch, J. Preliminary Study on the Influence of the Polyphenols of Different Groups on the Digestibility of Wheat Starch, Measured by the Content of Resistant Starch. Appl. Sci. 2022, 12, 10859. [Google Scholar] [CrossRef]
- Dziedzic, A.; Maciak, K.; Bliźniewska-Kowalska, K.; Gałecka, M.; Kobierecka, W.; Saluk, J. The Power of Psychobiotics in Depression: A Modern Approach through the Microbiota-Gut-Brain Axis: A Literature Review. Nutrients 2024, 16, 1054. [Google Scholar] [CrossRef] [PubMed]
- Mohr, A.E.; Ortega-Santos, C.P.; Whisner, C.M.; Klein-Seetharaman, J.; Jasbi, P.; Sa, J.K.; Mohr, A.E.; Ortega-Santos, C.P.; Whisner, C.M.; Klein-Seetharaman, J.; et al. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines 2024, 12, 1496. [Google Scholar] [CrossRef]
- Hughes, R.L.; Marco, M.L.; Hughes, J.P.; Keim, N.L.; Kable, M.E. The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models—Part I: Overview of Current Methods. Adv. Nutr. 2019, 10, 953–978. [Google Scholar] [CrossRef]
- Hughes, R.L.; Kable, M.E.; Marco, M.; Keim, N.L. The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models. Part II: Results. Adv. Nutr. 2019, 10, 979–998. [Google Scholar] [CrossRef]
- Carpenter, D.; Dhar, S.; Mitchell, L.M.; Fu, B.; Tyson, J.; Shwan, N.A.A.; Yang, F.; Thomas, M.G.; Armour, J.A.L. Obesity, Starch Digestion and Amylase: Association between Copy Number Variants at Human Salivary (AMY1) and Pancreatic (AMY2) Amylase Genes. Hum. Mol. Genet. 2015, 24, 3472–3480. [Google Scholar] [CrossRef]
- Vilne, B.; Ķibilds, J.; Siksna, I.; Lazda, I.; Valciņa, O.; Krūmiņa, A. Could Artificial Intelligence/Machine Learning and Inclusion of Diet-Gut Microbiome Interactions Improve Disease Risk Prediction? Case Study: Coronary Artery Disease. Front. Microbiol. 2022, 13, 627892. [Google Scholar] [CrossRef]
- Acharjee, A.; Choudhury, S.P. Artificial Intelligence-Based Personalized Nutrition and Prediction of Irritable Bowel Syndrome Patients. Ther. Adv. Gastroenterol. 2022, 15, 17562848221145612. [Google Scholar] [CrossRef]
- Maier, T.V.; Lucio, M.; Lee, L.H.; Verberkmoes, N.C.; Brislawn, C.J.; Bernhardt, J.; Lamendella, R.; McDermott, J.E.; Bergeron, N.; Heinzmann, S.S.; et al. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. mBio 2017, 8, e01343-17. [Google Scholar] [CrossRef]
- Camilleri, M. Review article: Biomarkers and Personalized Therapy in Lower Functional Gastrointestinal Disorders. Aliment. Pharmacol. Ther. 2015, 42, 818–828. [Google Scholar] [CrossRef]
Type | Description | Sources/Examples |
---|---|---|
RS1 | Physically inaccessible starches due to encapsulation within cell walls or fibrous matrices | Whole or partially milled grains and seeds |
RS2 | Native granular starches with a compact crystalline structure resistant to enzymatic digestion | Raw potatoes, green bananas, high-amylose maize |
RS3 | Retrograded starches formed after gelatinization and cooling, leading to recrystallization | Cooked and cooled pasta, rice, potatoes |
RS4 | Chemically modified starches via cross-linking or substitution to enhance resistance | Commercially modified starches in processed foods |
RS5 | Amylose–lipid complexes formed during cooking or processing, increasing structural resistance | Cooked foods containing amylose and lipids |
Subtype | Diagnostic Criteria |
---|---|
IBS-C (Constipation-predominant) | >25% of bowel movements with Bristol stool types 1 or 2 and <25% with types 6 or 7 |
IBS-D (Diarrhea-predominant) | >25% of bowel movements with Bristol stool types 6 or 7 and <25% with types 1 or 2 |
IBS-M (Mixed type) | >25% of bowel movements with Bristol stool types 1 or 2 and >25% with types 6 or 7 |
IBS-U (Unclassified) | Meets diagnostic criteria for IBS, but stool patterns do not clearly fit into the categories above |
Year | Design | Studies/Participants | Intervention | Main Results | References |
---|---|---|---|---|---|
2020 | SR + MA | 21 preclinical + 7 clinical | RS vs. control in IBD | SMD −1.83 mucosal damage; positive effects in all clinical studies | [142] |
2020 | SR + MA | 13 studies, 14 effect sizes | RS vs. control | IL-6: −1.11 pg/mL; TNF-α: −2.19 pg/mL; CRP: NS | [143] |
2021 | SR + MA | 19 RCTs | RS vs. digestible starch | Glucose: −0.09 mmol/L; HOMA-IR: −0.33 | [144] |
2017 | SR + MA | 13 RCTs | RS vs. control in healthy | Fecal weight: +35.51 g/day; Butyrate: SMD 0.61; Fecal pH: −0.19 | [145] |
2024 | RCT double-blind | 87 Thai adults with chronic constipation | RS3 9 g/day vs. placebo | BSS score ~4 at 6 weeks; ↑Bifidobacterium, Prevotella, Akkermansia | [86] |
2024 | Secondary analysis RCT | 70 healthy Canadian adults | RPS 3.5–7 g/day vs. placebo | 21 significant bacteria–symptom correlations; personalized response patterns | [87] |
2022 | RCT innovative | Healthy adults | RS blends 0–30 g/day + smart caps | GI effects with 5 g RS/day; ↑Faecalibacterium, Akkermansia | [146] |
2022 | RCT pilot, double-blind, cross-over | 40 IBS patients (Rome IV) | RS2 20 g/day, RS2 + minimally fermented fiber (PGX; 5 g/day) vs. placebo | RS2: ↑flatulence, no symptom change; RS2 + PGX: good tolerability, no SCFA effect | [147] |
1998 | RCT crossover | 24 subjects | RS2, RS3 vs. control | Butyrate: SCFA + 31%; Fecal volume +22 g/day | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovacs, E.; Szabo, K.; Varvara, R.-A.; Uifãlean, A.; Cozma, A.; Vulturar, R.; Sitar-Taut, A.V.; Gabbianelli, R.; Myhrstad, M.C.W.; Telle-Hansen, V.H.; et al. Resistant Starch and Microbiota-Derived Secondary Metabolites: A Focus on Postbiotic Pathways in Gut Health and Irritable Bowel Syndrome. Int. J. Mol. Sci. 2025, 26, 7753. https://doi.org/10.3390/ijms26167753
Kovacs E, Szabo K, Varvara R-A, Uifãlean A, Cozma A, Vulturar R, Sitar-Taut AV, Gabbianelli R, Myhrstad MCW, Telle-Hansen VH, et al. Resistant Starch and Microbiota-Derived Secondary Metabolites: A Focus on Postbiotic Pathways in Gut Health and Irritable Bowel Syndrome. International Journal of Molecular Sciences. 2025; 26(16):7753. https://doi.org/10.3390/ijms26167753
Chicago/Turabian StyleKovacs, Eniko, Katalin Szabo, Rodica-Anita Varvara, Alina Uifãlean, Angela Cozma, Romana Vulturar, Adela Viviana Sitar-Taut, Rosita Gabbianelli, Mari C. W. Myhrstad, Vibeke H. Telle-Hansen, and et al. 2025. "Resistant Starch and Microbiota-Derived Secondary Metabolites: A Focus on Postbiotic Pathways in Gut Health and Irritable Bowel Syndrome" International Journal of Molecular Sciences 26, no. 16: 7753. https://doi.org/10.3390/ijms26167753
APA StyleKovacs, E., Szabo, K., Varvara, R.-A., Uifãlean, A., Cozma, A., Vulturar, R., Sitar-Taut, A. V., Gabbianelli, R., Myhrstad, M. C. W., Telle-Hansen, V. H., Orãșan, O. H., Fodor, A., Suharoschi, R., & Hegheș, S.-C. (2025). Resistant Starch and Microbiota-Derived Secondary Metabolites: A Focus on Postbiotic Pathways in Gut Health and Irritable Bowel Syndrome. International Journal of Molecular Sciences, 26(16), 7753. https://doi.org/10.3390/ijms26167753