The Role of Endobronchial Biopsies in Evaluating Biologic Therapy Response in Severe Asthma
Abstract
1. Introduction
2. Omalizumab
3. Mepolizumab
4. Benralizumab
5. Dupilumab
6. Tezepelumab
7. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Global Strategy for Asthma Management and Prevention, 2024. 2024. Available online: www.ginasthma.org (accessed on 15 June 2025).
- Holguin, F.; Cardet, J.C.; Chung, K.F.; Diver, S.; Ferreira, D.S.; Fitzpatrick, A.; Gaga, M.; Kellermeyer, L.; Khurana, S.; Knight, S.; et al. Management of severe asthma: A European Respiratory Society/American Thoracic Society guideline. Eur. Respir. J. 2020, 55, 1900588. [Google Scholar] [CrossRef]
- Brusselle, G.G.; Koppelman, G.H. Biologic Therapies for Severe Asthma. N. Engl. J. Med. 2022, 386, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International, ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Erratum in. Eur. Respir. J. 2014, 43, 343–373. [Google Scholar] [CrossRef] [PubMed]
- Schoettler, N.; Strek, M.E. Recent Advances in Severe Asthma: From Phenotypes to Personalized Medicine. Chest 2020, 157, 516–528. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.L.; Bacharier, L.B.; Bateman, E.; Boulet, L.P.; Brightling, C.; Buhl, R.; Brusselle, G.; Cruz, A.A.; Drazen, J.M.; Duijts, L.; et al. Key recommendations for primary care from the 2022 Global Initiative for Asthma (GINA) update. NPJ Prim. Care Respir. Med. 2023, 33, 7. [Google Scholar] [CrossRef]
- Price, D.B.; Trudo, F.; Voorham, J.; Xu, X.; Kerkhof, M.; Ling Zhi Jie, J.; Tran, T.N. Adverse outcomes from initiation of systemic corticosteroids for asthma: Long-term observational study. J. Asthma Allergy 2018, 11, 193–204. [Google Scholar] [CrossRef]
- Bakakos, P.; Kostikas, K.; Loukides, S.; Makris, M.; Papadopoulos, N.G.; Steiropoulos, P.; Tryfon, S.; Zervas, E. Reducing Tolerance for SABA and OCS towards the Extreme Ends of Asthma Severity. J. Pers. Med. 2022, 12, 504. [Google Scholar] [CrossRef]
- Kuruvilla, M.E.; Lee, F.E.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef]
- Ozdemir, C.; Kucuksezer, U.C.; Akdis, M.; Akdis, C.A. The concepts of asthma endotypes and phenotypes to guide current and novel treatment strategies. Expert Rev. Respir. Med. 2018, 12, 733–743. [Google Scholar] [CrossRef]
- Harada, N.; Makita, N.; Fukui, K.; Nishida, K.; Oneda, K.; Tashiro, N.A. Retrospective Claims Database Study to Clarify Disease Burden of Severe Asthma Patients with Type 2 High or Low Inflammation. J. Asthma Allergy 2023, 16, 83–93. [Google Scholar] [CrossRef]
- Frossing, L.; Klein, D.K.; Hvidtfeldt, M.; Obling, N.; Telg, G.; Erjefalt, J.S.; Bodtger, U.; Porsbjerg, C. Distribution of type 2 biomarkers and association with severity, clinical characteristics and comorbidities in the BREATHE real-life asthma population. ERJ Open Res. 2023, 9, 00483–2022. [Google Scholar] [CrossRef]
- Lipworth, B.J.; Han, J.K.; Desrosiers, M.; Hopkins, C.; Lee, S.E.; Mullol, J.; Pfaar, O.; Li, T.; Chen, C.; Almqvist, G.; et al. Tezepelumab in Adults with Severe Chronic Rhinosinusitis with Nasal Polyps. N. Engl. J. Med. 2025, 392, 1178–1188. [Google Scholar] [CrossRef]
- Blauvelt, A.; de Bruin-Weller, M.; Gooderham, M.; Cather, J.C.; Weisman, J.; Pariser, D.; Simpson, E.L.; Papp, K.A.; Hong, H.C.; Rubel, D.; et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): A 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet 2017, 389, 2287–2303. [Google Scholar] [CrossRef]
- Maurer, M.; Rosen, K.; Hsieh, H.J.; Saini, S.; Grattan, C.; Gimenez-Arnau, A.; Agarwal, S.; Doyle, R.; Canvin, J.; Kaplan, A.; et al. Omalizumab for the treatment of chronic idiopathic or spontaneous urticaria. Erratum in. N. Engl. J. Med. 2013, 368, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Bachert, C.; Han, J.K.; Desrosiers, M.; Hellings, P.W.; Amin, N.; Lee, S.E.; Mullol, J.; Greos, L.S.; Bosso, J.V.; Laidlaw, T.M.; et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): Results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Erratum in. Lancet 2019, 394, 1638–1650. [Google Scholar] [CrossRef] [PubMed]
- Han, J.K.; Bachert, C.; Fokkens, W.; Desrosiers, M.; Wagenmann, M.; Lee, S.E.; Smith, S.G.; Martin, N.; Mayer, B.; Yancey, S.W.; et al. Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2021, 9, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Gevaert, P.; Omachi, T.A.; Corren, J.; Mullol, J.; Han, J.; Lee, S.E.; Kaufman, D.; Ligueros-Saylan, M.; Howard, M.; Zhu, R.; et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. Erratum in. J. Allergy Clin. Immunol. 2020, 146, 595–605. [Google Scholar] [CrossRef]
- Carr, T.F.; Zeki, A.A.; Kraft, M. Eosinophilic and Noneosinophilic Asthma. Am. J. Respir. Crit. Care Med. 2018, 197, 22–37. [Google Scholar] [CrossRef]
- Cowan, D.C.; Cowan, J.O.; Palmay, R.; Williamson, A.; Taylor, D.R. Effects of steroid therapy on inflammatory cell subtypes in asthma. Thorax 2010, 65, 384–390. [Google Scholar] [CrossRef]
- Saglani, S.; Lloyd, C.M. Novel concepts in airway inflammation and remodelling in asthma. Eur. Respir. J. 2015, 46, 1796–1804. [Google Scholar] [CrossRef]
- Diver, S.; Russell, R.J.; Brightling, C.E. New and emerging drug treatments for severe asthma. Clinical and experimental allergy. J. Br. Soc. Allergy Clin. Immunol. 2018, 48, 241–252. [Google Scholar] [CrossRef]
- Bousquet, J.; Rabe, K.; Humbert, M.; Chung, K.F.; Berger, W.; Fox, H.; Ayre, G.; Chen, H.; Thomas, K.; Blogg, M.; et al. Predicting and evaluating response to omalizumab in patients with severe allergic asthma. Respir. Med. 2007, 101, 1483–1492. [Google Scholar] [CrossRef]
- Djukanovic, R.; Wilson, S.J.; Kraft, M.; Jarjour, N.N.; Steel, M.; Chung, K.F.; Bao, W.; Fowler-Taylor, A.; Matthews, J.; Busse, W.W.; et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am. J. Respir. Crit. Care Med. 2004, 170, 583–593. [Google Scholar] [CrossRef]
- van Rensen, E.L.; Evertse, C.E.; van Schadewijk, W.A.; van Wijngaarden, S.; Ayre, G.; Mauad, T.; Hiemstra, P.S.; Sterk, P.J.; Rabe, K.F. Eosinophils in bronchial mucosa of asthmatics after allergen challenge: Effect of anti-IgE treatment. Allergy 2009, 64, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Riccio, A.M.; Dal Negro, R.W.; Micheletto, C.; De Ferrari, L.; Folli, C.; Chiappori, A.; Canonica, G.W. Omalizumab modulates bronchial reticular basement membrane thickness and eosinophil infiltration in severe persistent allergic asthma patients. Int. J. Immunopathol. Pharmacol. 2012, 25, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Mauri, P.; Riccio, A.M.; Rossi, R.; Di Silvestre, D.; Benazzi, L.; De Ferrari, L.; Dal Negro, R.W.; Holgate, S.T.; Canonica, G.W. Proteomics of bronchial biopsies: Galectin-3 as a predictive biomarker of airway remodelling modulation in omalizumab-treated severe asthma patients. Immunol. Lett. 2014, 162, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Pillai, P.; Chan, Y.C.; Wu, S.Y.; Ohm-Laursen, L.; Thomas, C.; Durham, S.R.; Menzies-Gow, A.; Rajakulasingam, R.K.; Ying, S.; Gould, H.J.; et al. Omalizumab reduces bronchial mucosal IgE and improves lung function in non-atopic asthma. Eur. Respir. J. 2016, 48, 1593–1601. [Google Scholar] [CrossRef]
- Huang, Y.C.; Weng, C.M.; Lee, M.J.; Lin, S.M.; Wang, C.H.; Kuo, H.P. Endotypes of severe allergic asthma patients who clinically benefit from anti-IgE therapy. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2019, 49, 44–53. [Google Scholar] [CrossRef]
- Kuo, C.W.; Liao, X.M.; Huang, Y.C.; Chang, H.Y.; Shieh, C.C. Bronchoscopy-guided bronchial epithelium sampling as a tool for selecting the optimal biologic treatment in a patient with severe asthma: A case report. Allergy Asthma Clin. Immunol. Off. J. Can. Soc. Allergy Clin. Immunol. 2019, 15, 76. [Google Scholar] [CrossRef]
- Zastrzezynska, W.; Przybyszowski, M.; Bazan-Socha, S.; Gawlewicz-Mroczka, A.; Sadowski, P.; Okon, K.; Jakiela, B.; Plutecka, H.; Cmiel, A.; Sladek, K.; et al. Omalizumab may decrease the thickness of the reticular basement membrane and fibronectin deposit in the bronchial mucosa of severe allergic asthmatics. J. Asthma Off. J. Assoc. Care Asthma 2020, 57, 468–477. [Google Scholar] [CrossRef]
- Bakakos, A.; Loukides, S.; Bakakos, P. Severe Eosinophilic Asthma. J. Clin. Med. 2019, 8, 1375. [Google Scholar] [CrossRef]
- Ortega, H.G.; Liu, M.C.; Pavord, I.D.; Brusselle, G.G.; FitzGerald, J.M.; Chetta, A.; Humbert, M.; Katz, L.E.; Keene, O.N.; Yancey, S.W.; et al. Mepolizumab treatment in patients with severe eosinophilic asthma. Erratum in. N. Engl. J. Med. 2014, 371, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.D.; Korn, S.; Howarth, P.; Bleecker, E.R.; Buhl, R.; Keene, O.N.; Ortega, H.; Chanez, P. Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet 2012, 380, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Schleich, F.N.; Chevremont, A.; Paulus, V.; Henket, M.; Manise, M.; Seidel, L.; Louis, R. Importance of concomitant local and systemic eosinophilia in uncontrolled asthma. Eur. Respir. J. 2014, 44, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Kelly, E.A.; Esnault, S.; Liu, L.Y.; Evans, M.D.; Johansson, M.W.; Mathur, S.; Mosher, D.F.; Denlinger, L.C.; Jarjour, N.N. Mepolizumab Attenuates Airway Eosinophil Numbers, but Not Their Functional Phenotype, in Asthma. Am. J. Respir. Crit. Care Med. 2017, 196, 1385–1395. [Google Scholar] [CrossRef]
- Domvri, K.; Tsiouprou, I.; Bakakos, P.; Steiropoulos, P.; Katsoulis, K.; Kostikas, K.; Antoniou, K.M.; Papaioannou, A.I.; Rovina, N.; Katsaounou, P.; et al. Effect of mepolizumab in airway remodeling in patients with late-onset severe asthma with an eosinophilic phenotype. J. Allergy Clin. Immunol. 2025, 155, 425–435. [Google Scholar] [CrossRef]
- Bergeron, C.; Tulic, M.K.; Hamid, Q. Airway remodelling in asthma: From benchside to clinical practice. Can. Respir. J. 2010, 17, e85–e93. [Google Scholar] [CrossRef]
- Flood-Page, P.; Menzies-Gow, A.; Phipps, S.; Ying, S.; Wangoo, A.; Ludwig, M.S.; Barnes, N.; Robinson, D.; Kay, A.B. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J. Clin. Investig. 2003, 112, 1029–1036. [Google Scholar] [CrossRef]
- Taille, F.H.C.; Heddebaut, N.; Dupin, C.; Le Guen, P.; Le Brun, M.; Poté, N.; Cazes, A.; Roy, C.; Dupont, A.; Létuvé, S. Impact of Mepolizumab on Airway Remodelling in Severe Eosinophilic Asthma [abstract]. Am. J. Respir. Crit. Care Med. 2024, 209, A1051. [Google Scholar]
- Dagher, R.; Kumar, V.; Copenhaver, A.M.; Gallagher, S.; Ghaedi, M.; Boyd, J.; Newbold, P.; Humbles, A.A.; Kolbeck, R. Novel mechanisms of action contributing to benralizumab’s potent anti-eosinophilic activity. Eur. Respir. J. 2022, 59, 2004306. [Google Scholar] [CrossRef]
- Moran, A.M.; Ramakrishnan, S.; Borg, C.A.; Connolly, C.M.; Couillard, S.; Mwasuku, C.M.; Pavord, I.D.; Hinks, T.S.C.; Lehtimäki, L. Blood Eosinophil Depletion with Mepolizumab, Benralizumab, and Prednisolone in Eosinophilic Asthma. Am. J. Respir. Crit. Care Med. 2020, 202, 1314–1316. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Russell, R.E.K.; Mahmood, H.R.; Krassowska, K.; Melhorn, J.; Mwasuku, C.; Pavord, I.D.; Bermejo-Sanchez, L.; Howell, I.; Mahdi, M.; et al. Treating eosinophilic exacerbations of asthma and COPD with benralizumab (ABRA): A double-blind, double-dummy, active placebo-controlled randomised trial. Lancet Respir. Med. 2025, 13, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Laviolette, M.; Gossage, D.L.; Gauvreau, G.; Leigh, R.; Olivenstein, R.; Katial, R.; Busse, W.W.; Wenzel, S.; Wu, Y.; Datta, V.; et al. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J. Allergy Clin. Immunol. 2013, 132, 1086–1096 e5. [Google Scholar] [CrossRef]
- Chachi, L.; Diver, S.; Kaul, H.; Rebelatto, M.C.; Boutrin, A.; Nisa, P.; Newbold, P.; Brightling, C. Computational modelling prediction and clinical validation of impact of benralizumab on airway smooth muscle mass in asthma. Eur. Respir. J. 2019, 54, 1900930. [Google Scholar] [CrossRef]
- Gauvreau, G.M.; Sehmi, R.; FitzGerald, J.M.; Leigh, R.; Cockcroft, D.W.; Davis, B.E.; Mayers, I.; Boulet, L.P.; Al-Sajee, D.; Salter, B.M.; et al. Benralizumab for allergic asthma: A randomised, double-blind, placebo-controlled trial. Eur. Respir. J. 2024, 64, 2400512. [Google Scholar] [CrossRef]
- A Phase 4, Multicenter, Randomized, Double-Blind, Parallel Group, Placebo Controlled Study to Evaluate the Effect of Benralizumab on Structural and Lung Function Changes in Severe Eosinophilic Asthmatics. Available online: https://www.astrazenecaclinicaltrials.com/study/D3250C00059/ (accessed on 15 June 2025).
- Effect of Benralizumab on Airway Remodeling in Asthma (BENRAMOD). Available online: https://clinicaltrials.gov/study/NCT04365205 (accessed on 15 June 2025).
- Wechsler, M.E.; Klion, A.D.; Paggiaro, P.; Nair, P.; Staumont-Salle, D.; Radwan, A.; Johnson, R.R.; Kapoor, U.; Khokhar, F.A.; Daizadeh, N.; et al. Effect of Dupilumab on Blood Eosinophil Counts in Patients with Asthma, Chronic Rhinosinusitis with Nasal Polyps, Atopic Dermatitis, or Eosinophilic Esophagitis. J. Allergy Clin. Immunol. Pract. 2022, 10, 2695–2709. [Google Scholar] [CrossRef]
- Evaluation of Dupilumab’s Effects on Airway Inflammation in Patients with Asthma (EXPEDITION). 2022. Available online: https://clinicaltrials.gov/study/NCT02573233 (accessed on 15 June 2025).
- Bini, F.; Bodini, B.D.; Cristiano, A.; Vaghi, A. Persistence of eosinophils in bronchial mucosa biopsies in patients treated with dupilumab for 6 months. Eur. Respir. J. 2023, 62, PA4718. [Google Scholar] [CrossRef]
- Marone, G.; Spadaro, G.; Braile, M.; Poto, R.; Criscuolo, G.; Pahima, H.; Loffredo, S.; Levi-Schaffer, F.; Varricchi, G. Tezepelumab: A novel biological therapy for the treatment of severe uncontrolled asthma. Expert Opin. Investig. Drugs 2019, 28, 931–940. [Google Scholar] [CrossRef]
- Menzies-Gow, A.; Corren, J.; Bourdin, A.; Chupp, G.; Israel, E.; Wechsler, M.E.; Brightling, C.E.; Griffiths, J.M.; Hellqvist, A.; Bowen, K.; et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N. Engl. J. Med. 2021, 384, 1800–1809. [Google Scholar] [CrossRef]
- Corren, J.; Pham, T.H.; Garcia Gil, E.; Salapa, K.; Ren, P.; Parnes, J.R.; Colice, G.; Griffiths, J.M. Baseline type 2 biomarker levels and response to tezepelumab in severe asthma. Allergy 2022, 77, 1786–1796. [Google Scholar] [CrossRef] [PubMed]
- Diver, S.; Khalfaoui, L.; Emson, C.; Wenzel, S.E.; Menzies-Gow, A.; Wechsler, M.E.; Johnston, J.; Molfino, N.; Parnes, J.R.; Megally, A.; et al. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir. Med. 2021, 9, 1299–1312. [Google Scholar] [CrossRef] [PubMed]
- Sverrild, A.; Hansen, S.; Hvidtfeldt, M.; Clausson, C.M.; Cozzolino, O.; Cerps, S.; Uller, L.; Backer, V.; Erjefalt, J.; Porsbjerg, C. The effect of tezepelumab on airway hyperresponsiveness to mannitol in asthma (UPSTREAM). Eur. Respir. J. 2022, 59, 2101296. [Google Scholar] [CrossRef] [PubMed]
- Gauvreau, G.M.; O’Byrne, P.M.; Boulet, L.P.; Wang, Y.; Cockcroft, D.; Bigler, J.; FitzGerald, J.M.; Boedigheimer, M.; Davis, B.E.; Dias, C.; et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N. Engl. J. Med. 2014, 370, 2102–2110. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.C.; Chou, H.C.; Chen, C.M.; Chiang, B.L. Anti-thymic stromal lymphopoietin antibody suppresses airway remodeling in asthma through reduction of MMP and CTGF. Pediatr. Res. 2019, 86, 181–187. [Google Scholar] [CrossRef]
- Matucci, A.; Nencini, F.; Maggiore, G.; Chiccoli, F.; Accinno, M.; Vivarelli, E.; Bruno, C.; Locatello, L.G.; Palomba, A.; Nucci, E.; et al. High proportion of inflammatory CD62L(low) eosinophils in blood and nasal polyps of severe asthma patients. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2023, 53, 78–87. [Google Scholar] [CrossRef]
- Vultaggio, A.; Accinno, M.; Vivarelli, E.; Mecheri, V.; Maggiore, G.; Cosmi, L.; Parronchi, P.; Rossi, O.; Maggi, E.; Gallo, O.; et al. Blood CD62L(low) inflammatory eosinophils are related to the severity of asthma and reduced by mepolizumab. Allergy 2023, 78, 3154–3165. [Google Scholar] [CrossRef]
- Mesnil, C.; Raulier, S.; Paulissen, G.; Xiao, X.; Birrell, M.A.; Pirottin, D.; Janss, T.; Starkl, P.; Ramery, E.; Henket, M.; et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J. Clin. Investig. 2016, 126, 3279–3295. [Google Scholar] [CrossRef]
- Calven, J.; Ax, E.; Radinger, M. The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int. J. Mol. Sci. 2020, 21, 8907. [Google Scholar] [CrossRef]
- Varricchi, G.; Brightling, C.E.; Grainge, C.; Lambrecht, B.N.; Chanez, P. Airway remodelling in asthma and the epithelium: On the edge of a new era. Eur. Respir. J. 2024, 63, 2301619. [Google Scholar] [CrossRef]
- Hewitt, R.J.; Lloyd, C.M. Regulation of immune responses by the airway epithelial cell landscape. Nat. Rev. Immunol. 2021, 21, 347–362. [Google Scholar] [CrossRef]
- Nedeva, D.; Kowal, K.; Mihaicuta, S.; Guidos Fogelbach, G.; Steiropoulos, P.; Jose Chong-Neto, H.; Tiotiu, A. Epithelial alarmins: A new target to treat chronic respiratory diseases. Expert Rev. Respir. Med. 2023, 17, 773–786. [Google Scholar] [CrossRef]
- Porsbjerg, C.; Nieto-Fontarigo, J.J.; Cerps, S.; Ramu, S.; Menzel, M.; Hvidtfeldt, M.; Silberbrandt, A.; Frossing, L.; Klein, D.; Sverrild, A.; et al. Phenotype and severity of asthma determines bronchial epithelial immune responses to a viral mimic. Eur. Respir. J. 2022, 60, 2102333. [Google Scholar] [CrossRef]
- Varricchi, G.; Ferri, S.; Pepys, J.; Poto, R.; Spadaro, G.; Nappi, E.; Paoletti, G.; Virchow, J.C.; Heffler, E.; Canonica, W.G. Biologics and airway remodeling in severe asthma. Allergy 2022, 77, 3538–3552. [Google Scholar] [CrossRef]
- Khalfaoui, L.; Pabelick, C.M. Airway smooth muscle in contractility and remodeling of asthma: Potential drug target mechanisms. Expert Opin. Ther. Targets 2023, 27, 19–29. [Google Scholar] [CrossRef]
- Hough, K.P.; Curtiss, M.L.; Blain, T.J.; Liu, R.M.; Trevor, J.; Deshane, J.S.; Thannickal, V.J. Airway Remodeling in Asthma. Front. Med. 2020, 7, 191. [Google Scholar] [CrossRef]
- Hallstrand, T.S.; Leuppi, J.D.; Joos, G.; Hall, G.L.; Carlsen, K.H.; Kaminsky, D.A.; Coates, A.L.; Cockcroft, D.W.; Culver, B.H.; Diamant, Z.; et al. ERS technical standard on bronchial challenge testing: Pathophysiology and methodology of indirect airway challenge testing. Eur. Respir. J. 2018, 52, 1801033. [Google Scholar] [CrossRef]
- Cosio, B.G.; Iglesias, A.; Shafiek, H.; Mosteiro, M.; Escribano, I.; Toledo-Pons, N.; Valera, J.L.; Gomez Bellvert, C.; Perez de Llano, L. The Role of Bronchial Biopsy in the Prediction of Response to Biologic Therapy in Severe Uncontrolled Asthma: A Prospective Study. Chest 2025, 167, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Dunican, E.M.; Elicker, B.M.; Gierada, D.S.; Nagle, S.K.; Schiebler, M.L.; Newell, J.D.; Raymond, W.W.; Lachowicz-Scroggins, M.E.; Di Maio, S.; Hoffman, E.A.; et al. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J. Clin. Investig. 2018, 128, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Elicker, B.M.; Henry, T.; Gierada, D.S.; Schiebler, M.L.; Huang, B.K.; Peters, M.C.; Castro, M.; Hoffman, E.A.; Fain, S.B.; et al. Mucus Plugs Persist in Asthma, and Changes in Mucus Plugs Associate with Changes in Airflow over Time. Am. J. Respir. Crit. Care Med. 2022, 205, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Perez de Llano, L.; Cisneros, C.; Dominguez-Ortega, J.; Martinez-Moragon, E.; Olaguibel, J.M.; Plaza, V.; Quirce, S.; Davila, I. Response to Monoclonal Antibodies in Asthma: Definitions, Potential Reasons for Failure, and Therapeutic Options for Suboptimal Response. J. Investig. Allergol. Clin. Immunol. 2023, 33, 1–13. [Google Scholar]
- Genofre, E.; Carstens, D.; DeBacker, W.; Muchmore, P.; Panettieri, R.A., Jr.; Rhodes, K.; Shih, V.H.; Trudo, F. The effects of benralizumab on airway geometry and dynamics in severe eosinophilic asthma: A single-arm study design exploring a functional respiratory imaging approach. Respir. Res. 2023, 24, 121. [Google Scholar] [CrossRef]
Omalizumab | ||||
---|---|---|---|---|
Author (Year) | Type of Study | Study Sample | Focus on Biopsies | Main Findings |
Djukanović et al. (2004) [24] | Prospective, randomized controlled trial | 45 patients (22 omalizumab, 23 placebo), mild to moderate persistent asthma with ≥2% sputum eosinophils | Bronchial biopsies at baseline and post-treatment | ↓ eosinophils, IgE+ cells, CD3+, CD4+, CD8+ T-cells, B-cells, and IL-4+ cells in omalizumab group ~ airway hyperresponsiveness |
van Rensen et al. (2009) [25] | Double-blind, randomized, placebo-controlled trial | 25 participants with asthma | Bronchial biopsies 24h after allergen challenge and after 12 weeks of treatment | ↓ airway eosinophils, CD4+ T cells, and FcεRI+ cells in omalizumab group ~ in airway hyperresponsiveness (PC20) |
Riccio et al. (2012) [26] | Prospective, non-randomized | 11 patients with severe persistent allergic asthma | Bronchial biopsies before and after treatment | ↓ RBM thickness and eosinophils in the omalizumab group |
Mauri et al. (2014) [27] | Prospective, non-randomized study | 8 patients with severe persistent atopic asthma | Bronchial biopsies pre- and post-treatment (12 months) | ↓ smooth muscle-associated proteins (myosins, actins) in the omalizumab group ~ in ECM proteins; galectin-3 found only in responders |
Pillai et al. (2016) [28] | Prospective, randomized clinical trial | 18 patients with non-atopic asthma (9 on omalizumab, 9 on placebo) over 20 weeks | Bronchial biopsies obtained at baseline and after 12–14 weeks | ↓ IgE-expressing cells in the omalizumab preserved or ↑ FEV1 in omalizumab (Placebo group showed decline in lung function) |
Huang et al. (2019) [29] | Prospective, non-randomized study | 23 patients with severe allergic asthma; 14 responders | Bronchial biopsies before and after omalizumab treatment | ↓ IL-33, IL-25, and TSLP observed in responders. Clinical improvements in exacerbations, asthma control, and lung function |
Zastrzeżyńska et al. (2020) [31] | Prospective, non-randomized | 13 patients with severe allergic asthma | Bronchial biopsies at baseline and after 12 months | ↓ basal lamina thickness and fibronectin; ~ collagen |
Mepolizumab | ||||
Author (Year) | Type of Study | Study Sample | Focus on Biopsies | Main Findings |
Kelly et al. (2017) [36] | Experimental, non-clinical prospective study | 38 mild asthmatics enrolled, 10 completed the study | WLAC → 1 month bronchoscopy at 0 and 48 h following SBP-Ag → 1 month 750 mg mepolizumab → 4–12 weeks bronchoscopy at 0 and 48 h following SBP-Ag post mepolizumab | ↓ airway eosinophils ↓ eosinophilic peroxidase deposition Remaining eosinophils express functional cytokine and IL-3 and IL-5 receptors in response to allergen challenge |
Domvri et al. (2025) [37] | Prospective non-randomized multicenter study | 41 severe T2 high asthmatics, 34 had pre and post mepolizumab bronchial biopsies | Bronchial biopsies at baseline and after 12 months | ↓ sub-basement membrane thickness ↓ airway smooth muscle area/layer thickness ↓ epithelial damage ↓ tissue eosinophils |
Flood-Page et al. (2003) [39] | Double blind placebo-controlled trial | 24 mild asthmatics | Bronchial biopsies at baseline and after 3 months | ↓ tissue eosinophils ↓ TGF-β levels ↓ extracellular matrix proteins (e.g., tenascine) |
Taille et al. (2024) [40] | Single center prospective non-randomized study | 37 severe asthmatics 23 completed the study | Bronchial biopsies at baseline and after 6 and 12 months | ↓ sub-basement membrane thickness ↓ smooth muscle cell area ↓ tissue eosinophils at 6 months, persisting through 12 months |
Benralizumab | ||||
Author (Year) | Type of Study | Study Sample | Focus on Biopsies | Main Findings |
Laviolette et al. (2013) [44] | Prospective double-blind placebo-controlled study | 13 patients single IV shot or placebo 14 patients SC 100 mg, 200 mg or placebo Q4W | Bronchial biopsies at baseline and after 3 months | ↓ airway and sputum eosinophils Complete peripheral blood eosinophil abolishment SC inferior to IV regimen |
Chachi et al. (2019) [45] | Retrospective study | 15 subjects receiving benralizumab and 10 subjects receiving placebo from the trial of Laviolette et al. (2013) | Bronchial biopsies at baseline and after 3 months | ↓ airway smooth muscle mass by 29% in the benralizumab group pre-and post-treatment No significant difference between treatment and placebo group post-treatment |
Gauvreau et al. (2024) [46] | Prospective randomized placebo-controlled study | 46 mild asthmatics 30 mg dose Q4W for 3 months | Bronchial biopsies at baseline and after 3 months post-allergen challenge | ↓ tissue, sputum, and blood eosinophils Allergen induced bronchoconstriction persists despite eosinophil depletion |
NCT03953300 (ongoing) [47] | Phase IV multicenter randomized double blind, parallel group, placebo-controlled trial | Severe asthmatic patients under anti-IL-5R treatment | Bronchial biopsies—Structural lung changes | ETA by the end of 2026 |
NCT04365205 (ongoing) [48] | Prospective observational study | 60 patients, 20 severe asthmatics, 20 mild-moderate asthmatics, and 20 non-asthmatics | Bronchial biopsies and BSM cell culture In vitro assessment of airway remodeling | Original ETA by the end of 2024 but patients are still being enrolled |
Dupilumab | ||||
Author (Year) | Type of Study | Study Sample | Focus on Biopsies | Main Findings |
NCT02573233 (EXPEDITION) [50] | Phase IIa exploratory trial | 42 patients 1:1 randomization | Bronchial biopsies at baseline and after 12 weeks | Eosinophil and mast cell levels not reduced ↓ mucin-stained submucosal area ↓ FeNO |
Bini et al. (2023) [51] | Single center prospective study | 10 patients under dupilumab | Bronchial biopsies at baseline and after 6 months | Eosinophils depleted in BAL—persist in bronchial mucosa |
Tezepelumab | ||||
Author (Year) | Type of Study | Study Sample | Focus on Biopsies | Main Findings |
Diver et al. “CASCADE” (2021) [55] | Phase 2, randomized, double-blind, placebo-controlled trial | 116 patients (59 tezepelumab, 57 placebo) | Bronchoscopic biopsies pre- and post-treatment | 89% ↓ in submucosal eosinophils vs. 25% with placebo ~ in other inflammatory cells ~ in RBM or epithelial morphology |
Sverrild et al. (2021) [56] | Randomized, double-blind, placebo-controlled, single-center study | Patients with moderate to severe asthma; 12-week treatment period with Tezepelumab | Bronchial biopsies and BAL | ↓ airway hyperresponsiveness 74% ↓in bronchial eosinophils 25% ↓ in bronchial mast cells |
Gauvreau et al. (2014) [57] | Double-blind, placebo-controlled study | 31 patients with mild asthma | No endobronchial biopsy performed | ↓ blood and sputum eosinophils in the anti-TSLP group, despite allergen challenges on days 42 and 84 |
Lin et al. (2019) [58] | Experimental (in vivo, mice model) | OVA-challenged mice (animal model of asthma) | No bronchial biopsy; assessment via tissue analysis post-sacrifice | ↓ airway structural changes ↓MMP, CTGF, and TGF-β) ↓ smooth muscle layer thickness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakakos, A.; Ampazis, D.; Papaioannou, A.I.; Loukides, S.; Bakakos, P. The Role of Endobronchial Biopsies in Evaluating Biologic Therapy Response in Severe Asthma. Int. J. Mol. Sci. 2025, 26, 7692. https://doi.org/10.3390/ijms26167692
Bakakos A, Ampazis D, Papaioannou AI, Loukides S, Bakakos P. The Role of Endobronchial Biopsies in Evaluating Biologic Therapy Response in Severe Asthma. International Journal of Molecular Sciences. 2025; 26(16):7692. https://doi.org/10.3390/ijms26167692
Chicago/Turabian StyleBakakos, Agamemnon, Dimitrios Ampazis, Andriana I. Papaioannou, Stelios Loukides, and Petros Bakakos. 2025. "The Role of Endobronchial Biopsies in Evaluating Biologic Therapy Response in Severe Asthma" International Journal of Molecular Sciences 26, no. 16: 7692. https://doi.org/10.3390/ijms26167692
APA StyleBakakos, A., Ampazis, D., Papaioannou, A. I., Loukides, S., & Bakakos, P. (2025). The Role of Endobronchial Biopsies in Evaluating Biologic Therapy Response in Severe Asthma. International Journal of Molecular Sciences, 26(16), 7692. https://doi.org/10.3390/ijms26167692