Common Genomic and Proteomic Alterations Related to Disturbed Neural Oscillatory Activity in Schizophrenia
Abstract
1. Introduction
Genes Affecting Neural Oscillations in Schizophrenia
2. Disturbed Neural Oscillations and Risk Genes in Schizophrenia
2.1. Gamma Oscillations
2.2. KARs (Kainate-Type Glutamate Receptors)
2.3. KCN1 Gene and KCN2 Gene Encoding for the Potassium Channel Genes (Kv3.1 and Kv3.2)
2.4. Neuregulin-1 (NRG-1) and ERBB4
2.5. Neuronal Activity-Regulated Pentraxin, NARP (MT-ATP6)
2.6. Phospholipase C-β1 (PLC-β1)
2.7. Glutamate, Dopamine, Serotonin, Acetylcholine
2.8. ARX
2.9. DTNBP1
2.10. PVALB
2.11. GAD1
2.12. BDNF (Brain Derived Neurotrophic Factor)
2.13. Beta Oscillations
2.14. Auditory Steady-State Responses (ASSRs)
2.15. GRIN2 and AKAP11
2.16. GABRA2
2.17. Theta Oscillations
2.17.1. PLCB1 Gene (PLC-β1)
2.17.2. ZNF804A
2.17.3. COMT
2.17.4. KCNJ
2.17.5. CHRM1
2.18. Delta Oscillations
2.18.1. GRIN2A (GluN2A NMDA Receptor Subunit)
2.18.2. CACNA1I (Voltage-Gated Calcium Channel)
2.18.3. SCN1A
2.18.4. HCN1
2.18.5. KCNB1
2.18.6. DISC1
2.18.7. Synaptic Gene—NRGN
2.19. Alpha Oscillations
2.19.1. GNL3
2.19.2. ITIH4
3. Conclusions
4. Future Directions
Supplementary Materials
Funding
Conflicts of Interest
References
- Tamminga, C.A.; Medoff, D.R. Neuropsychiatric Aspects of Schizophrenia. In The American Psychiatric Publishing Textbook of Schizophrenia; Lieberman, J.A., Stroup, T.S., Perkins, D.O., Eds.; American Psychiatric Publishing: Washington, DC, USA, 2008; pp. 187–202. [Google Scholar]
- Tamminga, C.A.; Medoff, D.R. The Biology of Schizophrenia. Dialogues Clin. Neurosci. 2000, 2, 339–348. [Google Scholar] [CrossRef]
- Galaverna, F.S.; Morra, C.A.; Bueno, A.M. Attention in Patients with Chronic Schizophrenia: Deficit in Inhibitory Control and Positive Symptoms. Eur. J. Psychiatry 2012, 26, 185–195. [Google Scholar] [CrossRef]
- Orellana, G.; Slachevsky, A. Executive Functioning in Schizophrenia. Front. Psychiatry 2013, 4, 35. [Google Scholar] [CrossRef] [PubMed]
- Luvsannyam, E.; Jain, M.S.; Pormento, M.; Nwosu, I.; Ogbue, O.; Nwosu, E.; Ezeani, I.; Nwosu, B.; Okobi, O.; Ibeneme, S.; et al. Neurobiology of Schizophrenia: A Comprehensive Review. Cureus 2022, 14, e23959. [Google Scholar] [CrossRef] [PubMed]
- Meiron, O. Self-Awareness in Schizophrenia: Identifying Common Neural Oscillatory Parameters Underlying Altered Sense of Self-Agency and Reduced Prefrontal Cortex Excitability. Curr. Opin. Behav. Sci. 2024, 58, 101398. [Google Scholar] [CrossRef]
- Rockstroh, B.S.; Wienbruch, C.; Ray, W.J.; Elbert, T. Abnormal Oscillatory Brain Dynamics in Schizophrenia: A Sign of Deviant Communication in Neural Network? BMC Psychiatry 2007, 7, 44. [Google Scholar] [CrossRef]
- Lett, T.A.; Voineskos, A.N.; Kennedy, J.L.; Levine, B.; Daskalakis, Z.J. Treating Working Memory Deficits in Schizophrenia: A Review of the Neurobiology. Biol. Psychiatry 2014, 75, 361–370. [Google Scholar] [CrossRef]
- Zhang, M.; Force, R.B.; Walker, C.; Krystal, J.H.; Keefe, R.S.E.; Javitt, D.C.; Kantrowitz, J.T. Alpha Transcranial Alternating Current Stimulation Reduces Depressive Symptoms in People with Schizophrenia and Auditory Hallucinations: A Double-Blind, Randomized Pilot Clinical Trial. Schizophrenia 2022, 8, 114. [Google Scholar] [CrossRef]
- Tada, M.; Kirihara, K.; Koshiyama, D.; Fujioka, M.; Usui, K.; Uka, T.; Hasegawa, T.; Nagai, T.; Araki, T.; Kunii, N.; et al. Alterations of Auditory-Evoked Gamma Oscillations Are More Pronounced than Alterations of Spontaneous Power of Gamma Oscillation in Early Stages of Schizophrenia. Transl. Psychiatry 2023, 13, 218. [Google Scholar] [CrossRef]
- Andreasen, N.; Nasrallah, H.A.; Dunn, V.; Olson, S.C.; Grove, W.M.; Ehrhardt, J.C.; Coffman, J.A.; Crossett, J.H. Structural Abnormalities in the Frontal System in Schizophrenia: A Magnetic Resonance Imaging Study. Arch. Gen. Psychiatry 1986, 43, 136–144. [Google Scholar] [CrossRef]
- Friston, K.J. The Disconnection Hypothesis. Schizophr. Res. 1998, 30, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Canu, E.; Agosta, F.; Filippi, M. A Selective Review of Structural Connectivity Abnormalities of Schizophrenic Patients at Different Stages of the Disease. Schizophr. Res. 2015, 161, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, I.S. An Activation Likelihood Estimate Meta-Analysis of Thalamocortical Dysconnectivity in Psychosis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2019, 4, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Moran, L.V.; Hong, L.E. High vs Low Frequency Neural Oscillations in Schizophrenia. Schizophr. Bull. 2011, 37, 659–663. [Google Scholar] [CrossRef]
- Hirano, Y.; Uhlhaas, P.J. Current Findings and Perspectives on Aberrant Neural Oscillations in Schizophrenia. Psychiatry Clin. Neurosci. 2021, 75, 358–368. [Google Scholar] [CrossRef]
- Wang, L.; Metzak, P.D.; Honer, W.G.; Woodward, T.S. Impaired Efficiency of Functional Networks Underlying Episodic Memory-for-Context in Schizophrenia. J. Neurosci. 2010, 30, 13171–13179. [Google Scholar] [CrossRef]
- Wang, Q.; Su, T.-P.; Zhou, Y.; Chou, K.-H.; Chen, I.-Y.; Jiang, T.; Lin, C.-P. Anatomical Insights into Disrupted Small-World Networks in Schizophrenia. NeuroImage 2012, 59, 1085–1093. [Google Scholar] [CrossRef]
- Gomez-Pilar, J.; Lubeiro, A.; Poza, J.; Hornero, R.; Ayuso, M.; Valcárcel, C.; Haidr, K.; Blanco, J.A.; Molina, V. Functional EEG Network Analysis in Schizophrenia: Evidence of Larger Segregation and Deficit of Modulation. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 76, 116–123. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Y.; Collinson, S.L.; Bezerianos, A.; Sim, K. Reduced Hemispheric Asymmetry of Brain Anatomical Networks Is Linked to Schizophrenia: A Connectome Study. Cereb. Cortex 2017, 27, 602–615. [Google Scholar] [CrossRef]
- Sullivan, P.F.; Yao, S.; Hjerling-Leffler, J. Schizophrenia Genomics: Genetic Complexity and Functional Insights. Nat. Rev. Neurosci. 2024, 25, 611–624. [Google Scholar] [CrossRef]
- Jensen, O.; Kaiser, J.E.; Lachaux, J.-P.; Dehaene, S.; Nolte, G.; Engel, A.K. Human Gamma-Frequency Oscillations Associated with Attention and Memory. Trends Neurosci. 2007, 30, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Mederos, S.; Sánchez-Puelles, C.; Esparza, J.; Valero, M.; Ponomarenko, A.; Perea, G. GABAergic Signaling to Astrocytes in the Prefrontal Cortex Sustains Goal-Directed Behaviors. Nat. Neurosci. 2021, 24, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Baradits, M.; Kakuszi, B.; Bálint, S.; Fullajtár, M.; Mód, L.; Bitter, I.; Czobor, P. Alterations in Resting-State Gamma Activity in Patients with Schizophrenia: A High-Density EEG Study. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Tanaka-Koshiyama, K.; Koshiyama, D.; Miyakoshi, M.; Joshi, Y.B.; Molina, J.L.; Sprock, J.; Braff, D.L.; Light, G.A. Abnormal Spontaneous Gamma Power Is Associated with Verbal Learning and Memory Dysfunction in Schizophrenia. Front. Psychiatry 2020, 11, 832. [Google Scholar] [CrossRef]
- Bartoli, E.; Bosking, W.; Chen, Y.; Li, Y.; Sheth, S.A.; Beauchamp, M.S.; Yoshor, D.; Brett, L.F. Functionally Distinct Gamma Range Activity Revealed by Stimulus Tuning in Human Visual Cortex. Curr. Biol. 2019, 29, 3345–3358.e7. [Google Scholar] [CrossRef]
- Dupret, D.; O’Neill, J.; Csicsvari, J. Dynamic Reconfiguration of Hippocampal Interneuron Circuits during Spatial Learning. Neuron 2013, 78, 166–180. [Google Scholar] [CrossRef]
- Uhlhaas, P.J.; Singer, W. Abnormal Neural Oscillations and Synchrony in Schizophrenia. Nat. Rev. Neurosci. 2010, 11, 100–113. [Google Scholar] [CrossRef]
- Engel, A.K.; Fries, P.; Singer, W. Dynamic Coordination in the Brain: From Neurons to Mind; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Thun, H.; Weisbrod, M.; Falkai, P.H.; Mulert, C.; Schneider-Axmann, T.E. Reduced Phase Locking of 40 Hz Auditory Steady-State Responses in Schizophrenia. Front. Hum. Neurosci. 2016, 10, 104. [Google Scholar] [CrossRef]
- Hirano, Y.; Oribe, N.; Kanba, S.; Onitsuka, T.; Nestor, P.G.; Spencer, K.M. Spontaneous Gamma Activity in Schizophrenia. JAMA Psychiatry 2015, 72, 813–821. [Google Scholar] [CrossRef]
- Jardri, R.; Hugdahl, K.; Hughes, M.; Brunelin, J.; Waters, F.; AldersonDay, B.; Smailes, D.; Sterzer, P.; Corlett, P.R.; Leptourgos, P.; et al. Are Hallucinations Due to an Imbalance Between Excitatory and Inhibitory Influences on the Brain? Schizophr. Bull. 2016, 42, 1124–1134. [Google Scholar] [CrossRef]
- Ojanen, S.; Kuznetsova, T.; Kharybina, Z.S.; Voikar, V.; Szczurowska, M.; Korpi, E.R. Interneuronal GluK1 Kainate Receptors Control Maturation of GABAergic Transmission and Network Synchrony in the Hippocampus. Mol. Brain 2023, 16, 43. [Google Scholar] [CrossRef]
- Fisahn, A. Kainate Receptors and Rhythmic Activity in Neuronal Networks: Hippocampal Gamma Oscillations as a Tool. J. Physiol. 2005, 562, 65–72. [Google Scholar] [CrossRef]
- Stanger, H.L.; Alford, R.; Jane, D.E.; Cunningham, M.O. The Role of GLUK5-Containing Kainate Receptors in Entorhinal Cortex Gamma Frequency Oscillations. Neural Plast. 2008, 17, 401645. [Google Scholar] [CrossRef]
- Tsintsadze, V.; Minlebaev, M.; Suchkov, D.; Cunningham, M.O.; Khazipov, R. Ontogeny of Kainate-Induced Gamma Oscillations in the Rat CA3 Hippocampus In Vitro. Front. Cell. Neurosci. 2015, 9, 195. [Google Scholar] [CrossRef] [PubMed]
- Duncan, G.E.; Moy, S.S.; Lieberman, J.A.; Koller, B.H. Effects of Haloperidol, Clozapine, and Quetiapine on Sensorimotor Gating in a Genetic Model of Reduced NMDA Receptor Function. Psychopharmacology 2006, 184, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Duncan, G.E.; Moy, S.S.; Lieberman, J.A.; Koller, B.H. Typical and Atypical Antipsychotic Drug Effects on Locomotor Hyperactivity and Deficits in Sensorimotor Gating in a Genetic Model of NMDA Receptor Hypofunction. Pharmacol. Biochem. Behav. 2006, 85, 481–491. [Google Scholar] [CrossRef]
- Duncan, G.E.; Inada, K.; Koller, B.H.; Moy, S.S. Increased Sensitivity to Kainic Acid in a Genetic Model of Reduced NMDA Receptor Function. Brain Res. 2010, 1307, 166–176. [Google Scholar] [CrossRef]
- Duncan, G.E.; Koller, B.H.; Moy, S.S. Effects of the Selective Kainate Receptor Antagonist ACET on Altered Sensorimotor Gating in a Genetic Model of Reduced NMDA Receptor Function. Brain Res. 2012, 1443, 98–105. [Google Scholar] [CrossRef]
- Harvey, M.; Lau, D.; Civillico, E.F.; Lenz, M.E.; Kaczmarek, L.K.; Lau, D.; Civillico, E.F.; Lenz, M.E.; Kaczmarek, L.K. Impaired Long-Range Synchronization of Gamma Oscillations in the Neocortex of a Mouse Lacking Kv3.2 Potassium Channels. J. Neurophysiol. 2012, 108, 803–813. [Google Scholar] [CrossRef]
- Muona, M.; Berkovic, S.F.; Dibbens, L.M.; Oliver, K.L.; Maljevic, S.; Bayly, M.A.; Joensuu, T.; Canafoglia, L.; Franceschetti, S.; Michelucci, R.; et al. A Recurrent de Novo Mutation in KCNC1 Causes Progressive Myoclonus Epilepsy. Nat. Genet. 2015, 47, 39–46. [Google Scholar] [CrossRef]
- Kaczmarek, L.K.; Zhang, Y. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiol. Rev. 2017, 97, 1431–1468. [Google Scholar] [CrossRef]
- Andrade-Talavera, Y.; Arroyo-García, L.E.; Chen, G.; Johansson, J.; Fisahn, A. Modulation of Kv3.1/Kv3.2 Promotes Gamma Oscillations by Rescuing Aβ-Induced Desynchronization of Fast-Spiking Interneuron Firing in an AD Mouse Model In Vitro. J. Physiol. 2020, 598, 3711–3725. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Hong, M.R.; Zhang, X.-J.; Kostas, J.; Li, Y.; Kraus, R.L.; Santarelli, V.P.; Wang, D.; Gomez-Llorente, Y.; Brooun, A.; et al. Identification and Structural and Biophysical Characterization of a Positive Modulator of Human Kv3.1 Channels. Proc. Natl. Acad. Sci. USA 2023, 120, e2220029120. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, I.E.; Pajak, R.Z.; Harte, M.K.; Glazier, J.D.; Hager, R. Voltage-Gated Potassium Channels as a Potential Therapeutic Target for the Treatment of Neurological and Psychiatric Disorders. Front. Cell. Neurosci. 2024, 18, 1449151. [Google Scholar] [CrossRef] [PubMed]
- Kaar, S.J.; Angelescu, I.; Marques, T.R.; Howes, O.D. Pre-Frontal Parvalbumin Interneurons in Schizophrenia: A Meta-Analysis of Post-Mortem Studies. J. Neural Transm. 2019, 126, 1637–1651. [Google Scholar] [CrossRef]
- Zhang, Y.; Ali, S.R.; Nabbout, R.; Barcia, G.; Kaczmarek, L.K. A KCNC1 Mutation in Epilepsy of Infancy with Focal Migrating Seizures Produces Functional Channels That Fail to Be Regulated by PKC Phosphorylation. J. Neurophysiol. 2021, 126, 532–539. [Google Scholar] [CrossRef]
- Schwarz, N.; Seiffert, S.; Pendziwiat, M.; Rademacher, A.V.; Brünger, T.; Hedrich, U.B.S.; Augustijn, P.B.; Schubert, J.; Becker, F.; Sills, G.J.; et al. Spectrum of Phenotypic, Genetic, and Functional Characteristics in Patients with Epilepsy with KCNC2 Pathogenic Variants. Neurology 2022, 98, e2046–e2059. [Google Scholar] [CrossRef]
- Kaar, S.J.; Nottage, J.F.; Angelescu, I.; Marques, T.R.; Howes, O.D. Gamma Oscillations and Potassium Channel Modulation in Schizophrenia: Targeting GABAergic Dysfunction. Clin. EEG Neurosci. 2023, 55, 203–213. [Google Scholar] [CrossRef]
- Yanagi, M.; Hashimoto, M. Dysfunctional Parvalbumin Neurons in Schizophrenia and the Pathway to the Clinical Application of Kv3 Channel Modulators. Int. J. Mol. Sci. 2024, 25, 8696. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Wang, S.; Wang, X.; Chen, J.; Qin, L. Laminar Profile of Auditory Steady-State Response in the Auditory Cortex of Awake Mice. Front. Syst. Neurosci. 2021, 15, 636395. [Google Scholar] [CrossRef]
- Clatot, J.; Ginn, N.; Costain, G.; Goldberg, E.M. A KCNC1-Related Neurological Disorder Due to Gain of Kv3.1 Function. Ann. Clin. Transl. Neurol. 2022, 10, 111–117. [Google Scholar] [CrossRef]
- Chi, G.; Liang, Q.; Sridhar, A.; Gao, J.; Wang, Y.; Song, Y.; Zhou, M.; Shi, J.; Yan, Z.; Chen, L. Cryo-EM Structure of the Human Kv3.1 Channel Reveals Gating Control by the Cytoplasmic T1 Domain. Nat. Commun. 2022, 13, 4087. [Google Scholar] [CrossRef] [PubMed]
- Clatot, J.; Currin, C.B.; Liang, Q.; Chi, G.; Sridhar, A.; Gao, J.; Wang, Y.; Song, Y.; Zhou, M.; Shi, J.; et al. A Structurally Precise Mechanism Links an Epilepsy-Associated KCNC2 Potassium Channel Mutation to Interneuron Dysfunction. Proc. Natl. Acad. Sci. USA 2024, 121, e2307776121. [Google Scholar] [CrossRef] [PubMed]
- Kaar, S.J.; Angelescu, I.; Nour, M.M.; Marques, T.R.; Sharman, A.; Sajjala, A.; Hutchison, J.; McCutcheon, R.A.; Rogdaki, M.; Natesan, S.; et al. The Effects of AUT00206, a Novel Kv3.1/3.2 Potassium Channel Modulator, on Task-Based Reward System Activation: A Test of Mechanism in Schizophrenia. Psychopharmacology 2022, 239, 3313–3323. [Google Scholar] [CrossRef] [PubMed]
- Stefansson, H.; Sigurdsson, E.; Steinthorsdottir, V.; Bjornsdottir, S.; Sigmundsson, T.; Ghosh, S.; Brynjolfsson, J.; Gunnarsdottir, S.; Ivarsson, O.; Chou, T.T.; et al. Neuregulin 1 and Susceptibility to Schizophrenia. Am. J. Hum. Genet. 2002, 71, 877–892. [Google Scholar] [CrossRef]
- Harrison, P.J.; Law, A.J. Neuregulin 1 and Schizophrenia: Genetics, Gene Expression, and Neurobiology. Biol. Psychiatry 2006, 60, 132–140. [Google Scholar] [CrossRef]
- Stefansson, H.; Steinthorsdottir, V.; Thorgeirsson, T.E.; Gulcher, J.R.; Stefansson, K. Neuregulin 1 and Schizophrenia. Ann. Med. 2004, 36, 62–71. [Google Scholar] [CrossRef]
- Law, A.J.; Lipska, B.K.; Weickert, C.S.; Hyde, T.M.; Straub, R.E.; Hashimoto, R.; Harrison, P.J.; Kleinman, J.E.; Weinberger, D.R. Neuregulin 1 Transcripts Are Differentially Expressed in Schizophrenia: Association with Risk SNPs (SNP8NRG221132 and SNP8NRG243177). Proc. Natl. Acad. Sci. USA 2006, 103, 6747–6752. [Google Scholar] [CrossRef]
- Law, A.J.; Kleinman, J.E.; Weinberger, D.R.; Weickert, C.S. Disease-Associated Intronic Variants in the ErbB4 Gene Are Related to Altered ErbB4 Splice-Variant Expression in the Brain in Schizophrenia. Hum. Mol. Genet. 2007, 16, 129–141. [Google Scholar] [CrossRef]
- Stefanis, N.C.; Hatzimanolis, A.; Smyrnis, N.; Avramopoulos, D.; Evdokimidis, I.; Stefanis, C.N.; Stögmann, E.; Konte, B.; Lencz, T.; Malhotra, A.K.; et al. Schizophrenia Candidate Gene ERBB4: Covert Routes of Vulnerability to Psychosis Detected at the Population Level. Schizophr. Bull. 2013, 39, 349–357. [Google Scholar] [CrossRef]
- Veikkolainen, V.; Vaparanta, K.; Halkilahti, K.; Iljin, K.; Sundvall, M.; Elenius, K. Function of ERBB4 Is Determined by Alternative Splicing. Cell Cycle 2011, 10, 2647–2657. [Google Scholar] [CrossRef] [PubMed]
- Perez-Garcia, C.G. ErbB4 in Laminated Brain Structures: A Neurodevelopmental Approach to Schizophrenia. Front. Cell. Neurosci. 2015, 9, 472. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Woo, R.S.; Mei, L.; Malinow, R. The Neuregulin-1 Receptor ErbB4 Controls Glutamatergic Synapse Maturation and Plasticity. Neuron 2007, 54, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Law, A.J.; Wang, Y.; Sei, Y.; Weinberger, D.R. Neuregulin 1-ErbB4-PI3K Signaling in Schizophrenia and Phosphoinositide 3-Kinase-p110δ Inhibition as a Potential Therapeutic Strategy. Proc. Natl. Acad. Sci. USA 2012, 109, 12165–12170. [Google Scholar] [CrossRef]
- Hahn, C.G.; Wang, H.Y.; Cho, D.S.; Talbot, K.; Gur, R.E.; Berrettini, W.H.; Bakshi, K.; Kamins, J.; Borgmann-Winter, K.; Siegel, S.J.; et al. Altered Neuregulin 1–ErbB4 Signaling Contributes to NMDA Receptor Hypofunction in Schizophrenia. Nat. Med. 2006, 12, 824–828. [Google Scholar] [CrossRef]
- Banerjee, A.; Macdonald, M.L.; Borgmann-Winter, K.E.; Hahn, C.G. Neuregulin 1-erbB4 Pathway in Schizophrenia: From Genes to an Interactome. Brain Res. Bull. 2010, 83, 132–139. [Google Scholar] [CrossRef]
- Pitcher, G.M.; Kalia, L.V.; Ng, D.; Goodfellow, N.M.; Yee, K.T.; Lambe, E.K.; Salter, M.W. Schizophrenia Susceptibility Pathway Neuregulin 1–ErbB4 Suppresses Src Upregulation of NMDA Receptors. Nat. Med. 2011, 17, 470–478. [Google Scholar] [CrossRef]
- Meiron, O.; David, J.; Yaniv, A. Early Auditory Processing Predicts Efficient Working Memory Functioning in Schizophrenia. Brain Sci. 2022, 12, 212. [Google Scholar] [CrossRef]
- Fisahn, A.; Neddens, J.; Yan, L.; Buonanno, A. Neuregulin-1 Modulates Hippocampal Gamma Oscillations: Implications for Schizophrenia. Cereb. Cortex 2009, 19, 612–618. [Google Scholar] [CrossRef]
- Balu, D.T. The NMDA Receptor and Schizophrenia: From Pathophysiology to Treatment. Adv. Pharmacol. 2016, 76, 351–382. [Google Scholar] [CrossRef]
- Kruse, A.O.; Bustillo, J.R. Glutamatergic Dysfunction in Schizophrenia. Transl. Psychiatry 2022, 12, 500. [Google Scholar] [CrossRef]
- Rubio, M.D.; Drummond, J.B.; Meador-Woodruff, J.H. Glutamate Receptor Abnormalities in Schizophrenia: Implications for Innovative Treatments. Biomol. Ther. 2012, 20, 1–18. [Google Scholar] [CrossRef]
- Zeppillo, T.; Schulmann, A.; Macciardi, F.; McCullumsmith, R.E.; Meador-Woodruff, J.H.; Benes, F.M.; Konradi, C.; Shukla, D.K.; Sershen, H.; Javitt, D.C.; et al. Functional Impairment of Cortical AMPA Receptors in Schizophrenia. Schizophr. Res. 2022, 249, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, K.; Tani, H.; Nakajima, S.; Hirai, K.; Takahashi, T.; Kanahara, N.; Hashimoto, T.; Hashimoto, K.; Iyo, M.; Shiraishi, T. AMPA Receptors in Schizophrenia: A Systematic Review of Postmortem Studies on Receptor Subunit Expression and Binding. Schizophr. Res. 2022, 243, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Kirli, K.K.; Ermentrout, G.B.; Cho, R.Y. Computational Study of NMDA Conductance and Cortical Oscillations in Schizophrenia. Front. Comput. Neurosci. 2014, 8, 133. [Google Scholar] [CrossRef] [PubMed]
- Kimoto, S.; Zaki, M.M.; Bazmi, H.H.; Lewis, D.A. Altered Markers of Cortical γ-Aminobutyric Acid Neuronal Activity in Schizophrenia: Role of the NARP Gene. JAMA Psychiatry 2015, 72, 747–756. [Google Scholar] [CrossRef]
- Wang, H.; Liu, F.; Chen, W.; Mei, L. Genetic Recovery of ErbB4 in Adulthood Partially Restores Brain Functions in Null Mice. Proc. Natl. Acad. Sci. USA 2018, 115, 13105–13110. [Google Scholar] [CrossRef]
- Skirzewski, M.; Cronin, M.E.; Murphy, R.; Fobbs, W.; Kravitz, A.V.; Buonanno, A. ErbB4 Null Mice Display Altered Mesocorticolimbic and Nigrostriatal Dopamine Levels as Well as Deficits in Cognitive and Motivational Behaviors. eNeuro 2020, 7. [Google Scholar] [CrossRef]
- Shi, L.; Bergson, C.M. Neuregulin 1: An Intriguing Therapeutic Target for Neurodevelopmental Disorders. Transl. Psychiatry 2020, 10, 190. [Google Scholar] [CrossRef]
- Chang, M.C.; Park, J.M.; Pelkey, K.A.; Grabenstatter, H.L.; Xu, D.; Linden, D.J.; Sutula, T.P.; McBain, C.J.; Worley, P.F. Narp Regulates Homeostatic Scaling of Excitatory Synapses on Parvalbumin-Expressing Interneurons. Nat. Neurosci. 2010, 13, 1090–1097. [Google Scholar] [CrossRef]
- van Derveer, A.B.; Bernat, E.R.; Sun, F.M.; Siegel, S.J.; Carlson, G.C. A Role for Somatostatin-Positive Interneurons in Neuro-Oscillatory and Information Processing Deficits in Schizophrenia. Schizophr. Bull. 2021, 47, 1385–1398. [Google Scholar] [CrossRef]
- Dienel, S.J.; Wade, K.L.; Fish, K.N.; Lewis, D.A. Alterations in Prefrontal Cortical Somatostatin Neurons in Schizophrenia: Evidence for Weaker Inhibition of Pyramidal Neuron Dendrites. Biol. Psychiatry 2025, 98, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Hudson, M.R.; Hannan, A.J.; O’Brien, T.J.; Jones, N.C. High-Frequency Neuronal Oscillatory Abnormalities in the Phospholipase C-β1 Knockout Mouse Model of Schizophrenia. Int. J. Neuropsychopharmacol. 2019, 22, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Braff, D.L.; Freedman, R.; Schork, N.J.; Gottesman, I.I. Deconstructing Schizophrenia: An Overview of the Use of Endophenotypes in Order to Understand a Complex Disorder. Schizophr. Bull. 2007, 33, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.; Byun, J.; Kim, K.K.; Lee, S.E.; Lee, B.; Kim, K.S.; Ryu, H.; Shin, H.S.; Cheong, E. Deletion of Phospholipase C β1 in the Thalamic Reticular Nucleus Induces Absence Seizures. Exp. Neurobiol. 2022, 31, 116–130. [Google Scholar] [CrossRef]
- Kim, S.W.; Seo, M.; Kim, D.S.; Kang, M.; Kim, Y.S.; Koh, H.Y.; Shin, H.S. Knockdown of Phospholipase C-β1 in the Medial Prefrontal Cortex of Male Mice Impairs Working Memory among Multiple Schizophrenia Endophenotypes. J. Psychiatry Neurosci. 2015, 40, 78–88. [Google Scholar] [CrossRef]
- Vasco, V.R.L.; Cardinale, G.; Polonia, P. Deletion of PLCB1 Gene in Schizophrenia-Affected Patients. J. Cell. Mol. Med. 2012, 16, 844–851. [Google Scholar] [CrossRef]
- Lim, K.H.; Yang, S.; Kim, S.H.; Ko, E.; Kang, M.; Joo, J.Y. Cryptic Mutations of PLC Family Members in Brain Disorders: Recent Discoveries and a Deep-Learning-Based Approach. Brain 2023, 146, 1267–1280. [Google Scholar] [CrossRef]
- Koh, H.Y. Phospholipase C-β1 and Schizophrenia-Related Behaviors. Adv. Biol. Regul. 2013, 53, 242–248. [Google Scholar] [CrossRef]
- Udawela, M.; Scarr, E.; Boer, S.; Dean, B. Isoform Specific Differences in Phospholipase C Beta 1 Expression in the Prefrontal Cortex in Schizophrenia and Suicide. NPJ Schizophr. 2017, 3, 19. [Google Scholar] [CrossRef]
- Kim, D.C.; Mah, W.; Nam, M.K.; Lee, S.H.; Kim, H.J.; Jang, I.-S.; Lee, N.Y.; Kim, E.; Kim, S.J.; Kaang, B.K.; et al. Deficits in Social Behavior and Sensorimotor Gating in Mice Lacking Phospholipase Cβ1. Genes Brain Behav. 2008, 7, 120–128. [Google Scholar] [CrossRef]
- Homayoun, H.; Stefani, M.R.; Adams, B.W.; Tamagan, G.D.; Moghaddam, B. Functional Interaction Between NMDA and mGlu5 Receptors: Effects on Working Memory, Instrumental Learning, Motor Behaviors, and Dopamine Release. Neuropsychopharmacology 2004, 29, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.W.; Ramsey, A.K.; Walker, J.M.; Serfozo, P.; Olive, M.F.; Schachtman, T.R.; Simonyi, A. Functional Interaction of mGlu5 and NMDA Receptors in Aversive Learning in Rats. Neurobiol. Learn. Mem. 2011, 95, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, F.; Orlando, R.; Di Menna, L.; Cannella, M.; Notartomaso, S.; Mascio, G.; Iacovelli, L.; Matrisciano, F.; Fazio, F.; Caraci, F.; et al. Targeting mGlu Receptors for Optimization of Antipsychotic Activity and Disease-Modifying Effect in Schizophrenia. Front. Psychiatry 2019, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Burrows, E.L.; McOmish, C.E.; Buret, L.S.; Van den Buuse, M.; Hannan, A.J. Environmental Enrichment Ameliorates Behavioral Impairments Modeling Schizophrenia in Mice Lacking Metabotropic Glutamate Receptor 5. Neuropsychopharmacology 2015, 40, 1947–1956. [Google Scholar] [CrossRef]
- Hannan, A.J.; Blakemore, C.; Katsnelson, A.; Vitalis, T.; Huber, K.M.; Bear, M.; Roder, J.; Kim, D.; Shin, H.-S.; Kind, P.C. PLC-β1, Activated via mGluRs, Mediates Activity-Dependent Differentiation in Cerebral Cortex. Nat. Neurosci. 2001, 4, 282–288. [Google Scholar] [CrossRef]
- Lee, S.P.; So, C.H.; Rashid, A.J.; Varghese, G.; Cheng, R.; Lança, A.J.; O’Dowd, B.F.; George, S.R. Dopamine D1 and D2 Receptor Co-activation Generates a Novel Phospholipase C-mediated Calcium Signal. J. Biol. Chem. 2004, 279, 35671–35678. [Google Scholar] [CrossRef]
- Lopez-Figueroa, A.L.; Norton, C.S.; Lopez-Figueroa, M.O.; Armellini-Dodel, D.; Burke, S.; Akil, H.; Lopez, J.F.; Watson, S.J. Serotonin 5-HT1A, 5-HT1B, and 5-HT2A Receptor mRNA Expression in Subjects with Major Depression, Bipolar Disorder, and Schizophrenia. Biol. Psychiatry 2004, 55, 225–233. [Google Scholar] [CrossRef]
- Scarr, E.; Copolov, D.L.; Dean, B. A Proposed Pathological Model in the Hippocampus of Subjects with Schizophrenia. Clin. Exp. Pharmacol. Physiol. 2001, 28, 70–73. [Google Scholar] [CrossRef]
- Paul, S.M.; Javitt, D.C.; Becker, R.E.; Jeffrey, A. Lieberman. Muscarinic Acetylcholine Receptor Agonists as Novel Treatments for Schizophrenia. Am. J. Psychiatry 2022, 179, 83–92. [Google Scholar] [CrossRef]
- Stuke, H. Markers of Muscarinic Deficit for Individualized Treatment in Schizophrenia. Front. Psychiatry 2023, 13, 1100030. [Google Scholar] [CrossRef]
- Vakalopoulos, C. The Effect of Deficient Muscarinic Signaling on Commonly Reported Biochemical Effects in Schizophrenia and Convergence with Genetic Susceptibility Loci in Explaining Symptom Dimensions of Psychosis. Front. Pharmacol. 2014, 5, 277. [Google Scholar] [CrossRef] [PubMed]
- Foster, D.J.; Bryant, Z.K.; Conn, P.J. Targeting Muscarinic Receptors to Treat Schizophrenia. Behav. Brain Res. 2021, 405, 113201. [Google Scholar] [CrossRef] [PubMed]
- van der Westhuizen, E.T.; Choy, K.H.C.; Valant, C.; McKenzie-Nickson, S.; Bradley, S.J.; Tobin, A.B.; Sexton, P.M.; Christopoulos, A. Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias. Front. Pharmacol. 2021, 11, 606656. [Google Scholar] [CrossRef] [PubMed]
- McOmish, C.E.; Burrows, E.; Howard, M.; Scarr, E.; Kim, D.; Shin, H.-S.; Dean, B.; van den Buuse, M.; Hannan, A.J. Phospholipase C-β1 Knockout Mice Exhibit Endophenotypes Modeling Schizophrenia Which Are Rescued by Environmental Enrichment and Clozapine Administration. Mol. Psychiatry 2008, 13, 661–672. [Google Scholar] [CrossRef]
- Powell, S.B.; Zhou, X.; Geyer, M.A. Prepulse Inhibition and Genetic Mouse Models of Schizophrenia. Behav. Brain Res. 2009, 204, 282–294. [Google Scholar] [CrossRef]
- Turetsky, B.I.; Moberg, P.J.; Roalf, D.R.; Arnold, R.; Richard, L.D. Olfactory Functioning in Schizophrenia: A Window into the Heterogeneity of the Illness. Schizophr. Res. 2003, 61, 211–218. [Google Scholar]
- Levy, D.L.; Holzman, D.; Matthysse, A.; Mendell, C.R. Eye Tracking Dysfunction in Schizophrenia: Characterization and Pathophysiology. Curr. Dir. Psychol. Sci. 1994, 3, 71–75. [Google Scholar] [CrossRef]
- Swerdlow, N.R.; Braff, D.L.; Geyer, M.A. Atypical Antipsychotic Effects on Prepulse Inhibition in Schizophrenia: Clozapine and Olanzapine. Biol. Psychiatry 2006, 60, 362–368. [Google Scholar] [CrossRef]
- Foussias, G.; Remington, G. Negative Symptoms in Schizophrenia: Avolition and Occam’s Razor. Schizophr. Bull. 2010, 36, 359–369. [Google Scholar] [CrossRef]
- Nakamura, J.P.; Schroeder, A.; Hudson, M.; Jones, N.; Gillespie, B.; Du, X.; Notaras, M.; Swaminathan, V.; Reay, W.R.; Atkins, J.R.; et al. The Maternal Immune Activation Model Uncovers a Role for the Arx Gene in GABAergic Dysfunction in Schizophrenia. Brain Behav. Immun. 2019, 81, 161–171. [Google Scholar] [CrossRef]
- Carlson, G.C.; Talbot, K.; Halene, T.B.; Siegel, S.J. Dysbindin-1 Mutant Mice Implicate Reduced Fast-Phasic Inhibition as a Final Common Disease Mechanism in Schizophrenia. Proc. Natl. Acad. Sci. USA 2011, 108, E962–E970. [Google Scholar] [CrossRef] [PubMed]
- Marín, O. Parvalbumin Interneuron Deficits in Schizophrenia. Eur. Neuropsychopharmacol. 2024, 82, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Burgos, G.; Hashimoto, T.; Lewis, D.A. Alterations of Cortical GABA Neurons and Network Oscillations in Schizophrenia. Curr. Psychiatry Rep. 2010, 12, 335–344. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Wang, Q.; He, S.; Zhang, Q.; Tang, Y. GAD1 Deficiency in Rats Leads to Spike-Wave Discharges and Absence Epilepsy-Like Phenotypes. Front. Mol. Neurosci. 2023, 16, 1162347. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, Y.; Liu, Y.; Wang, Q.; He, S.; Tang, Y. GAD1 Deficiency Disrupts Thalamocortical Network Oscillations and Promotes Absence Seizures in Rats. Neurobiol. Dis. 2023, 175, 105969. [Google Scholar] [CrossRef]
- Rodríguez-Rojo, I.C.; Cuesta, P.; López, M.E.; de Frutos-Lucas, J.; Bruña, R.; Pereda, E.; Barabash, A.; Montejo, P.; Montenegro-Peña, M.; Marcos, A.; et al. BDNF Val66Met Polymorphism and Gamma Band Disruption in Resting State Brain Functional Connectivity: A Magnetoencephalography Study in Cognitively Intact Older Females. Front. Neurosci. 2018, 12, 684. [Google Scholar] [CrossRef]
- Roy, N.; Barry, R.J.; Fernandez, F.E.; Clarke, A.R.; Johnstone, S.J.; McLoughlin, G.; Karamacoska, D.; Steiner, G.Z.; Foster, P.S.; Hermens, D.F. Electrophysiological Correlates of the Brain-Derived Neurotrophic Factor (BDNF) Val66Met Polymorphism. Sci. Rep. 2020, 10, 17915. [Google Scholar] [CrossRef]
- Nieto, R.; Kukuljan, M.; Silva, H. BDNF and Schizophrenia: From Neurodevelopment to Neuronal Plasticity, Learning, and Memory. Front. Psychiatry 2013, 4, 45. [Google Scholar] [CrossRef]
- Hou, W.; Qin, X.; Li, H.; Liu, Q.; Wang, Y.; Du, X.; Guo, Q.; Song, X.; Yu, W.; Fan, X. Interaction between BDNF Val66Met Polymorphism and Mismatch Negativity for Working Memory Capacity in Schizophrenia. Schizophrenia 2024, 10, 70. [Google Scholar] [CrossRef]
- Bartos, M.; Vida, I.; Jonas, P. Synaptic Mechanisms of Synchronized Gamma Oscillations in Inhibitory Interneuron Networks. Nat. Rev. Neurosci. 2007, 8, 45–56. [Google Scholar] [CrossRef]
- Sohal, V.S.; Zhang, F.; Yizhar, O.; Deisseroth, K. Parvalbumin Neurons and Gamma Rhythms Enhance Cortical Circuit Performance. Nature 2009, 459, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Kopell, N.; Kramer, B.P.; Whittington, P.J.; Whittington, M.A. Neuronal Assembly Dynamics in the Beta1 Frequency Range Permits Short-Term Memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3779–3784. [Google Scholar] [CrossRef] [PubMed]
- Arnal, L.H.; Giraud, A.-L. Cortical Oscillations and Sensory Predictions. Trends Cogn. Sci. 2012, 16, 390–398. [Google Scholar] [CrossRef]
- Chen, C.C.; Henson, K.; Stephan, U.; Kilner, K.; Friston, K. Forward and Backward Connections in the Brain: A DCM Study of Functional Asymmetries. NeuroImage 2009, 45, 453–462. [Google Scholar] [CrossRef]
- Wang, X.-J. Neurophysiological and Computational Principles of Cortical Rhythms in Cognition. Physiol. Rev. 2010, 90, 1195–1268. [Google Scholar] [CrossRef]
- Bernasconi, F.; Manuel, C.; Murray, D.; Schnider, D. Pre-Stimulus Beta Oscillations within Left Posterior Sylvian Regions Impact Auditory Temporal Order Judgment Accuracy. Int. J. Psychophysiol. 2011, 79, 244–248. [Google Scholar] [CrossRef]
- Oda, Y.; Furukawa, S.; Omori, T.; Okada, M. Beat Skipping in a Computational Model of Auditory Steady-State Responses in Schizophrenia. Neurocomputing 2012, 79, 123–135. [Google Scholar] [CrossRef]
- Metzner, C.; Steuber, V. The Beta Component of Gamma-Band Auditory Steady-State Responses in Patients with Schizophrenia. Sci. Rep. 2021, 11, 20387. [Google Scholar] [CrossRef]
- Metzner, C.; Steuber, V. Computational Modeling of Auditory Steady-State Response Deficits in Schizophrenia. Eur. J. Neurosci. 2021, 54, 5670–5686. [Google Scholar] [CrossRef]
- Vierling-Claassen, D.; Siekmeier, P.; Stufflebeam, S.; Kopell, N. Modeling GABA alterations in schizophrenia: A link between impaired inhibition and altered gamma and beta range auditory entrainment. Schizophr. Res. 2008, 102, 7. [Google Scholar] [CrossRef]
- Sugiyama, S.; Taniguchi, T.; Kinukawa, T.; Takeuchi, N.; Ohi, K.; Shioiri, T.; Nishihara, M.; Inui, K. The 40-Hz Auditory Steady-State Response Enhanced by Beta-Band Subharmonics. Front. Neurosci. 2023, 17, 1127040. [Google Scholar] [CrossRef] [PubMed]
- Bender, R.A.; Baram, T.Z. Hyperpolarization Activated Cyclic-Nucleotide Gated (HCN) Channels in Developing Neuronal Networks. Prog. Neurobiol. 2008, 86, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Metzner, C.; Mäki-Marttunen, T.; Karni, G.; Yakovlev, I.; Linne, M.-L. The Effect of Alterations of Schizophrenia-Associated Genes on Gamma Band Oscillations. Schizophrenia 2022, 8, 46. [Google Scholar] [CrossRef]
- Oda, Y.; Onitsuka, T.; Tsuchimoto, R.; Hirano, S.; Oribe, N.; Ueno, T.; Hirano, Y.; Hashimoto, T.; Kanba, S.; Iwanami, A.; et al. Gamma Band Neural Synchronization Deficits for Auditory Steady State Responses in Bipolar Disorder Patients. PLoS ONE 2012, 7, e39955. [Google Scholar] [CrossRef]
- Spencer, K.M.; Nestor, P.G.; Niznikiewicz, M.A.; Shenton, M.E.; McCarley, R.W. Abnormal Neural Synchrony in Schizophrenia. J. Neurosci. 2003, 29, 7684–7693. [Google Scholar] [CrossRef]
- Thuné, H.; Recasens, M.; Uhlhaas, P.J. The 40Hz Auditory SteadyState Response in Patients with Schizophrenia: A Metaanalysis. JAMA Psychiatry 2016, 73, 1145–1153. [Google Scholar] [CrossRef]
- Koshiyama, D.; Miyakoshi, M.; Joshi, Y.B.; Molina, J.L.; Sprock, J.; Makeig, S.; Braff, D.L.; Light, G.A.; Ford, J.M.; Mathalon, D.H.; et al. Role of GABAergic Inhibition in Gamma Oscillatory Deficits in Schizophrenia. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2020, 5, 394–402. [Google Scholar] [CrossRef]
- Heresco-Levy, U. N-Methyl-d-aspartate (NMDA) receptor-based treatment approaches in schizophrenia: The first decade. Int. J. Neuropsychopharmacol. 2000, 3, 243–259. [Google Scholar] [CrossRef]
- Heresco-Levy, U.; Lerer, B. Synergistic psychedelic–NMDAR modulator treatment for neuropsychiatric disorders. Mol. Psychiatry 2023, 29, 146–152. [Google Scholar] [CrossRef]
- Farsi, Z.; Nicolella, A.; Simmons, S.K.; Aryal, S.; Shepard, N.; Brenner, K.; Lin, S.; Wright, J.; Gritton, H.J.; Han, X.; et al. Brain Region-Specific Changes in Neurons and Glia and Dysregulation of Dopamine Signaling in Grin2a Mutant Mice. Neuron 2022, 111, 3378–3396. [Google Scholar] [CrossRef]
- Herzog, L.E.; Wang, L.; Yu, E.; Choi, S.; Farsi, Z.; Song, B.; Pan, J.Q.; Sheng, M. Mouse Mutants in Schizophrenia Risk Genes GRIN2A and AKAP11 Show EEG Abnormalities in Common with Schizophrenia Patients. bioRxiv 2022. [Google Scholar] [CrossRef]
- Hosseini, H.; Evans-Martin, S.; Jones, K.S. Grin2a Ablation Distinctly Reshapes PV+ and SST+ Interneuron Circuits in the Medial Prefrontal Cortex to Amplify Gamma Oscillations. bioRxiv 2024. [Google Scholar] [CrossRef]
- Harrison, P.J.; Bannerman, D.M. GRIN2A (NR2A): A Gene Contributing to Glutamatergic Involvement in Schizophrenia. Mol. Psychiatry 2023, 28, 3568–3572. [Google Scholar] [CrossRef]
- Shepard, N.; Baez-Nieto, D.; Iqbal, S.; Campbell, A.J.; Pan, J.Q.; Sheng, M.; Farsi, Z. Functional Analysis of Human GRIN2A Mutations Associated with Schizophrenia and Neurodevelopmental Disorders Reveals Distinct Pathological Mechanism. bioRxiv 2023. [Google Scholar] [CrossRef]
- Sheng, X.; Guan, W. GRIN2A and Schizophrenia: Scientific Evidence and Biological Mechanisms. Curr. Neuropharmacol. 2025, 23, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Shepard, N.; Baez-Nieto, D.; Iqbal, S.; Liu, Y.; Nicolella, A.; Aryal, S.; Simmons, S.K.; Farsi, Z.; Lin, S.; Brenner, K.; et al. Differential Functional Consequences of GRIN2A Mutations Associated with Schizophrenia and Neurodevelopmental Disorders. Sci. Rep. 2024, 14, 2798. [Google Scholar] [CrossRef] [PubMed]
- Ahnaou, A.; Huysmans, H.; Van de Casteele, T.; Drinkenburg, W.H.I.M. Cortical High Gamma Network Oscillations and Connectivity: A Translational Index for Antipsychotics to Normalize Aberrant Neurophysiological Activity. Transl. Psychiatry 2017, 7, 1285. [Google Scholar] [CrossRef]
- Gee, A.; Dazzan, P.; Grace, A.A.; Howes, O.D. Corticolimbic Circuitry as a Druggable Target in Schizophrenia Spectrum Disorders: A Narrative Review. Transl. Psychiatry 2025, 15, 21. [Google Scholar] [CrossRef]
- Poltavskaya, E.G.; Fedorenko, O.Y.; Kornetova, E.G.; Loonen, A.J.M.; Kornetov, A.N.; Bokhan, N.A.; Ivanova, S.A. Study of Early Onset Schizophrenia: Associations of GRIN2A and GRIN2B Polymorphisms. Life 2021, 11, 997. [Google Scholar] [CrossRef]
- Hojlo, M.A.; Ghebrelul, M.; Genetti, C.A.; Smith, R.; Rockowitz, S.; Deaso, E.; Beggs, A.H.; Agrawal, P.B.; Glahn, D.C.; Gonzalez-Heydrich, J.; et al. Children with Early-Onset Psychosis Have Increased Burden of Rare GRIN2A Variants. Genes 2023, 14, 779. [Google Scholar] [CrossRef]
- Weickert, C.S.; Fung, S.J.; Catts, V.S.; Schofield, P.R.; Allen, K.M.; Moore, L.T.; Newell, K.A.; Galletly, C.; Liu, D.; Catts, S.V.; et al. Molecular Evidence of N-Methyl-D-Aspartate Receptor Hypofunction in Schizophrenia. Mol. Psychiatry 2013, 18, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, K.; Jeevakumar, V.; Nakao, K. Spatial and Temporal Boundaries of NMDA Receptor Hypofunction Leading to Schizophrenia. NPJ Schizophr. 2017, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Salmi, M.; Bolbos, R.; Bauer, S.; Minlebaev, M.; Burnashev, N.; Szepetowski, P. Transient Microstructural Brain Anomalies and Epileptiform Discharges in Mice Defective for Epilepsy and Language-Related NMDA Receptor Subunit Gene Grin2a. Epilepsia 2018, 59, 1919–1930. [Google Scholar] [CrossRef] [PubMed]
- Manoach, D.S.; Stickgold, R. Abnormal Sleep Spindles, Memory Consolidation, and Schizophrenia. Annu. Rev. Clin. Psychol. 2019, 15, 451–479. [Google Scholar] [CrossRef]
- Wamsley, E.J.; Manoach, D.S.; Mylonas, S.M.; Hamilos, S.L.; Stickgold, R.; Robert, w.; McCarley. Reduced Sleep Spindles and Spindle Coherence in Schizophrenia: Mechanisms of Impaired Memory Consolidation. Biol. Psychiatry 2012, 71, 154–161. [Google Scholar] [CrossRef]
- Ferrarelli, F.; Peterson, B.R.; Tononi, M.S.; Tononi, G. Reduced Sleep Spindle Activity in Schizophrenia Patients. Am. J. Psychiatry 2010, 167, 1333–1339. [Google Scholar] [CrossRef]
- Song, B.J.; Ge, Y.; Nicolella, A.; Kwon, M.J.; Lodder, B.; Bonanno, K.; Valle-Tojeiro, A.; Simmons, S.K.; Aryal, S.; Shepard, N.; et al. Elevated Synaptic PKA Activity and Abnormal Striatal Dopamine Signaling in Akap11 Mutant Mice, a Genetic Model of Schizophrenia and Bipolar Disorder. bioRxiv 2024. [Google Scholar] [CrossRef]
- Farhangdoost, N.; Liao, C.; Liu, Y.; Rochefort, D.; Aboasali, F.; Pietrantonio, A.; Alda, M.; Dion, P.A.; Chaumette, B.; Khayachi, A.; et al. Transcriptomic and Epigenomic Consequences of Heterozygous Loss-of-Function Mutations in AKAP11, a Shared Risk Gene for Bipolar Disorder and Schizophrenia. Mol. Psychiatry 2025. [Google Scholar] [CrossRef]
- Edenberg, H.J.; Dick, D.M.; Xuei, X.; Tian, H.; Almasy, L.; Bauer, L.O.; Crowe, R.R.; Goate, A.; Hesselbrock, V.; Jones, K.; et al. Variations in GABRA2, Encoding the α2 Subunit of the GABAA Receptor, Are Associated with Alcohol Dependence and with Brain Oscillations. Am. J. Hum. Genet. 2004, 74, 705–714. [Google Scholar] [CrossRef]
- Smit, D.J.A.; Wright, M.J.; Meyers, J.L.; Martin, N.G.; Ho, Y.Y.W.; Malone, S.M.; Zhang, J.; Burwell, S.J.; Chorlian, D.B.; de Geus, E.J.C.; et al. Genome-wide association analysis links multiple psychiatric liability genes to oscillatory brain activity. Hum. Brain Mapp. 2018, 39, 4183–4195. [Google Scholar] [CrossRef]
- Li, D.; Sulovari, A.; Cheng, C.; Zhao, H.; Kranzler, H.R.; Gelernter, J. Association of Gamma-Aminobutyric Acid A Receptor α2 Gene (GABRA2) with Alcohol Use Disorder. Neuropsychopharmacology 2014, 39, 907–918. [Google Scholar] [CrossRef]
- Frajman, A.; Maggio, N.; Muler, I.; Haroutunian, V.; Katsel, P.; Yitzhaky, A.; Weiser, M.; Hertzberg, L. Gene Expression Meta-Analysis Reveals the Down-Regulation of Three GABA Receptor Subunits in the Superior Temporal Gyrus of Patients with Schizophrenia. Schizophr. Res. 2020, 220, 29–37. [Google Scholar] [CrossRef]
- Purves-Tyson, T.D.; Brown, A.M.; Weissleder, C.; Rothmond, D.A.; Weickert, C.S. Reductions in Midbrain GABAergic and Dopamine Neuron Markers Are Linked in Schizophrenia. Mol. Brain 2021, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.H.; Folsom, T.D.; Rooney, R.J.; Thuras, P.D. Expression of GABAA α2-, β1- and ε-Receptors Are Altered Significantly in the Lateral Cerebellum of Subjects with Schizophrenia, Major Depression and Bipolar Disorder. Transl. Psychiatry 2013, 3, e303. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-H.; Kim, D.; Bianchi, R.; Wong, R.K.S.; Shin, H.-S. Genetic Dissection of Theta Rhythm Heterogeneity in Mice. Proc. Natl. Acad. Sci. USA 2005, 102, 18165–18170. [Google Scholar] [CrossRef]
- Jansen, R.; Timmerman, J.; Loos, M.; van der Knaap, L.J.; van Ooyen, A.; Spijker, S.; Smit, A.B.; Verhage, M.; Feenstra, M.G.P.; de Vries, T.J. Novel Candidate Genes Associated with Hippocampal Oscillations. PLoS ONE 2011, 6, e26586. [Google Scholar] [CrossRef]
- Walters, J.T.R.; Corvin, A.; Owen, M.J.; Williams, H.; Dragovic, M.; Quinn, E.M.; Moskvina, V.; Giegling, I.; Hartmann, A.M.; O’Donovan, M.C.; et al. Psychosis Susceptibility Gene ZNF804A and Cognitive Performance in Schizophrenia. Arch. Gen. Psychiatry 2010, 67, 692–700. [Google Scholar] [CrossRef]
- Cousijn, H.; Tunbridge, E.M.; Rolinski, M.; Wallis, G.; Colclough, G.L.; Woolrich, M.W.; Nobre, A.C.; Harrison, P.J. Modulation of Hippocampal Theta and Hippocampal–Prefrontal Cortex Function by a Schizophrenia Risk Gene. Hum. Brain Mapp. 2015, 36, 2387–2395. [Google Scholar] [CrossRef]
- Bygrave, A.M.; Jahans-Price, T.; Wolff, A.R.; Sprengel, R.; Kullmann, D.M.; Bannerman, D.M.; Nikolic, M. Hippocampal–Prefrontal Coherence Mediates Working Memory and Selective Attention at Distinct Frequency Bands and Provides a Causal Link Between Schizophrenia and Its Risk Gene GRIA1. Transl. Psychiatry 2019, 9, 142. [Google Scholar] [CrossRef]
- Hill, M.J.; Bray, N.J. Evidence That Schizophrenia Risk Variation in the ZNF804A Gene Exerts Its Effects during Fetal Brain Development. Am. J. Psychiatry 2012, 169, 1301–1308. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, X.; Zhang, Q.; Du, B.; Deng, X.; Ji, F.; Xiang, Y.T.; Wang, Y.; Wang, Q.; Ungvari, G.S.; et al. Effect of ZNF804A Gene Polymorphism (rs1344706) on the Plasticity of the Functional Coupling between the Right Dorsolateral Prefrontal Cortex and the Contralateral Hippocampal Formation. NeuroImage Clin. 2020, 27, 102279. [Google Scholar] [CrossRef]
- O’Donoghue, S.; Donohoe, G.; Morris, D.W.; Corvin, A.; McDonald, C.; Cannon, D.M. ZNF804A Risk Allele Is Associated with Altered Neural Processing of Working Memory in Schizophrenia. Schizophr. Res. 2019, 206, 318–324. [Google Scholar] [CrossRef]
- Voineskos, A.N.; Lerch, J.P.; Felsky, D.; Tiwari, A.; Rajji, T.K.; Miranda, D.; Lobaugh, N.J.; Pollock, B.G.; Mulsant, B.H.; Kennedy, J.L.; et al. The ZNF804A Gene: Characterization of a Novel Neural Risk Mechanism for the Major Psychoses. Neuropsychopharmacology 2011, 36, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Bilder, R.M.; Volavka, B.K.; Lachman, J.D.; Grace, D.R. The Catechol-O-Methyltransferase Polymorphism: Relations to the Tonic-Phasic Dopamine Hypothesis and Neuropsychiatric Phenotypes. Neuropsychopharmacology 2004, 29, 1943–1961. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.A.; Jha, M.; Birchfield, T.; Mukherjee, S.; Gleason, K.; Abdisalaam, S.; Asaithamby, A.; Hemby, S.E.; Datta, S. COMT Val158Met Polymorphism and Molecular Alterations in the Human Dorsolateral Prefrontal Cortex: Differences in Controls and in Schizophrenia. Schizophr. Res. 2016, 173, 94–100. [Google Scholar] [CrossRef]
- Slifstein, M.; Kolachana, B.; Simpson, E.H.; Tabares, P.; Cheng, B.; Duvall, M.; Frankle, W.G.; Weinberger, D.R.; Laruelle, M.; Abi-Dargham, A. COMT Genotype Predicts Cortical-Limbic D1 Receptor Availability Measured with [11C]NNC112 and PET. Mol. Psychiatry 2008, 13, 821–827. [Google Scholar] [CrossRef]
- Sambataro, F.; Reed, J.D.; Murty, V.P.; Das, S.; Tan, H.Y.; Callicott, J.H.; Weinberger, D.R.; Mattay, V.S. Catechol-O-Methyltransferase Valine158Methionine Polymorphism Modulates Brain Networks Underlying Working Memory Across Adulthood. Biol. Psychiatry 2009, 66, 540–548. [Google Scholar] [CrossRef]
- Bodenmann, S.; Rusterholz, T.; Dürr, R.; Stoll, C.; Bachmann, V.; Geissler, E.; Jaggi-Schwarz, K.; Landolt, H.-P. The Functional Val158Met Polymorphism of COMT Predicts Interindividual Differences in Brain α Oscillations in Young Men. J. Neurosci. 2009, 29, 10855–10862. [Google Scholar] [CrossRef]
- Bowers, H.; Smith, D.; de la Salle, S.; Choueiry, J.; Impey, D.; Philippe, T.; Dort, H.; Knott, V. COMT Polymorphism Modulates the Resting-State EEG Alpha Oscillatory Response to Acute Nicotine in Male Non-Smokers. Genes Brain Behav. 2015, 14, 466–476. [Google Scholar] [CrossRef]
- Solís-Ortiz, S.; Pérez-Luque, E.; Gutiérrez-Muñoz, M. Modulation of the COMT Val(158)Met Polymorphism on Resting-State EEG Power. Front. Hum. Neurosci. 2015, 9, 136. [Google Scholar] [CrossRef]
- Steiner, G.Z.; Fernandez, F.M.; Coles, M.; Karamacoska, D.; Barkus, E.; Broyd, S.J.; Solowij, N.; Todd, J.; Michie, P.T.; Klein, C.; et al. Interrogating the Relationship Between Schizotypy, the Catechol-O-Methyltransferase (COMT) Val158Met Polymorphism, and Neuronal Oscillatory Activity. Cerebral Cortex 2019, 29, 3048–3058. [Google Scholar] [CrossRef] [PubMed]
- Egan, M.F.; Goldberg, T.E.; Kolachana, B.S.; Callicott, J.H.; Mazzanti, C.M.; Straub, R.E.; Goldman, D.; Dean, M.; Lu, B.; Weinberger, D.R. Effect of COMT Val108/158 Met Genotype on Frontal Lobe Function and Risk for Schizophrenia. Proc. Natl. Acad. Sci. USA 2001, 98, 6917–6922. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.Y.; Chen, Q.; Sust, S.; Buckholtz, J.W.; Meyers, J.D.; Egan, M.F.; Mattay, V.S.; Meyer-Lindenberg, A.; Weinberger, D.R.; Callicott, J.H. Epistasis between Catechol-O-Methyltransferase and Type II Metabotropic Glutamate Receptor 3 Genes on Working Memory Brain Function. Proc. Natl. Acad. Sci. USA 2007, 104, 12536–12541. [Google Scholar] [CrossRef]
- Dickinson, D.; Elvevåg, B. Genes, Cognition and Brain through a COMT Lens. Neuroscience 2009, 164, 72–87. [Google Scholar] [CrossRef]
- Murphy, N.; Ramakrishnan, N.; Walker, C.P.; Polizzotto, N.R.; Cho, R.Y. Intact Auditory Cortical Cross-Frequency Coupling in Early and Chronic Schizophrenia. Front. Psychiatry 2020, 11, 507. [Google Scholar] [CrossRef]
- Gupta, M.; Bhatnagar, P.; Grover, S.; Kaur, H.; Baghel, R.; Bhasin, Y.; Chauhan, C.; Verma, R.; Kukreti, R.; Jain, S.; et al. Association Studies of Catechol-O-Methyltransferase (COMT) Gene with Schizophrenia and Response to Antipsychotic Treatment. Pharmacogenomics 2009, 10, 385–397. [Google Scholar] [CrossRef]
- Nikolac Perkovic, M.; Sagud, M.; Zivkovic, M.; Uzun, S.; Kozumplik, O.; Pivac, N.; Jakovljevic, M.; Vuksan-Cusa, B.; Mihaljevic-Peles, A.; Konjevod, M.; et al. Catechol-O-Methyltransferase rs4680 and rs4818 Haplotype Association with Treatment Response to Olanzapine in Patients with Schizophrenia. Sci. Rep. 2020, 10, 10049. [Google Scholar] [CrossRef]
- Mayfield, J.; Blednov, Y.A.; Harris, R.A. Behavioral and Genetic Evidence for GIRK Channels in the CNS: Role in Physiology, Pathophysiology, and Drug Addiction. Int. Rev. Neurobiol. 2015, 123, 279–313. [Google Scholar] [CrossRef]
- Luo, H.; de Velasco, M.F.; Wickman, K. Neuronal G Protein-Gated K+ Channels. Am. J. Physiol.-Cell Physiol. 2022, 323, C439–C460. [Google Scholar] [CrossRef]
- Contreras, A.; Djebari, S.; Temprano-Carazo, S.; Múnera, A.; Gruart, A.; Delgado-García, J.M.; Jiménez-Díaz, L.; Navarro-López, J.D. Impairments in Hippocampal Oscillations Accompany the Loss of LTP Induced by GIRK Activity Blockade. Neuropharmacology 2023, 238, 109668. [Google Scholar] [CrossRef] [PubMed]
- Yamada, R.G.; Ueda, H.R. Molecular Mechanisms of REM Sleep. Front. Neurosci. 2019, 13, 1402. [Google Scholar] [CrossRef] [PubMed]
- Bart, D.; Bauer, S.M.; Schreiner, T.R.; Huber, R. Reduced Slow-Wave Activity and Impaired Sleep-Dependent Memory Consolidation in Schizophrenia. Schizophr. Res. 2019, 206, 350–357. [Google Scholar] [CrossRef]
- Weinhold, S.L.; Lechinger, J.; Ittel, J.; Ritzenhoff, R.; Drews, H.J.; Junghanns, K.; Göder, R. Dysfunctional Overnight Memory Consolidation in Patients with Schizophrenia in Comparison to Healthy Controls: Disturbed Slow-Wave Sleep as Contributing Factor? Neuropsychobiology 2021, 81, 104–115. [Google Scholar] [CrossRef]
- Thankachan, S.; Katsuki, F.; McKenna, J.T.; McNally, J.M.; Yang, C.; Blanco-Centurion, C.; Chen, M.C.; Sakurai, T.; Brown, R.E.; McCarley, R.W. Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Sci. Rep. 2019, 9, 3607. [Google Scholar] [CrossRef]
- Jiang, Y.; Patton, M.H.; Zakharenko, S.S. A Case for Thalamic Mechanisms of Schizophrenia: Perspective from Modeling 22q11.2 Deletion Syndrome. Front. Neural Circuits 2021, 15, 769969. [Google Scholar] [CrossRef]
- Salmi, M.; Del Gallo, F.; Minlebaev, M.; Zakharov, A.; Pauly, V.; Perron, P.; Pons-Bennaceur, A.; Corby-Pellegrino, S.; Aniksztejn, L.; Lenck-Santini, P.P.; et al. Impaired Vocal Communication, Sleep-Related Discharges, and Transient Alteration of Slow-Wave Sleep in Developing Mice Lacking the GluN2A Subunit of N-Methyl-D-Aspartate Receptors. Epilepsia 2019, 60, 1424–1437. [Google Scholar] [CrossRef]
- Andrade, A.; Hope, J.; Allen, A.; Yorgan, V.; Lipscombe, D.; Pan, J.Q. A Rare Schizophrenia Risk Variant of CACNA1I Disrupts CaV3.3 Channel Activity. Sci. Rep. 2016, 6, 34233. [Google Scholar] [CrossRef]
- Ghoshal, A.; Uygun, D.S.; Yang, L.; McNally, J.M.; Lopez-Huerta, V.G.; Arias-Garcia, M.A.; Baez-Nieto, D.; Zhao, L.; Schneider, M.; Garcia, N.; et al. Effects of a Patient-Derived de Novo Coding Alteration of CACNA1I in Mice Connect a Schizophrenia Risk Gene with Sleep Spindle Deficits. Transl. Psychiatry 2020, 10, 29. [Google Scholar] [CrossRef]
- Ferrarelli, F. Sleep Abnormalities in Schizophrenia: State of the Art and Next Steps. Am. J. Psychiatry 2021, 178, 903–913. [Google Scholar] [CrossRef]
- Mäki-Marttunen, T.; Krull, F.; Bettella, F.; Hagen, E.; Næss, S.; Ness, T.V.; Moberget, T.; Elvsåshagen, T.; Metzner, C.; Devor, A.; et al. Alterations in Schizophrenia-Associated Genes Can Lead to Increased Power in Delta Oscillations. Cereb. Cortex 2019, 29, 875–891. [Google Scholar] [CrossRef]
- Mäki-Marttunen, T.; Devor, A.; Phillips, W.A.; Dale, A.M.; Andreassen, O.A.; Einevoll, G.T. Computational Modeling of Genetic Contributions to Excitability and Neural Coding in Layer V Pyramidal Cells: Applications to Schizophrenia Pathology. Front. Comput. Neurosci. 2019, 13, 66. [Google Scholar] [CrossRef]
- Bryson, A.; Petrou, S. SCN1A Channelopathies: Navigating from Genotype to Neural Circuit Dysfunction. Front. Neurol. 2023, 14, 1173460. [Google Scholar] [CrossRef]
- Thuault, S.J.; Malleret, G.; Constantinople, C.M.; Nicholls, R.; Chen, I.; Zhu, J.; Panteleyev, A.; Vronskaya, S.; Nolan, M.F.; Bruno, R.; et al. Prefrontal Cortex HCN1 Channels Enable Intrinsic Persistent Neural Firing and Executive Memory Function. J. Neurosci. 2013, 33, 13583–13599. [Google Scholar] [CrossRef]
- Buss, E.W.; Lofaro, O.M.; Barnett, A.; Leroy, F.; Santoro, B.; Siegelbaum, S.A.; Bock, T. HCN1 Hyperpolarization-Activated Cyclic Nucleotide–Gated Channels Enhance Evoked GABA Release from Parvalbumin-Positive Interneurons. Proc. Natl. Acad. Sci. USA 2024, 121, e2319246121. [Google Scholar] [CrossRef]
- Newson, J.J.; Thiagarajan, T.C. EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies. Front. Hum. Neurosci. 2019, 12, 521. [Google Scholar] [CrossRef]
- Metzner, C.; Zurowski, J.J.; Steuber, V. Reduced HCN Channel Expression in Layer V Pyramidal Cells as a Model of Schizophrenia-Related Cortical Oscillatory Changes. Front. Psychiatry 2020, 11, 624. [Google Scholar] [CrossRef]
- Hasson, Z.T.; AlHashimi, A.F.; Al Qaisy, U.K. Differences in Resting State EEG Power Spectrum in Patients with Schizophrenia and Healthy Controls. Ann. Rom. Soc. Cell Biol. 2021, 25, 9771–9779. [Google Scholar]
- Sherif, M.A.; Neymotin, S.A.; Lytton, W.W. In Silico Hippocampal Modeling for Multi-Target Pharmacotherapy in Schizophrenia. NPJ Schizophr. 2020, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Mathew, E.; Joykutty, L. Testing HCN1 Channel Dysregulation in the Prefrontal Cortex Using a Novel Piezoelectric Silk Neuromodulator. J. Emerg. Investig. 2021. [Google Scholar] [CrossRef]
- Speca, D.J.; Ogata, G.; Mandikian, D.; Bishop, H.I.; Wiler, S.W.; Eum, K.; Wenzel, H.J.; Doisy, E.T.; Matt, L.; Campi, K.L.; et al. Deletion of the Kv2.1 Delayed Rectifier Potassium Channel Leads to Neuronal and Behavioral Hyperexcitability. Genes Brain Behav. 2014, 13, 394–408. [Google Scholar] [CrossRef]
- Faber, E.S.L. Functional Interplay Between NMDA Receptors, SK Channels and Voltage-Gated Ca2+ Channels Regulates Synaptic Excitability in the Medial Prefrontal Cortex. J. Physiol. 2010, 588 Pt 8, 1281–1292. [Google Scholar] [CrossRef]
- Sahu, G.; Turner, R.W. The Molecular Basis for the Calcium-Dependent Slow Afterhyperpolarization in CA1 Hippocampal Pyramidal Neurons. Front. Physiol. 2021, 12, 759707. [Google Scholar] [CrossRef]
- Castelnovo, A.; Ferrarelli, F.; D’Agostino, A. Schizophrenia: From Neurophysiological Abnormalities to Clinical Symptoms. Front. Psychol. 2015, 6, 478. [Google Scholar] [CrossRef]
- Bar, C.; Barcia, G.; Jennesson, M.; Le Guyader, G.; Schneider, A.; Mignot, C.; Lesca, G.; Breuillard, D.; Montomoli, M.; Keren, B.; et al. Expanding the Genetic and Phenotypic Relevance of KCNB1 Variants in Developmental and Epileptic Encephalopathies: 27 New Patients and Overview of the Literature. Hum. Mutat. 2020, 41, 69–80. [Google Scholar] [CrossRef]
- Sachs, N.A.; Sawa, A.; Holmes, S.E.; Ross, C.A.; DeLisi, L.E.; Russell, L. Margolis. A Frameshift Mutation in Disrupted in Schizophrenia 1 in an American Family with Schizophrenia and Schizoaffective Disorder. Mol. Psychiatry 2005, 10, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Carless, M.A.; Glahn, D.C.; Johnson, M.P.; Curran, J.E.; Bozaoglu, K.; Dyer, T.D.; Winkler, A.M.; Cole, S.A.; Almasy, L.; MacCluer, J.W.; et al. Impact of DISC1 Variation on Neuroanatomical and Neurocognitive Phenotypes. Mol. Psychiatry 2011, 16, 1063, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, B.; Soh, P.; Calhoun, V.D.; Ruaño, G.; Kocherla, M.; Windemuth, A.; Clementz, B.A.; Tamminga, C.A.; Sweeney, J.A.; Keshavan, M.S.; et al. Multivariate Genetic Determinants of EEG Oscillations in Schizophrenia and Psychotic Bipolar Disorder from the BSNIP Study. Transl. Psychiatry 2015, 5, e588. [Google Scholar] [CrossRef] [PubMed]
- Sauer, J.F.; Bartos, M. Disrupted-in-Schizophrenia-1 Is Required for Normal Pyramidal Cell-Interneuron Communication and Assembly Dynamics in the Prefrontal Cortex. eLife 2022, 11, e79471. [Google Scholar] [CrossRef]
- Mahoney, H.L.; Bloom, C.A.; Justin, H.S.; Capraro, B.M.; Morris, C.; Gonzalez, D.; Sandefur, E.; Cates, H.M.; Glover, M.E.; Renda, B.C.; et al. DISC1 and Reelin Interact to Alter Cognition, Inhibition, and Neurogenesis in a Novel Mouse Model of Schizophrenia. Front. Cell. Neurosci. 2023, 17, 1321632. [Google Scholar] [CrossRef]
- Xiang, Y.; Xin, J.; Le, W.; Yang, Y. Neurogranin: A Potential Biomarker of Neurological and Mental Diseases. Front. Aging Neurosci. 2020, 12, 584743. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.; Szucs, M.J.; Ding, L.J.; Allen, A.; Ren, X.; Haensgen, H.; Gao, F.; Rhim, H.; Andrade, A.; Pan, J.Q.; et al. Neurogranin, Encoded by the Schizophrenia Risk Gene NRGN, Bidirectionally Modulates Synaptic Plasticity via Calmodulin-Dependent Regulation of the Neuronal Phosphoproteome. Biol. Psychiatry 2021, 89, 256–269. [Google Scholar] [CrossRef] [PubMed]
- Ohi, K.; Hashimoto, R.; Yasuda, Y.; Fukumoto, M.; Yamamori, H.; Umeda-Yano, S.; Fujimoto, M.; Iwase, M.; Kazui, H.; Takeda, M. Influence of the NRGN Gene on Intellectual Ability in Schizophrenia. J. Hum. Genet. 2013, 58, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Thong, J.Y.; Qiu, A.; Sum, M.Y.; Kuswanto, C.N.; Tuan, T.-S.A.; Donohoe, G.; Sitoh, Y.Y.; Sim, J.L. Effects of the Neurogranin Variant rs12807809 on Thalamocortical Morphology in Schizophrenia. PLoS ONE 2013, 8, e85603. [Google Scholar] [CrossRef]
- Moran, J.K.; Senkowski, D. Intersensory Attention Deficits in Schizophrenia Relate to Ongoing Sensorimotor Beta Oscillations. Schizophrenia 2025, 11, 19. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, D.; Li, H.; Cai, X.; Liu, W.; Wang, L.; Chang, H.; Li, M.; Xiao, X. The Genome-Wide Risk Alleles for Psychiatric Disorders at 3p21.1 Show Convergent Effects on mRNA Expression, Cognitive Function, and Mushroom Dendritic Spine. Mol. Psychiatry 2020, 25, 48–66. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, L.; Dai, R.; Wang, J.; Ren, Z.; Liu, S.; Xia, Y.; Jiang, Y.; Duan, F.; Wang, K.; et al. Integrative Analyses Prioritize GNL3 as a Risk Gene for Bipolar Disorder. Mol. Psychiatry 2020, 25, 2672–2684. [Google Scholar] [CrossRef]
- Stauffer, E.M.; Bethlehem, R.A.I.; Dorfschmidt, L.; Li, L.; Seidlitz, J.; Wagstyl, K.; Romero-Garcia, R.; Dinga, R.; Valk, S.L.; Vos de Wael, R.; et al. The Genetic Relationships Between Brain Structure and Schizophrenia. Nat. Commun. 2023, 14, 7820. [Google Scholar] [CrossRef]
- Goulding, D.R.; Nikolova, V.D.; Mishra, L.; Hall, J.; Wang, L.; McGowan, J.C.; Cohen, S.J.; McEwen, B.S.; Buxbaum, J.D.; Gould, T.D. Inter-α-Inhibitor Deficiency in the Mouse Is Associated with Alterations in Anxiety-like Behavior, Exploration and Social Approach. Genes Brain Behav. 2019, 18, e12505. [Google Scholar] [CrossRef]
- Cai, L.; Huang, T.; Su, J.; Zhang, X.; Chen, W.; Zhang, F.; He, L.; Chou, K.C. Implications of Newly Identified Brain eQTL Genes and Their Interactors in Schizophrenia. Mol. Ther. Nucleic Acids 2018, 12, 433–442. [Google Scholar] [CrossRef]
- Smit, D.J.A.; Andreassen, O.A.; Boomsma, D.I.; Burwell, S.J.; Chorlian, D.B.; de Geus, E.J.C.; Elvsåshagen, T.; Gordon, R.L.; Harper, J.; Hegerl, U.; et al. Large-Scale Collaboration in ENIGMA-EEG: A Perspective on the Meta-Analytic Approach to Link Neurological and Psychiatric Liability Genes to Electrophysiological Brain Activity. Brain Behav. 2021, 11, e02188. [Google Scholar] [CrossRef]
- Mäki-Marttunen, T.; Mäki-Marttunen, V. Excitatory and Inhibitory Effects of HCN Channel Modulation on Excitability of Layer V Pyramidal Cells. PLoS Comput. Biol. 2022, 18, e1010506. [Google Scholar] [CrossRef]
- De Pieri, M.; Sabe, M.; Rochas, V.; Poglia, G.; Bartolomei, J.; Kirschner, M.; Kaiser, S. Resting-state EEG and MEG Gamma Frequencies in Schizophrenia: A Systematic Review and Exploratory Power-Spectrum Metanalysis. Schizophrenia 2025, 11, 48, Erratum in: Schizophrenia 2025, 11, 59. [Google Scholar] [CrossRef]
- Han, X.; Liu, Y.; Wang, Y.; Zhang, Y.; Li, Q.; Wang, Y. Association of Exposure to Humidex with Schizophrenia Admissions in Qingdao, China: A Time-Series Study. Neuropsychiatr. Dis. Treat. 2025, 21, 1011–1022. [Google Scholar] [CrossRef]
- Näätänen, R.; Shiga, T.; Asano, S.; Yabe, H. Mismatch Negativity (MMN) Deficiency: A Break-Through Biomarker in Predicting Psychosis Onset. Int. J. Psychophysiol. 2015, 95, 338–344. [Google Scholar] [CrossRef]
- Reinhart, R.M.G.; McClenahan, L.J.; Kosciuk, J.T.; Woodman, G.F. Synchronizing Theta Oscillations with Direct-Current Stimulation Strengthens Adaptive Control in the Human Brain. Proc. Natl. Acad. Sci. USA 2015, 112, 9451–9456. [Google Scholar] [CrossRef]
- Popov, T.G.; Rockstroh, B.S.; Popova, P.; Carolus, A.M.; Miller, G.A. Dynamics of Alpha Oscillations Elucidate Facial Affect Recognition in Schizophrenia. Cogn. Affect. Behav. Neurosci. 2014, 14, 364–377. [Google Scholar] [CrossRef]
- Dear, R.; Wagstyl, K.; Seidlitz, J.; Romero-Garcia, R.; Bethlehem, R.A.I.; Ronan, L.; Rowitch, D.H.; Warrier, V.; Bullmore, E.T.; Vértes, P.E.; et al. Cortical Gene Expression Architecture Links Healthy Neurodevelopment to the Imaging, Transcriptomics and Genetics of Autism and Schizophrenia. Nat. Neurosci. 2024, 27, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- Musante, I.; Cangelosi, D.; Capra, V.; Provenzano, A.; Pagnamenta, F.; Rossi, A.; Repetto, L.; Dell’Anno, M.T.; Casarosa, S.; Corradi, A.; et al. CACNA1A Loss-of-Function Affects Neurogenesis in Human iPSC-Derived Neural Models. Cell. Mol. Life Sci. 2025, 82, 234. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-H.; Zhao, Y.; Khan, R.A.W.; Li, Z.-Q.; Zhou, J.; Shen, J.-W.; Xiang, S.-Y.; Li, N.-N.; Wen, Z.-J.; Jian, X.-M.; et al. SNX29, a New Susceptibility Gene Shared with Major Mental Disorders in Han Chinese Population. World J. Biol. Psychiatry 2021, 22, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, A.; Viviani, D. Discussion of Interleukin-6 in Synaptic Plasticity and Neuroinflammation. Neuroscience 2015, 307, 171–190. [Google Scholar] [CrossRef]
Gene | Frequency Band | Synaptic Function | References |
---|---|---|---|
GRIK3 (KAR) | Gamma | KAR antagonists such as ACET reduce abnormal gamma; linked to SZ behavioral deficits | [33,34,35,36,37,38,39,40] |
KCNC1/2 | Gamma | Kv3.1/3.2 channels support FS interneuron function and gamma synchronization | [48,49,50,51,52,53,54,55,56] |
NRG1/ERBB4 | Gamma | NRG1–ERBB4 interaction modulates GABA interneurons and fast oscillations | [61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81] |
NARP (MT-ATP6) | Gamma | NARP regulates excitatory input to PV+ interneurons; deficits reduce gamma | [78,79,80,81,82,83,84] |
PLCB1 | Beta, Gamma, Theta | PLCB1 knockouts impair theta/gamma and increase beta; endophenotypes ameliorated by clozapine | [85,86,87,88,89,90,91,92,93,168,169] |
GRM5 | Theta | mGluR5-NMDAR synergy enhances cognitive and theta-related function | [94,95,96,97,98] |
ARX | Gamma, Theta | ARX regulates inhibitory neuron development; modulates evoked oscillations | [113] |
GRIN2A | Gamma, Delta | GRIN2A KO mice show increased delta and disrupted gamma; associated with working memory deficits | [143,144,145,146,147,148,149] |
AKAP11 | Gamma | AKAP11 mutation leads to abnormal gamma; linked to PKA pathway disruption | [150,151,160,161] |
GABRA2 | Beta (also alpha, gamma) | Downregulation of GABRA2 linked to beta/gamma dysregulation in SZ | [162,163,164,165,166,167] |
ZNF804A | Theta | Disrupts PFC–hippocampal theta coherence; affects memory networks | [171,172,173,174,175,176] |
COMT | Theta, Delta, Beta, Alpha | COMT polymorphisms modulate prefrontal dopaminergic tone and oscillatory patterns | [177,178,179,180,181,182,183,184,185,186,187,188,189,190] |
KCNJ3/6/9/5 | Theta, Gamma | GIRK channels modulate hippocampal and thalamic theta/gamma oscillations | [191,192,193] |
CHRM1 | Gamma, Theta | CHRM1 signaling affects memory and attentional oscillatory rhythms | [194] |
CACNA1I | Delta | CACNA1I mutations reduce thalamic delta and sleep spindles | [200,201,202] |
SCN1A | Delta, Gamma | SCN1A affects PV interneuron excitability; linked to abnormal delta/gamma activity | [203,204] |
HCN1 | Delta | HCN1 channels regulate cortical delta rhythms via excitability control | [206,207,208,209,210,211,212] |
KCNB1 | Delta | KCNB1 regulates AHP; implicated in delta abnormalities in SZ | [214,215,216,217,218] |
DISC1 | Theta, Gamma | DISC1 regulates PV-IN dynamics and gamma synchronization | [219,220,221,222] |
NRGN | Delta, Beta | NRGN affects synaptic plasticity and resting delta/beta coherence | [223,224,225,226,227] |
GNL3 | Alpha | GNL3 linked to EEG alpha variation via GWAS data | [228,229,230] |
ITIH4 | Alpha | ITIH4 associated with alpha rhythm modulation in postmortem SZ samples | [231,232] |
DTNPB1 | Gamma | Dysbindin intracelluualr protein trafficking and synaptic function | [114] |
PVALB | Gamma | Parvalbumin calcium-binding protein expressed in GABAergic interneurons | [115] |
GAD1 | Delta, Theta, Alpha, Gamma | catalyzes the production of GABA from glutamate | [116,117,118] |
BDNF | Alpha, Gamma | differentiation of neurons in the brain and spinal cord. | [119,120,121,122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trombka, D.; Meiron, O. Common Genomic and Proteomic Alterations Related to Disturbed Neural Oscillatory Activity in Schizophrenia. Int. J. Mol. Sci. 2025, 26, 7514. https://doi.org/10.3390/ijms26157514
Trombka D, Meiron O. Common Genomic and Proteomic Alterations Related to Disturbed Neural Oscillatory Activity in Schizophrenia. International Journal of Molecular Sciences. 2025; 26(15):7514. https://doi.org/10.3390/ijms26157514
Chicago/Turabian StyleTrombka, David, and Oded Meiron. 2025. "Common Genomic and Proteomic Alterations Related to Disturbed Neural Oscillatory Activity in Schizophrenia" International Journal of Molecular Sciences 26, no. 15: 7514. https://doi.org/10.3390/ijms26157514
APA StyleTrombka, D., & Meiron, O. (2025). Common Genomic and Proteomic Alterations Related to Disturbed Neural Oscillatory Activity in Schizophrenia. International Journal of Molecular Sciences, 26(15), 7514. https://doi.org/10.3390/ijms26157514