Modulation of Glutathione-S-Transferase by Phytochemicals: To Activate or Inhibit—That Is the Question
Abstract
1. Introduction
Enzyme | Variants | Distribution | Specific Functions |
---|---|---|---|
GST A | GST A1-1 | liver, intestine, kidney, adrenal gland, and testis [12] | detoxification of carcinogenic environmental pollutants, and alkylating chemotherapeutic agents; peroxidase activity toward hydroperoxides of fatty acids and phosphatidyl moieties [12]; binding the mitogen-activated protein (MAP) kinases JNK1 [13] |
GST A2-2 | liver, intestine, kidney, adrenal gland, and testis [12] | similar functions with GST A1-1, but to a lesser extent [12] | |
GST A3-3 | steroidogenic tissues (gonades, mammary gland, placenta, adrenals), lung, stomach, trachea [12] | _ Δ5 − Δ4 isomerization of steroids [12] | |
GST A4-4 | many tissues [12] | conjugation of 4-hydroxynonenal [12] | |
GST P | GST P1-1 | brain, heart, lung, testis, skin kidney, pancreas, erythrocytes (GST P is the most prevalent non-hepatic isoenzyme [1]) | detoxification of endogenous and exogenous toxic compounds by glutathione-dependent conjugation or by acting as a ligandin [8]; binding the mitogen-activated protein (MAP) kinases JNK1, ASK1, and MEKK1 [2,14]; monomeric GST P acting as an inhibitor of C-jun N-terminal kinase [15]; deletion of GST P1 gene-risk factor of acute leukemia [16] |
GST M | GST M1-1 | liver (present in some, but not all, liver specimens), GSTM1a and M1b subunits in muscle, testis, and brain [17]; parathyroid [18] | conjugation of prostaglandin A2 and prostaglandin J2 with glutathione (GST M1a-1a) [19]; participating in the formation of novel hepoxilin regioisomers [20]; GST M1: metabolism of isothiocianates (most efficient, among GSTM1, GSTP1, GSTA1, and GSTM4) [21]; binding the mitogen-activated protein (MAP) kinases JNK1, ASK1, and MEKK1 [2,14,22]; deletion of GST M1 gene-risk factor of acute leukemia [16] |
GST M2-2 | muscle, testis, and brain [17] | participating in the formation of novel hepoxilin regioisomers [20]; | |
GST M3-3 | muscle, testis, and brain [17] testis, epididymis, seminal vesicles, renal tubules. | no specific function evidentiated; common function of all GSTs (conjugation of reduced glutathione to exogenous and endogenous hydrophobic electrophiles) [23] | |
GST M4-4 | kidney, intestines, muscle, testis, and brain [17] | glutathione-dependent conjugation of leukotriene A4 (to form leukotriene C4), (S),14(S)-epoxy-docosahexaenoic acid (to form maresin conjugate in tissue regeneration 1 or MCTR1, a potent anti-inflammatory lipid mediator) [24]; metabolism of isothiocyanates (less efficient than GST M1) [21] | |
GST M5-5 | muscle, testis, and brain [17] | no specific function evidentiated; common function of all GSTs (conjugation of reduced glutathione to exogenous and endogenous hydrophobic electrophiles) [23] | |
GST T | GST T1-1 | kidney, liver, erythrocytes [25], parathyroid [18] | biotransformation of several industrial chemicals (e.g., butadiene, methyl chloride, dichloromethane, epoxides) [25] |
GST T2-2 | Skin, brain [23] | no specific function evidentiated; common function of all GSTs (conjugation of reduced glutathione to exogenous and endogenous hydrophobic electrophiles) [23] | |
GST S | GST S1-1 | spleen, hematopoietic system (antigen-presenting cells, Th2 lymphocytes, mast cells, and megakaryocytes) [26] | hematopoietic prostaglandin D synthase (HPGDS) (glutathione-dependent key enzyme in the synthesis of the D and J classes of prostanoids) [27] |
GST Z | GST Z1 | liver, muscles, testis, brain [23] | glutathione-dependent biotransformation of xenobiotic α-haloacids (e.g., oxygenation of dichloroacetic acid to glyoxylic acid); cis-trans isomerization of maleylacetoacetate (product of tyrosine degradation) to fumarylacetoacetate [7]; glutathione peroxidase (GPx) activity with t-butyl and cumene hydroperoxides [23]; |
GST K | GST K1-1 | low tissue specificity [23] | glutathione-dependent conjugation of 1-chloro-2,4-dinitrobenzene [23] |
GST O | GST O1-1 | expressed in most human tissues [28], highest expression in the liver, skeletal muscle, and heart [23,28] | glutathione-dependent thiol transferase; dehydroascorbate reductase activities; biotransformation of inorganic arsenic, reduction in monomethylarsonic acid, dimethylarsonic acid [23], reduction in α-haloketones to nontoxic acetophenones [29] |
GST O2-2 | liver, kidney, skeletal muscle, testis, lower expression in the heart, cervix, ovary and prostate [30] | thiol transferase activity, reductase activity (reduction in monomethylarsonate and dehydroascorbate) [29] | |
MGST | MGST1 | adipose tissue, adrenal gland, liver, monocytes [23] | glutathione-dependent conjugation of halogenated hydrocarbons, reduction in phospholipid hydroperoxides [31]; denitration of glyceryl trinitrate [32] |
MGST2 | liver, intestines, dendritic cells [23] | LTC4 synthase activity [33] | |
MGST3 | low tissue specificity [23] | LTC4 synthase activity and GPx activity [34] | |
PGES-1 | biotransformation of arachidonic acid metabolite prostaglandin endoperoxide H2, produced by cyclooxygenase, to prostaglandin E2 [35]. | ||
FLAP | neutrophils [36] | 5-lipoxygenase-activating protein, no intrinsic catalytic activity, binding arachidonic acid [36] |
2. Materials and Methods
3. Glutathione-S-Transferase Activation by Phytochemicals
Phytochemicals (Source/Chemical Subclass) | Mechanisms of Action | Type of Study | References |
---|---|---|---|
Alkaloids | |||
indole-3-acetonitrile (indole alkaloid) | increased GST activity | (in vivo) liver and small intestine in female ICR/Ha mice | [50] |
boldine (Peumus boldus Mol.) (aporphine alkaloids, a sub-class of quinoline alkaloids) | stimulated GST activity | (in vitro) mouse hepatoma Hepa-1 cell line | [51] |
clivorine (Ligularia hodgsonii Hook, Ligularia dentata Hara) (pyrrolizidine alkaloid) | 4 times increase in GST activity by about 400% | (in vitro) L-02 cells (derived from adult human normal liver) treated for 48 h with 50 mM clivorine | [52] |
berberrubine (proto-alkaloid of berberine, a benzyl-isoquinoline alkaloid) | GSTM2 promoter activation leading to increased GSTM2 mRNA and protein expression | (in vitro) bladder cancer cell lines, 5637 and BFTC 905 | [53] |
Coumarins | |||
coumarin (benzopyrone) | increased class-pi GST P1 subunit | (in vivo) treatment for 2 weeks before exposure, continued during exposure, prevented aflatoxin B1-induced hepatocarcinogenesis in rat; | [54] |
increased GST activity | (in vivo) liver and small intestine in female ICR/Ha mice | [50] | |
fraxetin [Fraxinus chinensis subsp. rhynchophylla (Hance) A.E.Murray] | concentration-dependently increased GST A, but not GST M or GST P levels | (in vitro) transiently transfected H4IIE cells (rat hepatoma); Fraxetin (10–100 mM) | [55] |
Terpenes/terpenoids | |||
limonene (essential oil extracted from Citrus fruits pericarp) (cyclic monoterpene) | increased GST activity | (in vivo) larvae and adult Drosophila melanogaster flies fed with 5 mL of 0.25%, v/v solution (in distilled water) and urethane (20mM) (as a genotoxic agent) | [56] |
p-mentha-2,8-dien-1-ol (seed oil from Apium graveolens L.) (monocyclic monoterpenoid) | increased GST activity | (in vivo) female A/J mice, liver and small intestinal mucosa; 20 mg/dose every two days for a total of 3 doses | [57] |
D-limonene (abundant in Citrus plants like lemon, orange, and grape) (monoterpene) | increased GST activity | (in vivo) male Albino Wistar rats with streptozotocin (STZ) (40 mg/kg i.p.) -induced diabetes in; D-limonene 100 mg/kg BW for 45 days | [58] |
geraniol (many herbs, e.g., lavender, citronella, lemongrass) (monoterpenoid alcohol) | increased activity of GST (probably by upregulated expression) | (in vivo) animal model of isoproterenol-induced myocardial infarction | [59] |
β-caryophyllene (bicyclic sesquiterpene) | Reverses isoproterenol-induced GST inhibition | (in vivo) rats with isoproterenol (100 mg/kg body weight) -induced myocardial infarction; β-Caryophyllene 20 mg/kg body weight daily pre-and co-treatment orally, for 3 weeks | [60] |
β-caryophyllene [1], β-caryophyllene oxide [2], α-humulene [3], α-humulene epoxide I [4], eugenol [5] [Syzygium aromaticum (L.) Merr. & L.M.Perry] (sesquiterpene) | induction of GST in the mouse liver and small intestine | (in vivo) female A/J mice were given by gavage 20 mg per dose of the test compounds once every 2 days for a total of three doses | [61] |
cycloartenol (abundant in fruits, vegetables, medicinal plants) (triterpenoid sterol) | partial recovery of GST activity depressed after exposure | (in vivo) GST activity decreased in the skin of mice exposed to benzoyl peroxide treatment (20 mg/animal/0.2 mL acetone) and UVB radiation (0.420 J/m(2)/s) | [62] |
kahweol/cafestol (Coffea arabica L. coffee) (diterpenoid alcohol) | hepatic GST activity/expression increased (overall GST, GST A, GST M, GST P, GST T) | (in vivo) male Fisher F344 rat fed kahweol/cafestol at 0.122%, for 10 days | [63,64] |
lupeol (found in many fruits and medicinal plants) (pentacyclic triterpene) | increased activity of GST in murine skin | (in vivo) prophylactic treatment of mice with lupeol (0.75 and 1.5 mg per animal) 1 h before benzoyl peroxide (a cutaneous tumor promoter) | [65] |
lupeol (3’-hydroxylup-20(29)-ene) [Cyanthillium cinereum (L.) H.Rob., little ironweed] (pentacyclic triterpenoid) | prevention of the GST activity reduction selenite-induced | (in vivo) 10, 25, 50 mg/g body weight given orally from the 8th day up to the 21st day to Sprague Dawley rat pups to prevent selenite-induced cataract | [66] |
deacetyl nomilin (Citrus × aurantium L., sour orange seed powder) (citrus limonoid/triterpenoid) | induction of GST | (in vivo) Female A/J mice, small intestine and liver; 20 mg by oral gavage once every two days, four administrations | [67] |
isoobacunonic acid (Citrus × aurantium L., sour orange seed powder) (citrus limonoid/triterpenoid) | induction of GST | (in vivo) Female A/J mice, small intestine and liver; 20 mg by oral gavage once every two days, four administrations | [67] |
nomilin (Citrus × aurantium L., sour orange seed powder) (citrus limonoid/triterpenoid) | induction of GST | (in vivo) Female A/J mice, small intestine and liver; 20 mg by oral gavage once every two days, four administrations | [67] |
Flavonoids | |||
flavone (found in various amounts in most plants) (flavone) | GST induction (GST A > GST M > GST P) potentially chemopreventive in the stomach, small intestine, liver, and to a lesser extent in the esophagus | (in vivo) male Wistar rats | [68] |
baicalein (root of Scutellaria baicalensis Georgi., Baikal skullcap) (flavone) | GSTM2 promoter activation leading to increased GSTM2 mRNA and protein expression | (in vitro) bladder cancer cell lines, 5637 and BFTC 905 | [53] |
wogonin (root of Scutellaria baicalensis Georgi., Baikal skullcap) (flavone) | GSTM2 promoter activation leading to increased GSTM2 mRNA and protein expression | (in vitro) bladder cancer cell lines, 5637 and BFTC 905 | [53] |
puerarin [from the roots of Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep, kudzu vine] (isoflavone) | increased GST level depressed by cisplatin | (in vivo) model of rat (female Sprague-Dawley) cisplatin toxicity; 50 mg/kg puerarin | [69] |
quercetin [found in many plants, such as grapes, onions, green tea, apples, berries, etc.] (flavonol) | (in vivo) larvae and adult Drosophila melanogaster flies fed with 5 mL 0.25%, w/v solution (in distilled water) and urethane (20mM) (as a genotoxic agent) | [56] | |
naringenin (common in citrus fruits) (flavanone) | increased GST activity increased transcription of the GST gene | (in vitro) MIN6 (mouse insulinoma cell line); (in vivo) animal model of streptozotocin-induced diabetes (in vivo) Sprague-Dawley rats treated with 50 and 100 mg/kg body weight of naringenin for 7 days | [70], [71] |
increase in GSTa3 cDNA; best protective effect with the 50 mg/kg body weight dose | |||
β-naphthoflavone (synthetic flavonoid) (flavone) | increased GST activity | (in vivo) liver and small intestine in female ICR/Ha mice | [50] |
morin (Maclura pomifera (Raf.) C.K.Schneid., Osage orange) (flavonol) | enhanced expression of GST (effective concentration 60 µM) | (in vitro) L6 myotubes treated cells. | [72] |
chalcone (many sources) (chalcone) | GSTM2 promoter activation leading to increased GSTM2 mRNA and protein expression | (in vitro) bladder cancer cell lines, 5637 and BFTC 905 | [53] |
anthocyanidins (cyanidin, delphinidin, malvidin), anthocyanins (cyanidin-3-O-glucoside = kuromanin) [red, purple, blue, or black fruits (grapes, blueberries, etc.) and vegetables (purple cabbage, red onion, radishes, etc.)](flavonoid) | GST induction by activation of ARE | (in vitro) rat liver Clone 9 cells | [44] |
Other phenolics | |||
gallic acid (found in various amounts in most plants) (phenolic acid) | GST induction potentially useful for preventing hepatotoxicity; increased activity levels of GST | (in vivo) cyclophosphamide-induced hepatotoxicity in male Wistar rats treated with 60 and 120 mg/kg body weight for 14 days, orally; | [48] |
(in vivo) larvae and adult Drosophila melanogaster flies fed with 5 mL 0.5%, w/v solution (in distilled water) and urethane (20mM) (as a genotoxic agent) | [56] | ||
6-shogaol [Zingiber officinale Roscoe, ginger] (phenolic compound) | GST induction potentially useful for preventing colorectal cancer | (in vivo) adult male mice with colorectal adenoma induced by azoxymethane and dextran sulfate sodium, treated with 20 mg/kg BW for 21 days | [73] |
Isothiocyanates | |||
allyl isothiocyanate (Brassica oleracea var. gemmifera DC., Brussels sprouts) | GST induction in liver and small intestine | (in vivo) male Fisher rats | [74] |
benzyl isothiocyanate (common in Brassicaceae vegetables, such as broccoli, cabbage or watercress) | increased GST activity | (in vivo) liver and small intestine in female ICR/Ha mice | [50] |
benzyl isothiocyanate (common in Brassicaceae vegetables, such as broccoli, cabbage or watercress) | GST P rapidly synthesized in hepatocytes, and rapidly excreted into bile (evidentiated by immunostaining with GST-P antibody) | (in vivo) Male Sprague–Dawley rats fed a basal diet containing BITC (0.5%) ad libitum. | [75] |
4-methylsulfanyl-3-butenyl isothiocyanate [derived from glucoraphanin (present in daikon (Raphanus sativus var. longipinnatus, L.H.Bailey) sprouts) by the action of myrosinase isolated from Sinapis alba L., white mustard] | increased GST activity | (in vitro) liver slices from Male Wistar albino rats incubated for 24 h with glucosinolate (0–10 μM) + myrosinase (0.018 U) | [45] |
phenethyl isothiocyanate (vegetables in the Brassicaceae family) | GST induction potentially useful for lung cancer | (in vivo) acrylonitrile-treated male Sprague–Dawley rats with streptozotocin-induced diabetes pretreated with 20, 40, and 80 mg/kg PEITC | [76] |
sulforaphane [Brassica oleracea L. vegetables like broccoli (var. italica), cabbage (var. capitata), cauliflower (var. botrytis), kale (var. acephala)] (isothiocyanate) | GST induction resulting in decreased acrylamide detoxification; | (in vitro) Caco-2 cells treated with either 2.5 mM acrylamide, 10 μM SFN or the combination of both for 24 h; | [37] |
induced GST A1 mRNA expression; | (in vitro) human HepG2 cells exposed to 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (sulforaphane 1–10 μM); | [77] | |
expression of GSTP1-1 proteins increased by 3 to 5-fold | (in vitro) MCF-10F cells (human mammary epithelial cell line) treated with sulforaphane (0.5–2.0 μM) | [78] | |
Organosulfur compounds | |||
allyl methyl disulfide (Allium sativum L., garlic, and Allium cepa L., onion) | Induced GST activity in the forestomach, liver, small intestine, and lung | (in vivo) benzo[a]pyrene induced neoplasia of the forestomach and lung of female A/J mice | [79] |
allyl methyl trisulfide (Allium sativum L., garlic, and Allium cepa L., onion) | Induced GST activity in the forestomach, liver, small intestine, and lung | (in vivo) benzo[a]pyrene induced neoplasia of the forestomach and lung of female A/J mice | [79] |
diallyl sulfide (Allium sativum L., garlic) | increased level of alpha, mu, and pi class GSTs in the stomach of the mice | (in vivo) orally administered (25, 50, and 75 μM) to female A/J mice | [80] |
diallyl disulfide (Allium sativum L., garlic, and Allium cepa L., onion) | increased GST activity in the liver, colon, jejunum, forestomach, glandular stomach, kidney, duodenum, cecum, lung, and ileum | (in vivo) Female rats from the Ru Akura colony of Sprague-Dawley-derived animals, 500 μM/kg body wt/day compound dosed by oral intubation, 5 days | [81] |
diallyl sulfide (Allium sativum L., garlic, and Allium cepa L., onion) | increased GST activity in the liver, colon, jejunum, glandular stomach, cecum, and lung. | (in vivo) Female rats from the Ru Akura colony of Sprague-Dawley-derived animals, 500 µmol/kg body wt/day compound dosed by oral intubation 5 days | [81] |
diallyl trisulfide (Allium sativum L., garlic, and Allium cepa L., onion) | increased GST activity in the liver, colon, jejunum, glandular stomach, kidney, duodenum, lung, and ileum (decreased in forestomach) | (in vivo) Female rats from the Ru Akura colony of Sprague-Dawley-derived animals, 500 µmol/kg body wt/day compound dosed by oral intubation, 5 days | [81] |
dipropenyl disulfide (Allium sativum L., garlic, and Allium cepa L., onion) | increased GST activity in the liver, glandular stomach, duodenum, ileum, cecum, lung, and urinary bladder; increased GST activity in the liver, glandular stomach, duodenum, urinary bladder, and kidney | (in vivo) Female rats from the Ru Akura colony of Sprague-Dawley-derived animals, 500 µmol/kg body wt/day compound dosed by oral intubation, 5 days | [81] |
dipropyl disulfide (Allium sativum L., garlic, and Allium cepa L., onion) | increased GST activity in the glandular stomach (no effect on liver, colon, jejunum, cecum, and lung) | (in vivo) Female rats from the Ru Akura colony of Sprague-Dawley-derived animals, 500 µmol/kg body wt/day compound dosed by oral intubation 5 days | [81] |
dipropyl sulfide (Allium sativum L., garlic, and Allium cepa L., onion) | increased GST activity in the liver (no effect on colon, jejunum, glandular stomach, cecum, and lung) | (in vivo) Female rats from the Ru Akura colony of Sprague-Dawley-derived animals, 500 µmol/kg body wt/day compound dosed by oral intubation 5 days | [81] |
1,2-dithiole-3-thione (Brassicaceae vegetables) | GST A and GST M induction via protein and mRNA expression | (in vitro) normal rat kidney (NRK-52E) proximal tubular cells incubated with 10-50 μM of 1,2-dithiole-3-thione | [82] |
diallyl sulfide (DAS), diallyl disulfide (DADS), diallyl trisulfide (DATS) (Allium species) | increase in hepatic and forestomach GST | (in vivo) mice treated with the carcinogenic benzo(a)pyrene | [83] |
dipropyl sulfide (DPS), dipropyl disulfide (DPDS), and diallyl disulfide (DADS) (Allium species) | stimulated GST activity | (in vivo) rat | [84] |
goitrin (Brassica oleracea var. gemmifera DC., Brussels sprouts)(organosulfur compound, oxazolidinones) | increased levels of hepatic GST protein (1.4-fold), without effect on intestinal GST | (in vivo) rats fed on a goitrin-supplemented diet (200 mg/kg diet) | [85] |
disulfiram (thioamide) | increased GST activity | (in vivo) liver and small intestine in female ICR/Ha mice | [50] |
Indole, indole derivatives | |||
3,3′-diindolylmethane (DIM) [mechanically damaged Brassicaceae vegetables (broccoli, cabbage, cauliflower, Brussels sprouts)] (indole) | promoted GST expression | (in vivo) protective role of DIM (25 mg/kg b.w., p.o. in concomitant and 15 days pretreatment schedule) against doxorubicin(5 mg/kg b.w., i.p.) -induced toxicity in mice | [86] |
indole-3-carbinol [result of the breakdown of the glucosinolate glucobrassicin, present in Brassicaceae vegetables (broccoli, cabbage, cauliflower, Brussels sprouts, kale] (indolyl alcohol) | increased GST activity; | (in vivo) liver and small intestine in female ICR/Ha mice; | [50] |
increased hepatic and intestinal GSTs by 1.9-and 1.6-fold | (in vivo) male Sprague-Dawley rats fed on an indole-3-carbinol-supplemented diet (50–500 ppm) | [87] | |
Lactones | |||
α-angelicalactone (Angelica spp.) (butenolide) | GST induction (GST A > GST M > GST P), potentially chemopreventive in the stomach, small intestine, liver, and to a lesser extent in the esophagus | (in vivo) male Wistar rats | [68] |
andrographolide (Andrographis paniculata (Burm.f.) Nees, creat) (diterpene lactone) | induces GST gene expression by activation of the PI3K/Akt, phosphorylation of c-jun, nuclear accumulation of activator protein-1, and binding to the response element in the gene promoter region; | (in vitro) rat hepatocytes treated with 40 μM andrographolide; | [88] |
dose-dependently induced GST P protein and mRNA expression | (in vitro) rat primary hepatocytes treated with 10 or 20 μM andrographolide | [89] | |
α-angelicalactone (Picea abies (L.) H.Karst., spruce) | increased GST activity | (in vivo) liver and small intestine in female ICR/Ha mice | [50] |
3-n-butyl phthalide (seed oil from Apium graveolens L., wild celery) (phthalide) | increased GST activity | (in vivo) female A/J mice, liver and small intestinal mucosa; 20 mg/dose every two days for a total of 3 doses | [57] |
sedanolide(seed oil from Apium graveolens L., wild celery) (tetrahydrophthalide) | increased GST activity | (in vivo) female A/J mice, liver and small intestinal mucosa; 20 mg/dose every two days for a total of 3 doses | [57] |
Quinones | |||
thymoquinone (Nigella sativa L., black caraway) | increased Nrf2 nuclear translocation with translation of genes for antioxidant enzymes, including GST; | (in vitro) Human neuroblastoma SH-SY5Y cells; C57/BL6 mice; | [90] |
GST was significantly induced by the high dose | (in vivo) female New Zealand White rabbits treated with thymoquinone 10 and 20 mg/kg/day orally for 8 weeks | [91] | |
shikonin (Lithospermum erythrorhizon Siebold & Zucc., purple gromwell) (naphthoquinone pigment) | increased protein and RNA expression of GST | (in vitro) primary hepatocytes isolated from Sprague-Dawley rats treated with 0–2 μM shikonin | [92] |
Stilbenoids | |||
salvianolic acid B (Salvia miltiorrhiza Bunge, red sage) | increased GST expression | (in vitro) HepG2 cells incubated with 1 μmol/L and 10 μmol/L salvianolic acid B | [93] |
resveratrol (many sources: grapes, blueberries, raspberries, mulberries, peanuts, etc.) | GSTM2 promoter activation leading to increased; GSTM2 mRNA and protein expression; GST induction potentially useful for lung cancer decreased GST activity in a concentration-dependent | (in vitro) bladder cancer cell lines, 5637 and BFTC 905; | [53] |
(in vivo) benzo(a)pyrene (BP)-induced lung carcinogenesis in male Laka mice treated with curcumin orally 60 mg/kg/body weight thrice a week + resveratrol 5.7 mg/mL thrice a week 10 days before BP injection; | [47] | ||
(in vitro) (colon carcinoma cell line, Caco-2) | [94] | ||
Others | |||
myristicin [essential oil extracted from the leaves of Petroselinum crispum (Mill.) Fuss, parsley (allylbenzene derivative) | induction of GST in the liver and small intestinal mucosa | (in vivo) female A/J mice | [95] |
curcumin (Curcuma longa L., turmeric) (diarylheptanoid) | GSTM2 promoter activation leading to increased GSTM2 mRNA and protein expression; | (in vitro) bladder cancer cell lines, 5637 and BFTC 905;(in vivo) benzo(a)pyrene (BP)-induced lung carcinogenesis in male Laka mice treated with curcumin orally 60 mg/kg/body weight thrice a week + resveratrol 5.7 mg/mL thrice a week 10 days before BP injection | [53] |
GST induction potentially useful for lung cancer | [47] | ||
1-cyano-2,3-epithiopropane, 1-cyano-3,4-epithiobutane, 1-cyano-4,5-epithiopentane [Brassicaceae vegetables] (epithionitrile) | Inhibition of Keap1 → induction of Nrf2 → activation of ARE → induction -> induction of GST | (in vitro) rat liver RL-34 epithelial cells treated with 50 μM of epithionitrile | [49] |
geniposide (fruits of Gardenia jasminoides J.Ellis, gardenia) (iridoid glyco-side) | increased hepatic cytosolic GST activity | (in vivo) rats treated orally with 0.1 g/kg body weight/day | [96] |
folic acid (green leafy vegetables, beans, fruits,) (vitamin) | Increased expression of GST-4 | (in vivo) folic acid (25 μM) treated Caenorhabditis elegans (a nematode used as an experimental aging model) | [97] |
4. Glutathione-S-Transferase Inhibition by Phytochemicals
Phytochemicals (Source/Chemical Subclass) | Mechanisms of Action | Type of Study | References |
---|---|---|---|
Alkaloids | |||
quinidine, quinine (Cinchona officinalis L., quinine) (cinchona alkaloid) | GST M1-1 and GST P1-1 activity inhibition | (in vitro) inhibition studies with human recombinant GSTs heterologously expressed in Escherichia coli (GST M1-1: IC50 of 12 μM, 17 μM; GST P1-1: IC50 1 μM, 4 μM) | [99] |
piperlongumine (Piper longum L., long pepper) (piperidine alkaloid) | decreased level of GST P1 | (in vitro) head and neck cancer cells) and in vivo model (immunoblotting) | [100] |
Phenolics (flavonoids) | |||
baicalein (flavone), baicalin (glucuronide of baicalein) (root of Scutellaria baicalensis Georgi., Baikal skullcap) | human erythrocyte GST inbition | (in vitro) assay; IC50: 28.75, 57.50 μM | [101] |
fisetin (flavonol) | GST A1-1 reversible inhibition | (in vitro) kinetic inhibition assay and in vitro (CaCo-2 cells), IC50 1.2 ± 0.1 μΜ | [102] |
phloretin (found in many fruits, including apples) (dihydrochalcone) (derived from its glucoside phloridzin) | GST activity inhibition | (in vitro) human erythrocytes (IC50: 769.10 and 99.02 μM) | [101] |
catechin (fruits, including peaches, berries, red grape, bananas) (flavan-3-ol) | GST P1-1 activity inhibition | (in vitro) (breast cancer cells MCF-7; IC50 = 220 μM) | [98] |
myricetin [vegetables (tomatoes, etc.), fruits (oranges, etc.), nuts, berries, tea, red wine] (flavonol) | GST A1-1 enzyme activity inhibition | (in vitro) kinetic inhibition assay with recombinant hGSTA1-1; IC50 = 2.1 ± 0.2 μΜ | [103] |
naringenin (common in citrus fruits) (flavanone) | decreased mRNA expression levels of GST | (in vivo) treatment with naringenin in carbon tetrachloride (CCl4)-induced liver injury in rats | [71] |
Phenolics (tannins) | |||
tannic acid [Tara spinosa (Molina) Britton & Rose, tara] | GST S (HPGDS) inhibition (linear competitive inhibition) | (in vitro) enzyme inhibition biochemical assays (IC50 = 0.4 μM) | [26] |
thonningianin A (Thonningia sanguinea Vahl) | inhibition of rat liver cytosolic GST activity in a non-competitive (towards and concentration dependent manner; inhibition of human GST | (in vitro) assay on rat liver cytosolic GST using 1-chloro-2,4-dinitrobenzene (CDNB) as substrate (IC50 of 1.1 microM); inhibition of human GST P1-1; IC50 of 3.6 μM | [104] |
Other phenolics | |||
6-shogaol, 10-shogaol, 6-gingerol, 10-gingerol (Zingiber officinale Roscoe, ginger) | decreased GST P expression | (in vitro) 100 μM of 6-shogaol, 10-shogaol, 6-gingerol, and 10-gingerol treatment at 24 h in PC3R cells (docetaxel-resistant human prostate cancer cell lines) | [105] |
gossypol (Gossypium arboreum L., cotton) (phenolic aldehyde) | enzyme activity inhibition | (in vitro) (breast cancer cells MCF-7), IC50 = 40 μM | [98] |
Other aromatic compounds | |||
cinnamaldehyde (Cinnamomum aromaticum Nees, cinnamon tree) (aromatic alpha, beta-unsaturated aldehyde) | moderate inhibitor of GST P1-1 | (in vitro) (human IGR-39 melanoma cells) | [106] |
pipataline (Guilandina major (Medik.) Small, grey nicker) (benzodioxole) | GST activity inhibition | (in vitro) direct biochemical inhibition assay; IC50: 57 μM | [107] |
curcumin (Curcuma longa L., turmeric) (diarylheptanoid) | selective inhibitor of GST P1-1; | (in vitro) (human IGR-39 melanoma cells), 96% inhibition at 25 μM; | [106] |
inhibition of GST P1-1 at the level of transcription | (in vitro) (K562 leukemia cells), 25% inhibition by 10 μM | [108] | |
Terpenes/terpenoids | |||
abscisic acid (a phytohormone) (sesquiterpenoid) | inhibition GST P1-1 (hpGSTP1-1) activity | (in vitro) kinetic assay using placental glutathione S-transferase; IC50: 5.3 mM | [109] |
gibberellic acid (a phytohormone) (pentacyclic diterpene acid) | Inhibition of placental glutathione S-transferase P1-1 (hpGST P1-1) | (in vitro) kinetic assay using placental glutathione S-transferase; IC50: 5.0 mM | [109] |
caesaldekarin J (Caesalpinia bonduc L.) (diterpene) | GST activity inhibition | (in vitro) direct biochemical inhibition assay; IC50: 250 μM | [107] |
Sterols | |||
3a-acetoxy-13,14-seco-stigmasta-9(11),14-diene (Guilandina major (Medik.) Small, grey nicker) | GST activity inhibition | (in vitro) direct biochemical inhibition assay; IC50: 153 μM | [107] |
5b,6b-epoxy-13,14-seco-stigmast-14-en-3a-ol (Guilandina major (Medik.) Small, grey nicker) | GST activity inhibition | (in vitro) direct biochemical inhibition assay; IC50: 118 μM | [107] |
17-hydroxy-campes-ta-4,6-dien-3-one (Caesalpinia bonduc L.) | GST activity inhibition | (in vitro) direct biochemical inhibition assay; IC50: 380 μM | [107] |
3-oxo-13,14-seco-stigmasta-9(11),14-diene Guilandina major (Medik.) Small, grey nicker) | GST activity inhibition | (in vitro) direct biochemical inhibition assay; IC50: 158 μM | [107] |
13,14-seco-stigmas-ta5,14-dien-3a-ol (Caesalpinia bonduc L.) | GST activity inhibition | (in vitro) direct biochemical inhibition assay; IC50: 230 μM | [107] |
13,14-seco-stigmas-ta-9(11),14-dien-3a-ol (Guilandina major (Medik.) Small, grey nicker) | GST activity inhibition | (in vitro) direct biochemical inhibition assay; IC50: 248 μM | [107] |
Others | |||
phenethyl isothiocyanate (Brassicaceae vegetables) (isothiocyanate) | inhibition of hGST P1 and hGST A1 | (in vitro) kinetic assay using 1-chloro-2, 4-dinitrobenzene as enzyme substrate | [46] |
tetra-and hexahydro isoalpha acids (Humulus lupulus L., hops) (isoalpha acids) | reduced expression of glutathione-S-transferase in the liver | (in vitro) human hepatocellular carcinoma (HCC) cell lines (HepG2, Hep3B, Huh7) and in vivo in diethylnitrosamine (DEN)-induced animal model of HCC | [110] |
artemisinin (Artemisia annua L., sweet wormwood) (sesquiterpene lactone) | GST A1-1 and GST P1-1 activity inhibition | (in vitro) inhibition studies with human recombinant GSTs heterologously expressed in Escherichia coli (GST A1-1: IC50 of 6 μM; GST P1-1: IC50 values of 2 μM) | [99] |
oridonin (Isodon rubescens (Hemsl.) H.Hara) (tetracyclic diterpenoid) | downregulated expression of GST P | (in vitro) (PANC-1/Gem cells) (concentration used 40, 60 μM) | [111] |
RR-α-tocopherol (nuts, seeds, vegetable oils) (prenol lipid) | GST A1-1, P1-1, M1-1 activity inhibition | (in vitro) assay with purified enzymes (GST P1-1: IC50 = 0.6 ± 0.06 μM; GST A1-1: IC50-0.9 ± 0.08 μM, GST M1-1: IC50-1.2 ± 0.06 μM; GST A2-2-IC50 3.5 ± 0.06 μM), human liver cytosol (GST M and GST A 281 ± 4 μM in) and lysate of human erythrocytes (GST: 103 ± 17 μM)_ | [112] |
5. GST Activation or Inhibition-Which Interventional Strategy Is the Better Choice?
Isoenzyme | Drug Resistance | Biological Model | |
---|---|---|---|
GST | melphalan | Chinese hamster ovary cells (drug-sensitive AuxB1 and multidrug-resistant CH(R)C5) in a clonogenic survival assay to assess effects of hyperthermia (41–43 degrees C), ethacrynic acid (a glutathione S-transferase inhibitor), and melphalan on cytotoxicity | [121] |
chlorambucil; cyclophosphamide; bendamustine, melphalan | lonidamine potentiating effect on nitrogen mustard alkylating agents (chlorambucil; cyclophosphamide; bendamustine, melphalan) in the systemic treatment of DB-1 human melanoma xenografts in mice | [122] | |
GST A1 | chlorambucil | HepG2 human liver cancer cells with high levels of multidrug resistance protein 2 (MRP2), which potentiates glutathione S-transferase A1-1 (GSTA1-1)-mediated resistance to chlorambucil cytotoxicity | [123] |
chlorambucil | MCF7/WT, MCF7/VP, and MCF7/VPa human breast carcinoma cells used to study synergy between GSTA1-1 and MRP1 in resistance to chlorambucil (but not melphalan); MRP1 required to relieve product inhibition of GSTA1-1 by CHB-SG | [124] | |
GST M | chlorambucil | chlorambucil-resistant A2780 human ovarian carcinoma cells overexpressing GSTμ isoform to study acquired resistance to alkylating agents | [125] |
GST M1 | vincristine, chlorambucil | melanoma cells resistant to CHB due to GSTM1 and resistant to vincristine due to the synergy between GSTM1 and multidrug resistance protein 1; CAL1 human melanoma cells engineered to overexpress GSTM1 to study resistance to chlorambucil (via GSTM1) and vincristine (via GSTM1 synergy with MRP1) | [126] |
GST P1 | doxorubicin | HEp2 human carcinoma cells (parental, doxorubicin-resistant subclone HEp2A, and GSTP1-transfected) to study roles of GSTP1, P-gp, and MRP1 in doxorubicin resistance | [127] |
1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) | biopsy specimens from malignant glioma patients (astrocytoma, anaplastic astrocytoma, glioblastoma multiforme, oligodendroglioma, glioma); MGMT and GSTP1 overexpression are independently associated with BCNU resistance, greatest resistance seen with co-expression | [128] | |
GST-P | cyclophosphamide, adriamycin, vincristine | two chronic lymphocytic leukemia patients refractory to cyclophosphamide + adriamycin + vincristine + prednisone due to GST-Pi and GP-170 overexpression | [129] |
cyclophosphamide | GST-pi gene-transfected mice resistant to cyclophosphamide due to bone marrow chemoprotection. | [130] | |
cisplatin | haloenol lactone derivative potentiates cisplatin-induced cytotoxicity in UOK130 human renal tumor cells by inhibiting GST-pi and MRP1-3 | [131] | |
cisplatin, melphalan, chlorambucil | multiple drug-resistant UOK130 renal tumor cells with selective GST-pi over-expression (via cisplatin escalation or GST-pi cDNA transfection); resistance reversed by haloenol lactone GST-pi inhibitor | [132] | |
GSTP1-1 | adriamycin, cisplatin, and alkylating agents such as melphalan and 4-hydroxyperoxycyclophosphamide | human cholangiocarcinoma cells: GSTP1-1 antisense transfection decreases intracellular GSTP1-1 levels and increases sensitivity to adriamycin, cisplatin, melphalan, and 4-hydroxyperoxycyclophosphamide; C16C2, a GSTP1-1-specific inhibitor, also reduces resistance | [133] |
thiotepa | GST-P1-1-transfected human MCF-7 breast cancer cells: overexpression of GST-P1-1 increases formation and efflux of monoglutathionylthiotepa, reducing thiotepa cytotoxicity; inhibition of GST, GSH synthesis, or glutathione conjugate efflux (e.g., with ethacrynic acid, BSO, probenecid, or verapamil) decreases conjugate formation or transport and enhances cytotoxicity | [134] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Jakoby, W.B. The glutathione S-transferases: A group of multifunctional detoxification proteins. Adv. Enzymol. Relat. Areas Mol. Biol. 1978, 46, 383–414. [Google Scholar] [PubMed]
- Townsend, D.M.; Tew, K.D. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003, 22, 7369–7375. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.R.; Reindl, K.M. Glutathione S-Transferases in Cancer. Antioxidants 2021, 10, 701. [Google Scholar] [CrossRef] [PubMed]
- Strange, R.C.; Spiteri, M.A.; Ramachandran, S.; Fryer, A.A. Glutathione-S-transferase family of enzymes. Mutat. Res. 2001, 482, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88. [Google Scholar] [CrossRef] [PubMed]
- Alnasser, S.M. The role of glutathione S-transferases in human disease pathogenesis and their current inhibitors. Genes Dis. 2025, 12, 101482. [Google Scholar] [CrossRef] [PubMed]
- Board, P.G.; Anders, M.W. Human Glutathione Transferase Zeta. In Gluthione Transferases and Gamma-Glutamyl Transpeptidases; Sies, H., Packer, L., Eds.; Academic Press: Cambridge, MA, USA, 2005; Volume 401, pp. 61–77. ISBN 0076-6879. [Google Scholar]
- Bocedi, A.; Noce, A.; Marrone, G.; Noce, G.; Cattani, G.; Gambardella, G.; Di Lauro, M.; Di Daniele, N.; Ricci, G. Glutathione Transferase P1-1 an Enzyme Useful in Biomedicine and as Biomarker in Clinical Practice and in Environmental Pollution. Nutrients 2019, 11, 1741. [Google Scholar] [CrossRef] [PubMed]
- Maeda, A.; Crabb, J.W.; Palczewski, K. Microsomal glutathione S-transferase 1 in the retinal pigment epithelium: Protection against oxidative stress and a potential role in aging. Biochemistry 2005, 44, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Zager, R.A.; Johnson, A.C.M. Early loss of glutathione-s-transferase (GST) activity during diverse forms of acute renal tubular injury. Physiol. Rep. 2022, 10, e15352. [Google Scholar] [CrossRef] [PubMed]
- Krishna Chandran, A.M.; Christina, H.; Das, S.; Mumbrekar, K.D.; Satish Rao, B.S. Neuroprotective role of naringenin against methylmercury induced cognitive impairment and mitochondrial damage in a mouse model. Environ. Toxicol. Pharmacol. 2019, 71, 103224. [Google Scholar] [CrossRef] [PubMed]
- Coles, B.F.; Kadlubar, F.F. Human alpha class glutathione S-transferases: Genetic polymorphism, expression, and susceptibility to disease. Methods Enzymol. 2005, 401, 9–42. [Google Scholar] [CrossRef] [PubMed]
- Romero, L.; Andrews, K.; Ng, L.; O’Rourke, K.; Maslen, A.; Kirby, G. Human GSTA1-1 reduces c-Jun N-terminal kinase signalling and apoptosis in Caco-2 cells. Biochem. J. 2006, 400, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, K.; Huh, S.-H.; Lee, Y.H.; Yoon, K.W.; Cho, S.-G.; Choi, E.-J. Negative regulation of MEKK1-induced signaling by glutathione S-transferase Mu. J. Biol. Chem. 2004, 279, 43589–43594. [Google Scholar] [CrossRef] [PubMed]
- Adler, V.; Yin, Z.; Fuchs, S.Y.; Benezra, M.; Rosario, L.; Tew, K.D.; Pincus, M.R.; Sardana, M.; Henderson, C.J.; Wolf, C.R.; et al. Regulation of JNK signaling by GSTp. EMBO J. 1999, 18, 1321–1334. [Google Scholar] [CrossRef] [PubMed]
- Dunna, N.R.; Vure, S.; Sailaja, K.; Surekha, D.; Raghunadharao, D.; Rajappa, S.; Vishnupriya, S. Deletion of GSTM1 and T1 genes as a risk factor for development of acute leukemia. Asian Pac. J. Cancer Prev. 2013, 14, 2221–2224. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Pulford, D.J. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 445–600. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.-X.; Langub, M.C.; Ihnen, M.A.; Hornung, C.; Juronen, E.; Rayens, M.K.; Cai, W.-M.; Wedlund, P.J.; Fanti, P. CYP2D6, GST-M1 and GST-T1 enzymes: Expression in parathyroid gland and association with the parathyroid hormone concentration during early renal replacement therapy. Br. J. Clin. Pharmacol. 2003, 56, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Bogaards, J.J.; Venekamp, J.C.; van Bladeren, P.J. Stereoselective conjugation of prostaglandin A2 and prostaglandin J2 with glutathione, catalyzed by the human glutathione S-transferases A1-1, A2-2, M1a-1a, and P1-1. Chem. Res. Toxicol. 1997, 10, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Brunnström, A.; Hamberg, M.; Griffiths, W.J.; Mannervik, B.; Claesson, H.-E. Biosynthesis of 14,15-hepoxilins in human l1236 Hodgkin lymphoma cells and eosinophils. Lipids 2011, 46, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Kolm, R.H.; Danielson, U.H.; Zhang, Y.; Talalay, P.; Mannervik, B. Isothiocyanates as substrates for human glutathione transferases: Structure-activity studies. Biochem. J. 1995, 311, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.G.; Lee, Y.H.; Park, H.S.; Ryoo, K.; Kang, K.W.; Park, J.; Eom, S.J.; Kim, M.J.; Chang, T.S.; Choi, S.Y.; et al. Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J. Biol. Chem. 2001, 276, 12749–12755. [Google Scholar] [CrossRef] [PubMed]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Dalli, J.; Vlasakov, I.; Riley, I.R.; Rodriguez, A.R.; Spur, B.W.; Petasis, N.A.; Chiang, N.; Serhan, C.N. Maresin conjugates in tissue regeneration biosynthesis enzymes in human macrophages. Proc. Natl. Acad. Sci. USA 2016, 113, 12232–12237. [Google Scholar] [CrossRef] [PubMed]
- Thier, R.; Wiebel, F.A.; Hinkel, A.; Burger, A.; Brüning, T.; Morgenroth, K.; Senge, T.; Wilhelm, M.; Schulz, T.G. Species differences in the glutathione transferase GSTT1-1 activity towards the model substrates methyl chloride and dichloromethane in liver and kidney. Arch. Toxicol. 1998, 72, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Mazari, A.M.A.; Hegazy, U.M.; Mannervik, B. Identification of new inhibitors for human hematopoietic prostaglandin D2 synthase among FDA-approved drugs and other compounds. Chem. Biol. Interact. 2015, 229, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Kanaoka, Y.; Fujimori, K.; Kikuno, R.; Sakaguchi, Y.; Urade, Y.; Hayaishi, O. Structure and chromosomal localization of human and mouse genes for hematopoietic prostaglandin D synthase. Conservation of the ancestral genomic structure of sigma-class glutathione S-transferase. Eur. J. Biochem. 2000, 267, 3315–3322. [Google Scholar] [CrossRef] [PubMed]
- Board, P.G.; Coggan, M.; Chelvanayagam, G.; Easteal, S.; Jermiin, L.S.; Schulte, G.K.; Danley, D.E.; Hoth, L.R.; Griffor, M.C.; Kamath, A.V.; et al. Identification, Characterization, and Crystal Structure of the Omega Class Glutathione Transferases. J. Biol. Chem. 2000, 275, 24798–24806. [Google Scholar] [CrossRef] [PubMed]
- Board, P.G. The omega-class glutathione transferases: Structure, function, and genetics. Drug Metab. Rev. 2011, 43, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Whitbread, A.K.; Tetlow, N.; Eyre, H.J.; Sutherland, G.R.; Board, P.G. Characterization of the human Omega class glutathione transferase genes and associated polymorphisms. Pharmacogenetics 2003, 13, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, R.; Zhang, J.; Johansson, K. Microsomal glutathione transferase 1: Mechanism and functional roles. Drug Metab. Rev. 2011, 43, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Bennett, B.M. Biotransformation of glyceryl trinitrate by rat hepatic microsomal glutathione S-transferase 1. J. Pharmacol. Exp. Ther. 2006, 318, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, P.-J.; Mancini, J.A.; Ford-Hutchinson, A.W. Identification and characterization of a novel human microsomal glutathione S-transferase with leukotriene C4 synthase activity and significant sequence identity to 5-lipoxygenase-activating protein and leukotriene C4 synthase. J. Biol. Chem. 1996, 271, 22203–22210. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, P.-J.; Mancini, J.A.; Riendeau, D.; Ford-Hutchinson, A.W. Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities. J. Biol. Chem. 1997, 272, 22934–22939. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, P.J.; Thorén, S.; Morgenstern, R.; Samuelsson, B. Identification of human prostaglandin E synthase: A microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc. Natl. Acad. Sci. USA 1999, 96, 7220–7225. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.K.; Gillard, J.W.; Vickers, P.J.; Sadowski, S.; Léveillé, C.; Mancini, J.A.; Charleson, P.; Dixon, R.A.F.; Ford-Hutchinson, A.W.; Fortin, R. Identification and isolation of a membrane protein necessary for leukotriene production. Nature 1990, 343, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Pernice, R.; Hauder, J.; Koehler, P.; Vitaglione, P.; Fogliano, V.; Somoza, V. Effect of sulforaphane on glutathione-adduct formation and on glutathione_S_transferase-dependent detoxification of acrylamide in Caco-2 cells. Mol. Nutr. Food Res. 2009, 53, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Ruscoe, J.E.; Rosario, L.A.; Wang, T.; Gaté, L.; Arifoglu, P.; Wolf, C.R.; Henderson, C.J.; Ronai, Z.; Tew, K.D. Pharmacologic or genetic manipulation of glutathione S-transferase P1-1 (GSTpi) influences cell proliferation pathways. J. Pharmacol. Exp. Ther. 2001, 298, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Oakley, A. Glutathione transferases: A structural perspective. Drug Metab. Rev. 2011, 43, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Elmileegy, I.M.H.; Waly, H.S.A.; Alghriany, A.A.I.; Abou Khalil, N.S.; Mahmoud, S.M.M.; Negm, E.A. Gallic acid rescues uranyl acetate induced-hepatic dysfunction in rats by its antioxidant and cytoprotective potentials. BMC Complement. Med. Ther. 2023, 23, 423. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-González, G.; Quintas-Granados, L.I.; Reyes-Hernández, O.D.; Caballero-Florán, I.H.; Peña-Corona, S.I.; Cortés, H.; Leyva-Gómez, G.; Habtemariam, S.; Sharifi-Rad, J. Review of the anticancer properties of 6-shogaol: Mechanisms of action in cancer cells and future research opportunities. Food Sci. Nutr. 2024, 12, 4513–4533. [Google Scholar] [CrossRef] [PubMed]
- Louka, P.; Ferreira, N.; Sophocleous, A. Sulforaphane’s Role in Osteosarcoma Treatment: A Systematic Review and Meta-Analysis of Preclinical Studies. Biomedicines 2025, 13, 1048. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Liñán-Atero, R.; Tarahi, M.; Christodoulou, M.C.; Aghababaei, F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants 2024, 13, 1001. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.-H.; Yeh, C.-T.; Yen, G.-C. Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J. Agric. Food Chem. 2007, 55, 9427–9435. [Google Scholar] [CrossRef] [PubMed]
- Abdull Razis, A.F.; De Nicola, G.R.; Pagnotta, E.; Iori, R.; Ioannides, C. 4-Methylsulfanyl-3-butenyl isothiocyanate derived from glucoraphasatin is a potent inducer of rat hepatic phase II enzymes and a potential chemopreventive agent. Arch. Toxicol. 2012, 86, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Kumari, V.; Dyba, M.A.; Holland, R.J.; Liang, Y.-H.; Singh, S.V.; Ji, X. Irreversible Inhibition of Glutathione S-Transferase by Phenethyl Isothiocyanate (PEITC), a Dietary Cancer Chemopreventive Phytochemical. PLoS ONE 2016, 11, e0163821. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, Y.-M.; Yu, Y.; Cao, C.-S.; Zhang, J.-H.; Li, K.; Zhang, P.-Y. Curcumin and resveratrol in combination modulate drug-metabolizing enzymes as well as antioxidant indices during lung carcinogenesis in mice. Hum. Exp. Toxicol. 2015, 34, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Oyagbemi, A.A.; Omobowale, O.T.; Asenuga, E.R.; Akinleye, A.S.; Ogunsanwo, R.O.; Saba, A.B. Cyclophosphamide-induced Hepatotoxicity in Wistar Rats: The Modulatory Role of Gallic Acid as a Hepatoprotective and Chemopreventive Phytochemical. Int. J. Prev. Med. 2016, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, M.O.; McMahon, M.; Eggleston, I.M.; Dixon, M.J.; Taguchi, K.; Yamamoto, M.; Hayes, J.D. 1-Cyano-2,3-epithiopropane is a novel plant-derived chemopreventive agent which induces cytoprotective genes that afford resistance against the genotoxic alpha,beta-unsaturated aldehyde acrolein. Carcinogenesis 2009, 30, 1754–1762. [Google Scholar] [CrossRef] [PubMed]
- Sparnins, V.L.; Venegas, P.L.; Wattenberg, L.W. Glutathione S-transferase activity: Enhancement by compounds inhibiting chemical carcinogenesis and by dietary constituents. J. Natl. Cancer Inst. 1982, 68, 493–496. [Google Scholar] [PubMed]
- Kubínová, R.; Machala, M.; Minksová, K.; Neca, J.; Suchý, V. Chemoprotective activity of boldine: Modulation of drug-metabolizing enzymes. Pharmazie 2001, 56, 242–243. [Google Scholar] [PubMed]
- Ji, L.; Liu, T.; Chen, Y.; Wang, Z. Protective mechanisms of N-acetyl-cysteine against pyrrolizidine alkaloid clivorine-induced hepatotoxicity. J. Cell. Biochem. 2009, 108, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-H.; Wu, J.-Y.; Wang, S.-C.; Wang, C.-H.; Hong, C.-T.; Liu, P.-Y.; Wu, S.-R.; Liu, Y.-W. The suppressive role of phytochemical-induced glutathione S-transferase Mu 2 in human urothelial carcinoma cells. Biomed. Pharmacother. 2022, 151, 113102. [Google Scholar] [CrossRef] [PubMed]
- Kelly, V.P.; Ellis, E.M.; Manson, M.M.; Chanas, S.A.; Moffat, G.J.; McLeod, R.; Judah, D.J.; Neal, G.E.; Hayes, J.D. Chemoprevention of aflatoxin B1 hepatocarcinogenesis by coumarin, a natural benzopyrone that is a potent inducer of aflatoxin B1-aldehyde reductase, the glutathione S-transferase A5 and P1 subunits, and NAD(P)H: Quinone oxidoreductase in rat liver. Cancer Res. 2000, 60, 957–969. [Google Scholar] [PubMed]
- Thuong, P.T.; Pokharel, Y.R.; Lee, M.Y.; Kim, S.K.; Bae, K.; Su, N.D.; Oh, W.K.; Kang, K.W. Dual anti-oxidative effects of fraxetin isolated from Fraxinus rhinchophylla. Biol. Pharm. Bull. 2009, 32, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, I.; Abraham, S.K. Ameliorative effects of gallic acid, quercetin and limonene on urethane-induced genotoxicity and oxidative stress in Drosophila melanogaster. Toxicol. Mech. Methods 2017, 27, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.Q.; Kenney, P.M.; Zhang, J.; Lam, L.K. Chemoprevention of benzo[a]pyrene-induced forestomach cancer in mice by natural phthalides from celery seed oil. Nutr. Cancer 1993, 19, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Murali, R.; Karthikeyan, A.; Saravanan, R. Protective effects of D-limonene on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rats. Basic Clin. Pharmacol. Toxicol. 2013, 112, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Younis, N.S.; Abduldaium, M.S.; Mohamed, M.E. Protective Effect of Geraniol on Oxidative, Inflammatory and Apoptotic Alterations in Isoproterenol-Induced Cardiotoxicity: Role of the Keap1/Nrf2/HO-1 and PI3K/Akt/mTOR Pathways. Antioxidants 2020, 9, 977. [Google Scholar] [CrossRef] [PubMed]
- Yovas, A.; Stanely, S.P.; Issac, R.; Ponnian, S.M.P. β-caryophyllene blocks reactive oxygen species-mediated hyperlipidemia in isoproterenol-induced myocardial infarcted rats. Eur. J. Pharmacol. 2023, 960, 176102. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.Q.; Kenney, P.M.; Lam, L.K. Sesquiterpenes from clove (Eugenia caryophyllata) as potential anticarcinogenic agents. J. Nat. Prod. 1992, 55, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Alam, A.; Khan, N.; Sharma, S. Inhibition of benzoyl peroxide and ultraviolet-B radiation induced oxidative stress and tumor promotion markers by cycloartenol in murine skin. Redox Rep. 2003, 8, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Huber, W.W.; Teitel, C.H.; Coles, B.F.; King, R.S.; Wiese, F.W.; Kaderlik, K.R.; Casciano, D.A.; Shaddock, J.G.; Mulder, G.J.; Ilett, K.F.; et al. Potential chemoprotective effects of the coffee components kahweol and cafestol palmitates via modification of hepatic N-acetyltransferase and glutathione S-transferase activities. Environ. Mol. Mutagen. 2004, 44, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Huber, W.W.; Prustomersky, S.; Delbanco, E.; Uhl, M.; Scharf, G.; Turesky, R.J.; Thier, R.; Schulte-Hermann, R. Enhancement of the chemoprotective enzymes glucuronosyl transferase and glutathione transferase in specific organs of the rat by the coffee components kahweol and cafestol. Arch. Toxicol. 2002, 76, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Alam, A.; Arifin, S.; Shah, M.S.; Ahmed, B.; Sultana, S. Lupeol, a triterpene, inhibits early responses of tumor promotion induced by benzoyl peroxide in murine skin. Pharmacol. Res. 2001, 43, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Asha, R.; Gayathri Devi, V.; Abraham, A. Lupeol, a pentacyclic triterpenoid isolated from Vernonia cinerea attenuate selenite induced cataract formation in Sprague Dawley rat pups. Chem. Biol. Interact. 2016, 245, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Perez, J.L.; Jayaprakasha, G.K.; Cadena, A.; Martinez, E.; Ahmad, H.; Patil, B.S. In Vivo induction of phase II detoxifying enzymes, glutathione transferase and quinone reductase by citrus triterpenoids. BMC Complement. Altern. Med. 2010, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Nijhoff, W.A.; Bosboom, M.A.; Smidt, M.H.; Peters, W.H. Enhancement of rat hepatic and gastrointestinal glutathione and glutathione S-transferases by alpha-angelicalactone and flavone. Carcinogenesis 1995, 16, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, C.; Li, Q.; Li, J.; Lu, X. Puerarin alleviates cisplatin-induced acute renal damage and upregulates microRNA-31-related signaling. Exp. Ther. Med. 2020, 20, 3122–3129. [Google Scholar] [CrossRef] [PubMed]
- Rajappa, R.; Sireesh, D.; Salai, M.B.; Ramkumar, K.M.; Sarvajayakesavulu, S.; Madhunapantula, S. V Treatment With Naringenin Elevates the Activity of Transcription Factor Nrf2 to Protect Pancreatic β-Cells From Streptozotocin-Induced Diabetes In Vitro and In Vivo. Front. Pharmacol. 2018, 9, 1562. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, M.A.; Alilou, M. Naringenin attenuates CCl4-induced hepatic inflammation by the activation of an Nrf2-mediated pathway in rats. Clin. Exp. Pharmacol. Physiol. 2014, 41, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Issac, P.K.; Karan, R.; Guru, A.; Pachaiappan, R.; Arasu, M.V.; Al-Dhabi, N.A.; Choi, K.C.; Harikrishnan, R.; Raj, J.A. Insulin signaling pathway assessment by enhancing antioxidant activity due to morin using In Vitro rat skeletal muscle L6 myotubes cells. Mol. Biol. Rep. 2021, 48, 5857–5872. [Google Scholar] [CrossRef] [PubMed]
- Ajeigbe, O.F.; Maruf, O.R.; Anyebe, D.A.; Opafunso, I.T.; Ajayi, B.O.; Farombi, E.O. 6-shogaol suppresses AOM/DSS-mediated colorectal adenoma through its antioxidant and anti-inflammatory effects in mice. J. Food Biochem. 2022, 46, e14422. [Google Scholar] [CrossRef] [PubMed]
- Bogaards, J.J.P.; Van Ommen, B.; Falke, H.E.; Willems, M.I.; Van Bladeren, P.J. Glutathione S-transferase subunit induction patterns of Brussels sprouts, allyl isothiocyanate and goitrin in rat liver and small intestinal mucosa: A new approach for the identification of inducing xenobiotics. Food Chem. Toxicol. 1990, 28, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Satoh, K.; Yamakawa, D.; Kasai, K.; Hatayama, I. Vibratome technique revealed initial carcinogenic changes that induce GST-P+ single hepatocytes and minifoci in rat liver. Anal. Biochem. 2023, 672, 115168. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Dong, Y.; Lu, R.; Yang, B.; Wang, S.; Xing, G.; Jiang, Y. Susceptibility to the acute toxicity of acrylonitrile in streptozotocin-induced diabetic rats: Protective effect of phenethyl isothiocyanate, a phytochemical CYP2E1 inhibitor. Drug Chem. Toxicol. 2021, 44, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Bacon, J.R.; Williamson, G.; Garner, R.C.; Lappin, G.; Langouët, S.; Bao, Y. Sulforaphane and quercetin modulate PhIP-DNA adduct formation in human HepG2 cells and hepatocytes. Carcinogenesis 2003, 24, 1903–1911. [Google Scholar] [CrossRef] [PubMed]
- Singletary, K.; MacDonald, C. Inhibition of benzo[a]pyrene-and 1,6-dinitropyrene-DNA adduct formation in human mammary epithelial cells bydibenzoylmethane and sulforaphane. Cancer Lett. 2000, 155, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Sparnins, V.L.; Barany, G.; Wattenberg, L.W. Effects of organosulfur compounds from garlic and onions on benzo[a]pyrene-induced neoplasia and glutathione S-transferase activity in the mouse. Carcinogenesis 1988, 9, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.K.; Singh, S. V Differential induction of glutathione transferase isoenzymes of mice stomach by diallyl sulfide, a naturally occurring anticarcinogen. Cancer Lett. 1991, 57, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Munday, R.; Munday, C.M. Relative activities of organosulfur compounds derived from onions and garlic in increasing tissue activities of quinone reductase and glutathione transferase in rat tissues. Nutr. Cancer 2001, 40, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, L.; Amin, A.R.; Li, Y. Coordinated upregulation of a series of endogenous antioxidants and phase 2 enzymes as a novel strategy for protecting renal tubular cells from oxidative and electrophilic stress. Exp. Biol. Med. 2008, 233, 753–765. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.K.; Hu, X.; Xia, H.; Zaren, H.A.; Chatterjee, M.L.; Agarwal, R.; Singh, S.V. Mechanism of differential efficacy of garlic organosulfides in preventing benzo(a)pyrene-induced cancer in mice. Cancer Lett. 1997, 118, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Siess, M.H.; Le Bon, A.M.; Canivenc-Lavier, M.C.; Suschetet, M. Modification of hepatic drug-metabolizing enzymes in rats treated with alkyl sulfides. Cancer Lett. 1997, 120, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Kelley, M.K.; Bjeldanes, L.F. Modulation of glutathione S-transferase activity and isozyme pattern in liver and small intestine of rats fed goitrin- and T3-supplemented diets. Food Chem. Toxicol. 1995, 33, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Hajra, S.; Basu, A.; Singha Roy, S.; Patra, A.R.; Bhattacharya, S. Attenuation of doxorubicin-induced cardiotoxicity and genotoxicity by an indole-based natural compound 3,3’-diindolylmethane (DIM) through activation of Nrf2/ARE signaling pathways and inhibiting apoptosis. Free Radic. Res. 2017, 51, 812–827. [Google Scholar] [CrossRef] [PubMed]
- Bradfield, C.A.; Bjeldanes, L.F. Effect of dietary indole-3-carbinol on intestinal and hepatic monooxygenase, glutathione S-transferase and epoxide hydrolase activities in the rat. Food Chem. Toxicol. 1984, 22, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-Y.; Li, C.-C.; Lii, C.-K.; Yao, H.-T.; Liu, K.-L.; Tsai, C.-W.; Chen, H.-W. Andrographolide-induced pi class of glutathione S-transferase gene expression via PI3K/Akt pathway in rat primary hepatocytes. Food Chem. Toxicol. 2011, 49, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-T.; Lii, C.-K.; Tsai, C.-W.; Yang, A.-J.; Chen, H.-W. Modulation of the expression of the pi class of glutathione S-transferase by Andrographis paniculata extracts and andrographolide. Food Chem. Toxicol. 2008, 46, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhang, X.; Wang, S.; Xu, C.; Gao, M.; Liu, S.; Li, X.; Cheng, N.; Han, Y.; Wang, X.; et al. Thymoquinone Prevents Dopaminergic Neurodegeneration by Attenuating Oxidative Stress Via the Nrf2/ARE Pathway. Front. Pharmacol. 2020, 11, 615598. [Google Scholar] [CrossRef] [PubMed]
- Elbarbry, F.; Ragheb, A.; Marfleet, T.; Shoker, A. Modulation of hepatic drug metabolizing enzymes by dietary doses of thymoquinone in female New Zealand White rabbits. Phytother. Res. 2012, 26, 1726–1730. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-S.; Chen, H.-W.; Lin, T.-Y.; Lin, A.-H.; Lii, C.-K. Shikonin upregulates the expression of drug-metabolizing enzymes and drug transporters in primary rat hepatocytes. J. Ethnopharmacol. 2018, 216, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-L.; Wu, Q.; Tao, Y.-Y.; Liu, C.-H.; El-Nezami, H. Salvianolic acid B modulates the expression of drug-metabolizing enzymes in HepG2 cells. Hepatobiliary Pancreat. Dis. Int. 2011, 10, 502–508. [Google Scholar] [CrossRef] [PubMed]
- El-Readi, M.Z.; Eid, S.; Abdelghany, A.A.; Al-Amoudi, H.S.; Efferth, T.; Wink, M. Resveratrol mediated cancer cell apoptosis, and modulation of multidrug resistance proteins and metabolic enzymes. Phytomedicine 2019, 55, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.Q.; Kenney, P.M.; Zhang, J.; Lam, L.K. Inhibition of benzo[a]pyrene-induced tumorigenesis by myristicin, a volatile aroma constituent of parsley leaf oil. Carcinogenesis 1992, 13, 1921–1923. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.J.; Wang, H.W.; Liu, T.Y.; Chen, Y.C.; Ueng, T.H. Modulation of cytochrome P-450-dependent monooxygenases, glutathione and glutathione S-transferase in rat liver by geniposide from Gardenia jasminoides. Food Chem. Toxicol. 1997, 35, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Rathor, L.; Akhoon, B.A.; Pandey, S.; Srivastava, S.; Pandey, R. Folic acid supplementation at lower doses increases oxidative stress resistance and longevity in Caenorhabditis elegans. Age 2015, 37, 113. [Google Scholar] [CrossRef] [PubMed]
- Guneidy, R.A.; Shokeer, A.; Saleh, N.S.-E.; Zaki, E.R. Inhibition of human glutathione transferase by catechin and gossypol: Comparative structural analysis by kinetic properties, molecular docking and their efficacy on the viability of human MCF-7 cells. J. Biochem. 2023, 175, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Mukanganyama, S.; Widersten, M.; Naik, Y.S.; Mannervik, B.; Hasler, J.A. Inhibition of glutathione S-transferases by antimalarial drugs possible implications for circumventing anticancer drug resistance. Int. J. Cancer 2002, 97, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.-L.; Kim, E.H.; Park, J.Y.; Kim, J.W.; Kwon, M.; Lee, B.-H. Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer. Oncotarget 2014, 5, 9227–9238. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, M.; Küfrevioglu, I. Inhibition of human erythrocyte glutathione S-transferase by some flavonoid derivatives. Toxin Rev. 2018, 37, 251–257. [Google Scholar] [CrossRef]
- Alqarni, M.H.; Foudah, A.I.; Muharram, M.M.; Labrou, N.E. The Interaction of the Flavonoid Fisetin with Human Glutathione Transferase A1-1. Metabolites 2021, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Alqarni, M.H.; Foudah, A.I.; Muharram, M.M.; Alam, A.; Labrou, N.E. Myricetin as a Potential Adjuvant in Chemotherapy: Studies on the Inhibition of Human Glutathione Transferase A1-1. Biomolecules 2022, 12, 1364. [Google Scholar] [CrossRef] [PubMed]
- Gyamfi, M.A.; Ohtani, I.I.; Shinno, E.; Aniya, Y. Inhibition of glutathione S-transferases by thonningianin A, isolated from the African medicinal herb, Thonningia sanguinea, In Vitro. Food Chem. Toxicol. 2004, 42, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-M.; Kao, C.-L.; Tseng, Y.-T.; Lo, Y.-C.; Chen, C.-Y. Ginger Phytochemicals Inhibit Cell Growth and Modulate Drug Resistance Factors in Docetaxel Resistant Prostate Cancer Cell. Molecules 2017, 22, 1477. [Google Scholar] [CrossRef] [PubMed]
- Iersel, M.L.; Ploemen, J.P.; Struik, I.; van Amersfoort, C.; Keyzer, A.E.; Schefferlie, J.G.; van Bladeren, P.J. Inhibition of glutathione S-transferase activity in human melanoma cells by alpha,beta-unsaturated carbonyl derivatives. Effects of acrolein, cinnamaldehyde, citral, crotonaldehyde, curcumin, ethacrynic acid, and trans-2-hexenal. Chem. Biol. Interact. 1996, 102, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Udenigwe, C.C.; Ata, A.; Samarasekera, R. Glutathione S-Transferase Inhibiting Chemical Constituents of Caesalpinia bonduc. Chem. Pharm. Bull. 2007, 55, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Duvoix, A.; Morceau, F.; Delhalle, S.; Schmitz, M.; Schnekenburger, M.; Galteau, M.-M.; Dicato, M.; Diederich, M. Induction of apoptosis by curcumin: Mediation by glutathione S-transferase P1-1 inhibition. Biochem. Pharmacol. 2003, 66, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Zaid, M.A.; Dalmizrak, O.; Teralı, K.; Ozer, N. Mechanistic insights into the inhibition of human placental glutathione S-transferase P1-1 by abscisic and gibberellic acids: An integrated experimental and computational study. J. Mol. Recognit. 2023, 36, e3050. [Google Scholar] [CrossRef] [PubMed]
- Stärkel, P.; De Saeger, C.; Delire, B.; Magat, J.; Jordan, B.; Konda, V.R.; Tripp, M.L.; Borbath, I. Tetrahydro Iso-Alpha Acids and Hexahydro Iso-Alpha Acids from Hops Inhibit Proliferation of Human Hepatocarcinoma Cell Lines and Reduce Diethylnitrosamine Induced Liver Tumor Formation in Rats. Nutr. Cancer 2015, 67, 748–760. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shen, C.; Li, Y.; Zhang, T.; Huang, H.; Ren, J.; Hu, Z.; Xu, J.; Xu, B. Oridonin overcomes the gemcitabine resistant PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling. Onco Targets Ther. 2019, 12, 5751–5765. [Google Scholar] [CrossRef] [PubMed]
- van Haaften, R.I.M.; Haenen, G.R.M.M.; van Bladeren, P.J.; Bogaards, J.J.P.; Evelo, C.T.A.; Bast, A. Inhibition of various glutathione S-transferase isoenzymes by RRR-alpha-tocopherol. Toxicol. Vitr. 2003, 17, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, J.B.; Stourman, N.V.; Thier, R.; Dommermuth, A.; Vuilleumier, S.; Rose, J.A.; Armstrong, R.N.; Guengerich, F.P. Conjugation of haloalkanes by bacterial and mammalian glutathione transferases: Mono- and dihalomethanes. Chem. Res. Toxicol. 2001, 14, 1118–1127. [Google Scholar] [CrossRef] [PubMed]
- Olvera-Bello, A.E.; Estrada-Muñiz, E.; Elizondo, G.; Vega, L. Susceptibility to the cytogenetic effects of dichloromethane is related to the glutathione S-transferase theta phenotype. Toxicol. Lett. 2010, 199, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Kabler, S.L.; Tennant, A.H.; Townsend, A.J.; Kligerman, A.D. Induction of DNA–protein crosslinks by dichloromethane in a V79 cell line transfected with the murine glutathione-S-transferase theta 1 gene. Mutat. Res. Toxicol. Environ. Mutagen. 2006, 607, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Kayser, M.F.; Vuilleumier, S. Dehalogenation of dichloromethane by dichloromethane dehalogenase/glutathione S-transferase leads to formation of DNA adducts. J. Bacteriol. 2001, 183, 5209–5212. [Google Scholar] [CrossRef] [PubMed]
- Uppugunduri, C.R.S.; Muthukumaran, J.; Robin, S.; Santos-Silva, T.; Ansari, M. In silico and In Vitro investigations on the protein–protein interactions of glutathione S-transferases with mitogen-activated protein kinase 8 and apoptosis signal-regulating kinase 1. J. Biomol. Struct. Dyn. 2022, 40, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Tew, K.D. Redox in redux: Emergent roles for glutathione S-transferase P (GSTP) in regulation of cell signaling and S-glutathionylation. Biochem. Pharmacol. 2007, 73, 1257–1269. [Google Scholar] [CrossRef] [PubMed]
- Tew, K.D.; Monks, A.; Barone, L.; Rosser, D.; Akerman, G.; Montali, J.A.; Wheatley, J.B.; Schmidt, D.E. Glutathione-associated enzymes in the human cell lines of the National Cancer Institute Drug Screening Program. Mol. Pharmacol. 1996, 50, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, Z.; Cheng, X.; Liu, S.; Wei, Q.; Scott, I.M. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides. Pestic. Biochem. Physiol. 2016, 127, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mangoyi, R.; Hayeshi, R.; Ngadjui, B.; Ngandeu, F.; Bezabih, M.; Abegaz, B.; Razafimahefa, S.; Rasoanaivo, P.; Mukanganyama, S. Glutathione transferase from Plasmodium falciparum--interaction with malagashanine and selected plant natural products. J. Enzyme Inhib. Med. Chem. 2010, 25, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Fakae, B.B.; Campbell, A.M.; Barrett, J.; Scott, I.M.; Teesdale-Spittle, P.H.; Liebau, E.; Brophy, P.M. Inhibition of glutathione S-transferases (GSTs) from parasitic nematodes by extracts from traditional Nigerian medicinal plants. Phytother. Res. 2000, 14, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Horton, J.K.; Roy, G.; Piper, J.T.; Van Houten, B.; Awasthi, Y.C.; Mitra, S.; Alaoui-Jamali, M.A.; Boldogh, I.; Singhal, S.S. Characterization of a chlorambucil-resistant human ovarian carcinoma cell line overexpressing glutathione S-transferase mu. Biochem. Pharmacol. 1999, 58, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Depeille, P.; Cuq, P.; Mary, S.; Passagne, I.; Evrard, A.; Cupissol, D.; Vian, L. Glutathione S-transferase M1 and multidrug resistance protein 1 act in synergy to protect melanoma cells from vincristine effects. Mol. Pharmacol. 2004, 65, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Pandiyan, A.; Lari, S.; Vanka, J.; Kumar, B.S.; Ghosh, S.; Jee, B.; Jonnalagadda, P.R. Genetic Polymorphism in Xenobiotic Metabolising Genes and Increased Oxidative Stress among Pesticides Exposed Agricultural Workers Diagnosed with Cancers. Asian Pac. J. Cancer Prev. 2023, 24, 3795–3804. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.V.; Goturi, A.; Nagaraj, M.; Goud, E.V.S.S. Null genotypes of Glutathione S-transferase M1 and T1 and risk of oral cancer: A meta-analysis. J. Oral Maxillofac. Pathol. 2022, 26, 592. [Google Scholar] [CrossRef] [PubMed]
- Nesa, A.; Mostafijur Rahman, M.; Tahminur Rahman, M.; Kabir, Y. Association of NAT2, GSTT1, and GSTM1 gene polymorphisms withprostate cancer risk in Bangladeshi population. Gene 2023, 868, 147368. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xue, F.; Zheng, Y.; Yang, P.; Lin, S.; Deng, Y.; Xu, P.; Zhou, L.; Hao, Q.; Zhai, Z.; et al. GSTM1 and GSTT1 null genotype increase the risk of hepatocellular carcinoma: Evidence based on 46 studies. Cancer Cell Int. 2019, 19, 76. [Google Scholar] [CrossRef] [PubMed]
- Heagerty, A.H.; Fitzgerald, D.; Smith, A.; Bowers, B.; Jones, P.; Fryer, A.A.; Zhao, L.; Alldersea, J.; Strange, R.C. Glutathione S-transferase GSTM1 phenotypes and protection against cutaneous tumours. Lancet 1994, 343, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Karimi, E.; Abbasnezhad, S.; Zeraattalab-Motlagh, S.; Amiri Khosroshahi, R.; Beh-Afarin, S.R.; Mohammadi, H.; Yaghmaie, M. Diet, glutathione S-transferases M1 and T1 gene polymorphisms and cancer risk: A systematic review of observational studies. Br. J. Nutr. 2025, 133, 623–636. [Google Scholar] [CrossRef] [PubMed]
- Rattan, S.I.S. Mechanisms of hormesis through mild heat stress on human cells. Ann. N.Y. Acad. Sci. 2004, 1019, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Matsukawa, J.; Matsuzawa, A.; Takeda, K.; Ichijo, H. The ASK1-MAP kinase cascades in mammalian stress response. J. Biochem. 2004, 136, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Tibbles, L.A.; Woodgett, J.R. The stress-activated protein kinase pathways. Cell. Mol. Life Sci. 1999, 55, 1230–1254. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.Z.; Singhal, S.S.; Sharma, A.; Saini, M.; Yang, Y.; Awasthi, S.; Zimniak, P.; Awasthi, Y.C. Transfection of mGSTA4 in HL-60 cells protects against 4-hydroxynonenal-induced apoptosis by inhibiting JNK-mediated signaling. Arch. Biochem. Biophys. 2001, 392, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Talalay, P.; Cho, C.G.; Posner, G.H. A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure. Proc. Natl. Acad. Sci. USA 1992, 89, 2399–2403. [Google Scholar] [CrossRef] [PubMed]
- Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 89–116. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.-Y.; Shu, L.; Khor, T.O.; Lee, J.H.; Fuentes, F.; Kong, A.-N.T. A perspective on dietary phytochemicals and cancer chemoprevention: Oxidative stress, nrf2, and epigenomics. Nat. Prod. Cancer Prev. Ther. 2012, 329, 133–162. [Google Scholar]
- Zhang, Y.; Gordon, G.B. A strategy for cancer prevention: Stimulation of the Nrf2-ARE signaling pathway. Mol. Cancer Ther. 2004, 3, 885–893. [Google Scholar] [CrossRef] [PubMed]
- van Iersel, M.L.P.S.; Verhagen, H.; van Bladeren, P.J. The role of biotransformation in dietary (anti) carcinogenesis. Mutat. Res. Toxicol. Environ. Mutagen. 1999, 443, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Surh, Y.-J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 2003, 3, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Kundu, J.K.; Surh, Y.-J. Cancer chemopreventive and therapeutic potential of resveratrol: Mechanistic perspectives. Cancer Lett. 2008, 269, 243–261. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Zhang, D.; Wu, J.; Liu, J.; Zhou, Y.; Tan, Y.; Feng, W.; Peng, C. Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. Phytomedicine 2023, 119, 154979. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000, 130, 2073S–2085S. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Parl, F.F. Glutathione S-transferase genotypes and cancer risk. Cancer Lett. 2005, 221, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Board, P.G.; Menon, D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2013, 1830, 3267–3288. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoian, I.A.-M.; Vlad, A.; Gilca, M.; Dragos, D. Modulation of Glutathione-S-Transferase by Phytochemicals: To Activate or Inhibit—That Is the Question. Int. J. Mol. Sci. 2025, 26, 7202. https://doi.org/10.3390/ijms26157202
Stoian IA-M, Vlad A, Gilca M, Dragos D. Modulation of Glutathione-S-Transferase by Phytochemicals: To Activate or Inhibit—That Is the Question. International Journal of Molecular Sciences. 2025; 26(15):7202. https://doi.org/10.3390/ijms26157202
Chicago/Turabian StyleStoian, Irina Anna-Maria, Adelina Vlad, Marilena Gilca, and Dorin Dragos. 2025. "Modulation of Glutathione-S-Transferase by Phytochemicals: To Activate or Inhibit—That Is the Question" International Journal of Molecular Sciences 26, no. 15: 7202. https://doi.org/10.3390/ijms26157202
APA StyleStoian, I. A.-M., Vlad, A., Gilca, M., & Dragos, D. (2025). Modulation of Glutathione-S-Transferase by Phytochemicals: To Activate or Inhibit—That Is the Question. International Journal of Molecular Sciences, 26(15), 7202. https://doi.org/10.3390/ijms26157202