Human Mesenchymal Stromal Cells Derived from Different Tissues Show Similar Profiles of c-ErbB Receptor Family Expression at the mRNA and Protein Levels
Abstract
1. Introduction
2. Results
2.1. c-ErbB Receptors mRNA Expression in Human MSCs Derived from Different Tissues
2.2. EGFR but Not HER2 Protein Is Revealed in MSCs
2.3. The Failure of HER2 Protein Detection in MSCs Is Not Associated with Its Rapid Lysosomal Degradation
3. Discussion
4. Materials and Methods
4.1. Cell Cultures
4.2. Reagents
4.3. Western Blotting
4.4. Immunofluorescence and Laser Scanning Confocal Microscopy
4.5. RNA Extraction and cDNA Synthesis
4.6. Quantitative Polymerase Chain Reaction (qPCR)
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EGF | epidermal growth factor |
TGF-α | transforming growth factor -α |
HB-EGF | heparin-binding EGF-like growth factor |
HER1-4 | human EGF receptor 1-4 |
EGFR | EGF receptor |
MSCs | mesenchymal stromal cells |
RT-qPCR | quantitative reverse transcription polymerase chain reaction |
References
- Yonesaka, K. HER2-/HER3-Targeting Antibody—Drug Conjugates for Treating Lung and Colorectal Cancers Resistant to EGFR Inhibitors. Cancers 2021, 13, 1047. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Jänne, P.A.; Mok, T.; Peters, S. Overcoming Therapy Resistance in EGFR-Mutant Lung Cancer. Nat. Cancer 2021, 2, 377–391. [Google Scholar] [CrossRef] [PubMed]
- El-Gamal, M.I.; Mewafi, N.H.; Abdelmotteleb, N.E.; Emara, M.A.; Tarazi, H.; Sbenati, R.M.; Madkour, M.M.; Zaraei, S.-O.; Shahin, A.I.; Anbar, H.S. A Review of HER4 (ErbB4) Kinase, Its Impact on Cancer, and Its Inhibitors. Molecules 2021, 26, 7376. [Google Scholar] [CrossRef] [PubMed]
- Casalini, P.; Iorio, M.V.; Galmozzi, E.; Ménard, S. Role of HER Receptors Family in Development and Differentiation. J. Cell. Physiol. 2004, 200, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. (Ed.) ErbB Receptors and Cancer. In ErbB Receptor Signaling; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; Volume 1652, pp. 3–35. ISBN 978-1-4939-7218-0. [Google Scholar]
- Yano, S.; Kondo, K.; Yamaguchi, M.; Richmond, G.; Hutchison, M.; Wakeling, A.; Averbuch, S.; Wadsworth, P. Distribution and Function of EGFR in Human Tissue and the Effect of EGFR Tyrosine Kinase Inhibition. Anticancer. Res. 2003, 23, 3639–3650. [Google Scholar] [PubMed]
- Press, M.F.; Cordon-Cardo, C.; Slamon, D.J. Expression of the HER-2/Neu Proto-Oncogene in Normal Human Adult and Fetal Tissues. Oncogene 1990, 5, 953–962. [Google Scholar] [PubMed]
- Kraus, M.H.; Issing, W.; Miki, T.; Popescu, N.C.; Aaronson, S.A. Isolation and Characterization of ERBB3, a Third Member of the ERBB/Epidermal Growth Factor Receptor Family: Evidence for Overexpression in a Subset of Human Mammary Tumors. Proc. Natl. Acad. Sci. USA 1989, 86, 9193–9197. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A. HER3: Toward the Prognostic Significance, Therapeutic Potential, Current Challenges, and Future Therapeutics in Different Types of Cancer. Cells 2023, 12, 2517. [Google Scholar] [CrossRef] [PubMed]
- Prigent, S.A.; Lemoine, N.R.; Hughes, C.M.; Plowman, G.D.; Selden, C.; Gullick, W.J. Expression of the C-erbB-3 Protein in Normal Human Adult and Fetal Tissues. Oncogene 1992, 7, 1273–1278. [Google Scholar] [PubMed]
- Renesme, L.; Cobey, K.D.; Lalu, M.M.; Bubela, T.; Chinnadurai, R.; De Vos, J.; Dunbar, R.; Fergusson, D.; Freund, D.; Galipeau, J.; et al. Delphi-Driven Consensus Definition for Mesenchymal Stromal Cells and Clinical Reporting Guidelines for Mesenchymal Stromal Cell–Based Therapeutics. Cytotherapy 2025, 27, 146–168. [Google Scholar] [CrossRef] [PubMed]
- Makarevich, P.I.; Tkachuk, V.A. Fundamental and Practical Perspectives in Regenerative Medicine. Int. J. Mol. Sci. 2024, 25, 11508. [Google Scholar] [CrossRef] [PubMed]
- Thäte, C.; Woischwill, C.; Brandenburg, G.; Müller, M.; Böhm, S.; Baumgart, J. Non-Clinical Assessment of Safety, Biodistribution and Tumorigenicity of Human Mesenchymal Stromal Cells. Toxicol. Rep. 2021, 8, 1960–1969. [Google Scholar] [CrossRef] [PubMed]
- Medical University of Warsaw. Comparison of the Treatment Results of Knee Osteoarthritis Using Adipose Tissue Mesenchymal Stromal Cells Derived Through Enzymatic Digestion and Mechanically Fragmented Adipose Tissue. 2021. Available online: https://clinicaltrials.gov/study/NCT04675359 (accessed on 22 July 2025).
- Boden, S.D. Randomized Multicenter Phase 3 Single-Blind Trial Comparing the Efficacy of Corticosteroid Control to Mesenchymal Stem Cell Preparations From Autologous Bone Marrow Concentrate (BMAC), Adipose-Derived Stem Cells in the Form of Stromal Vascular Fraction (SVF), and Third-Party Human Mesenchymal Stem Cells Manufactured From Umbilical Cord Tissue for the Treatment of Unilateral Knee Osteoarthritis (OA). 2023. Available online: https://clinicaltrials.gov/study/NCT03818737 (accessed on 22 July 2025).
- Cell Biopeutics Resources Sdn Bhd. An Observational, Practice-Based, Open Label, Feasibility Study to Observe the Efficacy and Safety of Intramuscular Administration of Stempeucel® in Malaysian Patients with Critical Limb Ischemia (CLI) Due to Buerger’s Disease. 2024. Available online: https://clinicaltrials.gov/study/NCT05854615 (accessed on 22 July 2025).
- Asian Institute of Gastroenterology, India. Combination of Autologous Mesenchymal and Hematopoietic Stem Cell Infusion in Patients with Decompensated Cirrhosis: A Pilot Study. 2020. Available online: https://clinicaltrials.gov/study/NCT04243681 (accessed on 22 July 2025).
- Attar, A. Transplantation of Mesenchymal Stem Cells for Prevention of Acute Myocardial Infarction Induced Heart Failure: A Phase III Randomized Clinical Trial. 2024. Available online: https://clinicaltrials.gov/study/NCT05043610 (accessed on 22 July 2025).
- Lu, W.; Allickson, J. Mesenchymal Stromal Cell Therapy: Progress to Date and Future Outlook. Mol. Ther. 2025, 33, 2679–2688. [Google Scholar] [CrossRef] [PubMed]
- Pînzariu, A.C.; Moscalu, R.; Soroceanu, R.P.; Maranduca, M.A.; Drochioi, I.C.; Vlasceanu, V.I.; Timofeiov, S.; Timofte, D.V.; Huzum, B.; Moscalu, M.; et al. The Therapeutic Use and Potential of MSCs: Advances in Regenerative Medicine. Int. J. Mol. Sci. 2025, 26, 3084. [Google Scholar] [CrossRef] [PubMed]
- Trigo, C.M.; Rodrigues, J.S.; Camões, S.P.; Solá, S.; Miranda, J.P. Mesenchymal Stem Cell Secretome for Regenerative Medicine: Where Do We Stand? J. Adv. Res. 2025, 70, 103–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yi, H.; Song, Y. The Safety of MSC Therapy over the Past 15 Years: A Meta-Analysis. Stem Cell Res. Ther. 2021, 12, 545. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration (FDA). Approves First Mesenchymal Stromal Cell Therapy to Treat Steroid-Refractory Acute Graft-Versus-Host Disease. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-mesenchymal-stromal-cell-therapy-treat-steroid-refractory-acute-graft-versus-host (accessed on 22 July 2025).
- Satomura, K.; Derubeis, A.R.; Fedarko, N.S.; Ibaraki-O’Connor, K.; Kuznetsov, S.A.; Rowe, D.W.; Young, M.F.; Robey, P.G. Receptor Tyrosine Kinase Expression in Human Bone Marrow Stromal Cells. J. Cell. Physiol. 1998, 177, 426–438. [Google Scholar] [CrossRef]
- Kerpedjieva, S.S.; Kim, D.S.; Barbeau, D.J.; Tamama, K. EGFR Ligands Drive Multipotential Stromal Cells to Produce Multiple Growth Factors and Cytokines via Early Growth Response-1. Stem Cells Dev. 2012, 21, 2541–2551. [Google Scholar] [CrossRef] [PubMed]
- Equbal, Z.; Baligar, P.N.; Srivastava, M.; Mukhopadhyay, A. A Two-Stage Process for Differentiation of Wharton’s Jelly-Derived Mesenchymal Stem Cells into Neuronal-like Cells. Stem Cells Int. 2021, 2021, 6631651. [Google Scholar] [CrossRef] [PubMed]
- Aghajanova, L.; Houshdaran, S.; Balayan, S.; Manvelyan, E.; Irwin, J.C.; Huddleston, H.G.; Giudice, L.C. In Vitro Evidence That Platelet-Rich Plasma Stimulates Cellular Processes Involved in Endometrial Regeneration. J. Assist. Reprod. Genet. 2018, 35, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Luo, N.; Zhu, J.; Sulaiman, Z.; Yang, W.; Hu, K.; Ai, G.; Yang, W.; Shao, X.; Jin, S.; et al. Peritoneal Adipose Stem Cell-Derived Extracellular Vesicles Mediate the Regulation of Ovarian Cancer Cell Proliferation and Migration through EGFR-NF-κB Signaling. Genes Dis. 2025, 12, 101283. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, X.; Pei, D.; Sun, G.; Li, Y.; Zhu, C.; Qiang, C.; Sun, J.; Shi, J.; Dong, Y.; et al. The Promotion Function of Berberine for Osteogenic Differentiation of Human Periodontal Ligament Stem Cells via ERK-FOS Pathway Mediated by EGFR. Sci. Rep. 2018, 8, 2848. [Google Scholar] [CrossRef] [PubMed]
- Tamama, K.; Fan, V.H.; Griffith, L.G.; Blair, H.C.; Wells, A. Epidermal Growth Factor as a Candidate for Ex Vivo Expansion of Bone Marrow–Derived Mesenchymal Stem Cells. Stem Cells 2006, 24, 686–695. [Google Scholar] [CrossRef] [PubMed]
- Krampera, M.; Pasini, A.; Rigo, A.; Scupoli, M.T.; Tecchio, C.; Malpeli, G.; Scarpa, A.; Dazzi, F.; Pizzolo, G.; Vinante, F. HB-EGF/HER-1 Signaling in Bone Marrow Mesenchymal Stem Cells: Inducing Cell Expansion and Reversibly Preventing Multilineage Differentiation. Blood 2005, 106, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Knight, C.; James, S.; Kuntin, D.; Fox, J.; Newling, K.; Hollings, S.; Pennock, R.; Genever, P. Epidermal Growth Factor Can Signal via β-Catenin to Control Proliferation of Mesenchymal Stem Cells Independently of Canonical Wnt Signalling. Cell. Signal. 2019, 53, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Kamentseva, R.S.; Kharchenko, M.V.; Gabdrahmanova, G.V.; Kotov, M.A.; Kosheverova, V.V.; Kornilova, E.S. EGF, TGF-α and Amphiregulin Differently Regulate Endometrium-Derived Mesenchymal Stromal/Stem Cells. Int. J. Mol. Sci. 2023, 24, 13408. [Google Scholar] [CrossRef] [PubMed]
- Schwenke, M.; Knöfler, M.; Velicky, P.; Weimar, C.H.E.; Kruse, M.; Samalecos, A.; Wolf, A.; Macklon, N.S.; Bamberger, A.-M.; Gellersen, B. Control of Human Endometrial Stromal Cell Motility by PDGF-BB, HB-EGF and Trophoblast-Secreted Factors. PLoS ONE 2013, 8, e54336. [Google Scholar] [CrossRef] [PubMed]
- Large, M.J.; Wetendorf, M.; Lanz, R.B.; Hartig, S.M.; Creighton, C.J.; Mancini, M.A.; Kovanci, E.; Lee, K.-F.; Threadgill, D.W.; Lydon, J.P.; et al. The Epidermal Growth Factor Receptor Critically Regulates Endometrial Function during Early Pregnancy. PLoS Genet. 2014, 10, e1004451. [Google Scholar] [CrossRef] [PubMed]
- Tamama, K.; Kawasaki, H.; Wells, A. Epidermal Growth Factor (EGF) Treatment on Multipotential Stromal Cells (MSCs). Possible Enhancement of Therapeutic Potential of MSC. J. Biomed. Biotechnol. 2010, 2010, 795385. [Google Scholar] [CrossRef] [PubMed]
- Roepstorff, K.; Grandal, M.V.; Henriksen, L.; Knudsen, S.L.J.; Lerdrup, M.; Grøvdal, L.; Willumsen, B.M.; van Deurs, B. Differential Effects of EGFR Ligands on Endocytic Sorting of the Receptor. Traffic 2009, 10, 1115–1127. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shang, X.; Sarkissyan, M.; Slamon, D.; Vadgama, J.V. FOXO1A Is a Target for HER2-Overexpressing Breast Tumors. Cancer Res. 2010, 70, 5475–5485. [Google Scholar] [CrossRef] [PubMed]
- Merlino, G.T.; Xu, Y.-H.; Ishii, S.; Clark, A.J.L.; Semba, K.; Toyoshima, K.; Yamamoto, T.; Pastan, I. Amplification and Enhanced Expression of the Epidermal Growth Factor Receptor Gene in A431 Human Carcinoma Cells. Science 1984, 224, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.-H.; Karna, P.; Cao, Z.; Jiang, B.-H.; Zhou, M.; Yang, L. Cross-Talk between Epidermal Growth Factor Receptor and Hypoxia-Inducible Factor-1α Signal Pathways Increases Resistance to Apoptosis by Up-Regulating Survivin Gene Expression. J. Biol. Chem. 2006, 281, 25903–25914. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.; Spits, M.; Neefjes, J.; Berlin, I. The EGFR Odyssey – from Activation to Destruction in Space and Time. J. Cell Sci. 2017, 130, 4087–4096. [Google Scholar] [CrossRef] [PubMed]
- Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.-J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine Inhibits Autophagic Flux by Decreasing Autophagosome-Lysosome Fusion. Autophagy 2018, 14, 1435–1455. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Cai, J.; Ma, Q.; Xu, Y.; Zou, J.; Xu, L.; Wang, D.; Guo, X. Chloroquine Affects Autophagy to Achieve an Anticancer Effect in EC109 Esophageal Carcinoma Cells in vitro. Oncol. Lett. 2017, 15, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- Fedele, A.O.; Proud, C.G. Chloroquine and Bafilomycin A Mimic Lysosomal Storage Disorders and Impair mTORC1 Signalling. Biosci. Rep. 2020, 40, BSR20200905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Singh, R.; Aschner, M. Methods for the Detection of Autophagy in Mammalian Cells. CP Toxicol. 2016, 69. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Schwaederle, M.; Arguello, D.; Millis, S.Z.; Gatalica, Z.; Kurzrock, R. HER2 Expression Status in Diverse Cancers: Review of Results from 37,992 Patients. Cancer Metastasis Rev. 2015, 34, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Mota, J.M.; Collier, K.A.; Barros Costa, R.L.; Taxter, T.; Kalyan, A.; Leite, C.A.; Chae, Y.K.; Giles, F.J.; Carneiro, B.A. A Comprehensive Review of Heregulins, HER3, and HER4 as Potential Therapeutic Targets in Cancer. Oncotarget 2017, 8, 89284–89306. [Google Scholar] [CrossRef] [PubMed]
- Kosheverova, V.; Schwarz, A.; Kamentseva, R.; Kharchenko, M.; Kornilova, E. Evaluation of Reference Gene Stability for Investigations of Intracellular Signalling in Human Cancer and Non-Malignant Mesenchymal Stromal Cells. Front. Biosci. (Schol Ed) 2024, 16, 26. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.-F.; Liu, Y.-M.; Gao, H.; Miao, Q.; Luo, T.-C.; Zeng, X.-Q.; Chen, S.-Y. HER2 mRNA Status Contributes to the Discrepancy Between Gene Amplification and Protein Overexpression in Gastric Cancer. Dig. Dis. Sci. 2014, 59, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Press, M.F.; Finn, R.S.; Cameron, D.; Di Leo, A.; Geyer, C.E.; Villalobos, I.E.; Santiago, A.; Guzman, R.; Gasparyan, A.; Ma, Y.; et al. HER-2 Gene Amplification, HER-2 and Epidermal Growth Factor Receptor mRNA and Protein Expression, and Lapatinib Efficacy in Women with Metastatic Breast Cancer. Clin. Cancer Res. 2008, 14, 7861–7870. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lee, J.-H.; Gao, Y.; Zhang, J.; Bates, K.M.; Rimm, D.L.; Zhang, H.; Smith, G.H.; Lawson, D.; Meisel, J.; et al. Correlation of HER2 Protein Level With mRNA Level Quantified by RNAscope in Breast Cancer. Mod. Pathol. 2024, 37, 100408. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.M.D.; Nicolau-Neto, P.; Fernandes, P.V.; Lavigne, T.S.; Neves, P.F.; Tobar, J.C.; Soares-Lima, S.C.; Simão, T.A.; Pinto, L.F.R. The Potential of mRNA Expression Evaluation in Predicting HER2 Positivity in Gastroesophageal Cancer. Braz. J. Med. Biol. Res. 2022, 55, e12428. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wang, L.; Shen, Y.; Wang, C.; Zhang, Y.; Meng, Y.; Yang, Y.; Liang, B.; Zhou, B.; Wang, H.; et al. Targeting EGFR/HER2 Heterodimerization with a Novel Anti-HER2 Domain II/III Antibody. Mol. Immunol. 2017, 87, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Leyton, J. Improving Receptor-Mediated Intracellular Access and Accumulation of Antibody Therapeutics—The Tale of HER2. Antibodies 2020, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Hao, L.; Huang, J.-S.; Zhao, F.-Y.; Ju, Y.-H.; Wang, J.-M.; Zhang, T.; Li, B.-Q.; Yu, Z.-W. Promotion of Stem Cell-like Phenotype of Lung Adenocarcinoma by FAM83A via Stabilization of ErbB2. Cell Death Dis. 2024, 15, 460. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, W.; Kim, L.K.; VanHouten, J.; Wysolmerski, J.J. HER2 Signaling Regulates HER2 Localization and Membrane Retention. PLoS ONE 2017, 12, e0174849. [Google Scholar] [CrossRef] [PubMed]
- Birbo, B.; Madu, E.E.; Madu, C.O.; Jain, A.; Lu, Y. Role of HSP90 in Cancer. Int. J. Mol. Sci. 2021, 22, 10317. [Google Scholar] [CrossRef] [PubMed]
- Kornilova, E.S.; Taverna, D.; Hoeck, W.; Hynes, N.E. Surface Expression of erbB-2 Protein Is Post-Transcriptionally Regulated in Mammary Epithelial Cells by Epidermal Growth Factor and by the Culture Density. Oncogene 1992, 7, 511–519. [Google Scholar] [PubMed]
- Jin, Y.; Zhang, W.; Xu, J.; Wang, H.; Zhang, Z.; Chu, C.; Liu, X.; Zou, Q. UCH-L1 Involved in Regulating the Degradation of EGFR and Promoting Malignant Properties in Drug-Resistant Breast Cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 12500–12508. [Google Scholar] [PubMed]
- Vergarajauregui, S.; Miguel, A.S.; Puertollano, R. Activation of P38 Mitogen-Activated Protein Kinase Promotes Epidermal Growth Factor Receptor Internalization. Traffic 2006, 7, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Dai, Q.; Wei, J.; Shao, G.; Sun, A.; Yang, W.; Lin, Q. Stress-Induced Endocytosis and Degradation of Epidermal Growth Factor Receptor Are Two Independent Processes. Cancer Cell Int. 2016, 16, 25. [Google Scholar] [CrossRef] [PubMed]
- Melikova, M.; Kondratov, K.; Kornilova, E. Two Different Stages of Epidermal Growth Factor (EGF) Receptor Endocytosis Are Sensitive to Free Ubiquitin Depletion Produced by Proteasome Inhibitor MG132. Cell Biol. Int. 2005. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.B.; Audhya, A. ESCRT-Dependent Cargo Sorting at Multivesicular Endosomes. Semin. Cell Dev. Biol. 2018, 74, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Foot, N.; Henshall, T.; Kumar, S. Ubiquitination and the Regulation of Membrane Proteins. Physiol. Rev. 2017, 97, 253–281. [Google Scholar] [CrossRef] [PubMed]
- Krshnan, L.; Van De Weijer, M.L.; Carvalho, P. Endoplasmic Reticulum–Associated Protein Degradation. Cold Spring Harb. Perspect. Biol. 2022, 14, a041247. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhao, J.; Zhong, K.; Tong, A.; Jia, D. Targeted Protein Degradation: Mechanisms, Strategies and Application. Signal Transduct. Target. Ther. 2022, 7, 113. [Google Scholar] [CrossRef] [PubMed]
- Spevak, C.C.; Park, E.-H.; Geballe, A.P.; Pelletier, J.; Sachs, M.S. Her-2 Upstream Open Reading Frame Effects on the Use of Downstream Initiation Codons. Biochem. Biophys. Res. Commun. 2006, 350, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Prensner, J.R. Upstream Open Reading Frames: New Players in the Landscape of Cancer Gene Regulation. NAR Cancer 2024, 6, zcae023. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Trotta, C.R.; Peltz, S.W. Derepression of the Her-2 uORF Is Mediated by a Novel Post-Transcriptional Control Mechanism in Cancer Cells. Genes. Dev. 2006, 20, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Gao, F.; Wu, G.; Li, J.; Sheng, C.; He, S.; Hu, H. Precise HER2 Protein Degradation via Peptide-Conjugated Photodynamic Therapy for Enhanced Breast Cancer Immunotherapy. Adv. Sci. 2025, 12, 2410778. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Li, Y.; Li, J.; Zhou, H.; Liu, C.; Liu, Z.; Gong, Y.; Ying, B.; Xie, Y. Discovery of Potent and Selective HER2 PROTAC Degrader Based Tucatinib with Improved Efficacy against HER2 Positive Cancers. Eur. J. Med. Chem. 2022, 244, 114775. [Google Scholar] [CrossRef] [PubMed]
- McKernan, C.M.; Khatri, A.; Hannigan, M.; Child, J.; Chen, Q.; Mayro, B.; Snyder, D.; Nicchitta, C.V.; Pendergast, A.M. ABL Kinases Regulate Translation in HER2+ Cells through Y-Box-Binding Protein 1 to Facilitate Colonization of the Brain. Cell Rep. 2022, 40, 111268. [Google Scholar] [CrossRef] [PubMed]
- Zemelko, V.I.; Grinchuk, T.M.; Domnina, A.P.; Artzibasheva, I.V.; Zenin, V.V.; Kirsanov, A.A.; Bichevaia, N.K.; Korsak, V.S.; Nikolsky, N.N. Multipotent Mesenchymal Stem Cells of Desquamated Endometrium: Isolation, Characterization, and Application as a Feeder Layer for Maintenance of Human Embryonic Stem Cells. Cell Tissue Biol. 2012, 6, 1–11. [Google Scholar] [CrossRef]
- Petrosyan, M.A.; Melezhnikova, N.O.; Domnina, A.P.; Malysheva, O.V.; Shved, N.Y.; Petrova, L.I.; Polyanskikh, L.S.; Baziyan, E.V.; Molotkov, A.S. Decidual Differentiation of Endometrial Cell Lines in the Norm and Pathological Conditions. Cell Tiss. Biol. 2020, 14, 113–123. [Google Scholar] [CrossRef]
- Krylova, T.A.; Koltsova, A.M.; Musorina, A.S.; Zenin, V.V.; Turilova, V.I.; Yakovleva, T.K.; Poljanskaya, G.G. Derivation and Characteristic of Two Lines of Human Mesenchymal Stem Cells, Generated from the Wharton’s Jelly of the Human Umbilical Cord. Tsitologyia 2017, 59, 315–327. [Google Scholar]
- Koltsova, A.M.; Zenin, V.V.; Turilova, V.I.; Yakovleva, T.K.; Poljanskaya, G.G. The Derivation and Characterization of Mesenchymal Stem Cell Line, Isolated from Human Pulp of a Deciduous Tooth. Tsitologyia 2018, 60, 955–968. [Google Scholar] [CrossRef]
- Krylova, T.A.; Koltsova, A.M.; Zenin, V.V.; Musorina, A.S.; Yakovleva, T.K.; Poljanskaya, G.G. Comparative Characteristics of New Lines of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells, Bone Marrow, and Foreskin. Cell Tiss. Biol. 2012, 6, 95–107. [Google Scholar] [CrossRef]
- Kotova, A.V.; Lobov, A.A.; Dombrovskaya, J.A.; Sannikova, V.Y.; Ryumina, N.A.; Klausen, P.; Shavarda, A.L.; Malashicheva, A.B.; Enukashvily, N.I. Comparative Analysis of Dental Pulp and Periodontal Stem Cells: Differences in Morphology, Functionality, Osteogenic Differentiation and Proteome. Biomedicines 2021, 9, 1606. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Steel, L.; Ansell, D.M.; Amaya, E.; Cartmell, S.H. PPIA and YWHAZ Constitute a Stable Pair of Reference Genes during Electrical Stimulation in Mesenchymal Stem Cells. Appl. Sci. 2021, 12, 153. [Google Scholar] [CrossRef]
- Moghbeli, M.; Makhdoumi, Y.; Soltani Delgosha, M.; Aarabi, A.; Dadkhah, E.; Memar, B.; Abdollahi, A.; Abbaszadegan, M.R. ErbB1 and ErbB3 Co-over Expression as a Prognostic Factor in Gastric Cancer. Biol. Res. 2019, 52, 2. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of Stable Housekeeping Genes, Differentially Regulated Target Genes and Sample Integrity: BestKeeper – Excel-Based Tool Using Pair-Wise Correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of Housekeeping Genes for Gene Expression Studies in Human Reticulocytes Using Real-Time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef] [PubMed]
Cells | Tissue of Origin | Disease | Source (Obtained from) |
---|---|---|---|
human malignant cells | |||
HeLa | Uterus; Cervix | Adenocarcinoma | Vertebrate cell culture collection (Institute of Cytology RAS, St. Petersburg, Russia) |
MCF-7 | Breast; Mammary gland | Adenocarcinoma | Vertebrate cell culture collection (Institute of Cytology RAS, St. Petersburg, Russia) |
A549 | Lung | Carcinoma | Vertebrate cell culture collection (Institute of Cytology RAS, St. Petersburg, Russia) |
SK-UT-1B | Uterus; Endometrium | Leiomyosarcoma | Vertebrate cell culture collection (Institute of Cytology RAS, St. Petersburg, Russia) |
A431 | Skin; Epidermis | Epidermoid carcinoma | Vertebrate cell culture collection (Institute of Cytology RAS, St. Petersburg, Russia) |
SK-BR-3 | Breast; Mammary gland | Adenocarcinoma | Generous gift from A. Daks, Institute of Cytology RAS, St. Petersburg, Russia |
human mesenchymal stromal cells | |||
enMSC 2804 | Uterus; desquamated (shedding) endometrium in menstrual blood | no | Vertebrate cell culture collection (Institute of Cytology RAS, St. Petersburg, Russia) [73] |
ECL 2455 | Uterus; endometrium, biopsy | no | Vertebrate cell culture collection (Institute of Cytology RAS, St. Petersburg, Russia) [74] |
MSCWJ-1 | Wharton’s jelly of umbilical cord | no | Vertebrate cell culture collection (Institute of Cytology RAS, St. Petersburg, Russia) [75] |
MSC-DP | Dental pulp from deciduous (baby) teeth, 6-month-old baby | no | Vertebrate cell culture collection (Institute of Cytology RAS, St. Petersburg, Russia) [76] |
FetMSC | Bone marrow of 5–6-week-old embryo | no | Vertebrate cell culture collection (Institute of Cytology RAS, St. Petersburg, Russia) [77] |
PDL-MSC 3218000011 | Periodontal ligament | no | Stem Cell Bank Pokrovsky, LLC, St. Petersburg, Russia [78] |
AD-MSC AC110 | Adipose-derived mesenchymal stromal cells | no | Vertebrate cell culture collection (Institute of Cytology RAS, St. Petersburg, Russia) |
AD-MSC 1102 | Adipose-derived mesenchymal stromal cells | no | Institute of Cytology RAS, St. Petersburg, Russia |
AD-MSC 2001 | Adipose-derived mesenchymal stromal cells | no | Institute of Cytology RAS, St. Petersburg, Russia |
Gene Symbol | RefSeq Accession Number | Encoded Protein/RNA | Forward Primer Reverse Primer Fluorescent Probe (If Used) 5′-3′ | Amplicon Length | Ref. |
---|---|---|---|---|---|
EIF2B1 | NM_001414.4 | Translation initiation factor 2B subunit alpha (EIF2B1) | GCCATGGACGACAAGGAGTT ACCCTGGATTGTCTCCCCTT | 135 | [48] |
POP4 | NM_006627.3 | RibonucleaseP/ MRP subunit (POP4) | ACCAGAGCAGCAGAGATACA ATCTGCCTTTAAGAGCTTGGC | 133 | [48] |
YWHAZ | NM_003406.4 | Tyrosine 3-monooxygenase/ tryptophan 5-monooxygenase activation protein, zeta polypeptide, KCIP-1 | CGAAGCTGAAGCAGGAGAAG TTTGTGGGACAGCATGGATG | 110 | [80] |
EGFR/HER1 | NM_201284.2 NM_201283.2 NM_001346899.2 NM_001346897.2 NM_201282.2 NM_001346900.2 NM_001346898.2 NM_005228.5 | Epidermal growth factor receptor | GGAGAACTGCCAGAAACTGACC GCCTGCAGCACACTGGTTG | 106 | [81] |
HER2 | NM_001382782.1 NM_001289936.2 NM_001005862.3 NM_001289938.2 NM_001382783.1 NM_001382787.1 NM_001382784.1 NM_001382786.1 NM_001382789.1 NM_001382788.1 NM_001382785.1 NM_004448.4 NM_001289937.2 NM_001382796.1 NM_001382798.1 NM_001382800.1 NM_001382797.1 NM_001382805.1 NM_001382792.1 NM_001382793.1 NM_001382803.1 NM_001382794.1 NM_001382795.1 NM_001382801.1 NM_001382790.1 NM_001382806.1 NM_001382802.1 NM_001382799.1 NM_001382791.1 NM_001382804.1 | Human epidermal growth factor receptor 2 | ACAACCAAGTGAGGCAGGTC GTATTGTTCAGCGGGTCTCC | 115 | THIS ARTICLE |
HER3 | NM_001005915.1 NM_001982.4 | Human epidermal growth factor receptor 3 | GGTGATGGGGAACCTTGAGA AGCCTGTCACTTCTCGAATCC /FAM/-TGCTCACGGGACACAATGCCGACC-/BHQ1 | 83 | THIS ARTICLE |
HER4 | NM_001042599.1 NM_005235.3 | Human epidermal growth factor receptor 4 | GTTCAGGATGTGGACGTTGC GTTCTGCACACACACCGTCCTT | 99 | THIS ARTICLE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosheverova, V.; Kharchenko, M.; Kamentseva, R.; Kotov, M.; Schwarz, A.; Kuneev, I.; Kotova, A.; Enukashvily, N.; Kornilova, E. Human Mesenchymal Stromal Cells Derived from Different Tissues Show Similar Profiles of c-ErbB Receptor Family Expression at the mRNA and Protein Levels. Int. J. Mol. Sci. 2025, 26, 7201. https://doi.org/10.3390/ijms26157201
Kosheverova V, Kharchenko M, Kamentseva R, Kotov M, Schwarz A, Kuneev I, Kotova A, Enukashvily N, Kornilova E. Human Mesenchymal Stromal Cells Derived from Different Tissues Show Similar Profiles of c-ErbB Receptor Family Expression at the mRNA and Protein Levels. International Journal of Molecular Sciences. 2025; 26(15):7201. https://doi.org/10.3390/ijms26157201
Chicago/Turabian StyleKosheverova, Vera, Marianna Kharchenko, Rimma Kamentseva, Michael Kotov, Alexander Schwarz, Ivan Kuneev, Anastasia Kotova, Natella Enukashvily, and Elena Kornilova. 2025. "Human Mesenchymal Stromal Cells Derived from Different Tissues Show Similar Profiles of c-ErbB Receptor Family Expression at the mRNA and Protein Levels" International Journal of Molecular Sciences 26, no. 15: 7201. https://doi.org/10.3390/ijms26157201
APA StyleKosheverova, V., Kharchenko, M., Kamentseva, R., Kotov, M., Schwarz, A., Kuneev, I., Kotova, A., Enukashvily, N., & Kornilova, E. (2025). Human Mesenchymal Stromal Cells Derived from Different Tissues Show Similar Profiles of c-ErbB Receptor Family Expression at the mRNA and Protein Levels. International Journal of Molecular Sciences, 26(15), 7201. https://doi.org/10.3390/ijms26157201