Systemic Impact of Platelet Activation in Abdominal Surgery: From Oxidative and Inflammatory Pathways to Postoperative Complications
Abstract
1. Introduction
2. Platelet Biology and Activation Mechanisms
3. Surgical Stress and Systemic Inflammation
4. Oxidative Stress and Platelet Dysfunction
5. Platelet Stimulation Clinical Consequences for Abdominal Surgery
5.1. Platelet Reactivity and Thrombotic Risk in Abdominal Surgery
5.2. Inflammation and Immunothrombosis: The Platelet–Immune Axis
5.3. Platelet-Derived Biomarkers: Prognostic Roles
- Pro-inflammatory signaling and platelet activation are reflected by P-selectin and the soluble CD40 ligand (sCD40L).
- Oxidative byproducts such as malondialdehyde (MDA) and isoprostane show lipid peroxidation in platelet membranes [33].
- NADPH oxidase activity and platelet-derived ROS production are indicated by sNOX2-derived peptide (sNOX2-dp) [55].
5.4. Antioxidants and Targeted Modulation in Personalized Therapies
6. Antiplatelet Techniques and Treatment Aspects
6.1. Antiplatelet Agent Use in Patients Having Surgery
6.2. Risks and Benefits of Perioperative Antiplatelet Therapy
6.3. Emerging Directions: Selective Inhibitors, Biomarkers, Personalized Strategies
- Selective inhibitors targeting platelet–leukocyte interactions, such as blockers of CD40L or P-selectin, have shown promise in dampening thromboinflammatory pathways without impairing primary hemostasis [37].
- Redox-sensitive biomarkers—including sCD40L, sNOX2-dp, and MDA—may serve as valuable tools for perioperative risk stratification and therapy adjustment, based on individual oxidative burden and platelet activity [55].
- Personalized antiplatelet therapy is gaining momentum by integrating genetic profiles, comorbidities, and platelet function markers. Adjunctive antioxidant therapies (e.g., L-carnitine, N-acetylcysteine) have shown potential to reduce oxidative platelet activation while preserving hemostasis [49].
7. Future Directions and Research Gaps
7.1. Current Needs in Translational Research
7.2. Relevance of Platelet Biomarkers in Abdominal Surgery
7.3. Potential for Randomized Clinical Trials and Development of Clinical Guidelines
- The impact of maintaining vs. suspending antiplatelet therapy in oxidative stress-prone surgeries;
- The role of adjunctive antioxidant therapy in modulating platelet function;
- The effectiveness of biomarker-guided strategies in reducing complications and improving outcomes.
8. Clinical Relevance
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Skeith, L.; Baumann Kreuziger, L.; Crowther, M.A.; Warkentin, T.E. A practical approach to evaluating postoperative thrombocytopenia. Blood Adv. 2020, 4, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Toro-Pérez, J.; Rodrigo, R. Contribution of oxidative stress in the mechanisms of postoperative complications and multiple organ dysfunction syndrome. Redox Rep. 2021, 26, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Yasli, O.; Canpolat, D.G.; Doğruel, F.; Çelebi, S.; Agah, T.M.; Emin, D.A. Effect of platelet indices on postoperative pain and edema in bimaxillary surgery. Saudi Med. J. 2023, 44, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Vasina, E.; Heemskerk, J.W.M.; Weber, C.; Koenen, R.R. Platelets and platelet-derived microparticles in vascular inflammatory disease. Inflamm. Allergy Drug Targets 2010, 9, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Go, H.; Ohto, H.; Nollet, K.E.; Takano, S.; Kashiwabara, N.; Chishiki, M.; Maeda, H.; Imamura, T.; Kawasaki, Y.; Momoi, N.; et al. Using Platelet Parameters to Anticipate Morbidity and Mortality Among Preterm Neonates: A Retrospective Study. Front. Pediatr. 2020, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Rachidi, S.; Li, H.; Wallace, K.; Li, Z.; Balch, C.; Lautenschlaeger, T. Preoperative platelet counts and postoperative outcomes in cancer surgery: A multicenter, retrospective cohort study. Platelets 2019, 31, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Nurden, A.T. Platelets, inflammation and tissue regeneration. Thromb. Haemost. 2011, 105, 13–33. [Google Scholar] [CrossRef] [PubMed]
- Semple, J.W.; Italiano, J.E.; Freedman, J. Platelets and the immune continuum. Nat. Rev. Immunol. 2011, 11, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Masselli, E.; Pozzi, G.; Vaccarezza, M.; Mirandola, P.; Galli, D.; Vitale, M.; Carubbi, C.; Gobbi, G. ROS in Platelet Biology: Functional Aspects and Methodological Insights. Int. J. Mol. Sci. 2020, 21, 4866. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, D.; Tan, P.; Xian, B.; Jiang, H.; Wu, Q.; Huang, X.; Zhang, P.; Xiao, X.; Pei, J. Mechanism of platelet activation and potential therapeutic effects of natural drugs. Phytomedicine 2023, 108, 154463. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, X.; Shi, X.; Zhu, M.; Wang, J.; Huang, S.; Huang, X.; Wang, H.; Li, L.; Deng, H.; et al. Platelet Integrin αIIbβ3: Signal transduction, regulation, and Its Therapeutic Targeting. J. Hematol. Oncol. 2019, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, M.; Jiang, X.-L.; Liu, X.; Liu, X.; Liu, P.; Wu, X.-X.; Yang, Z.-W.; Qin, T. P-selectin glycoprotein ligand 1 deficiency prevents development of acute pancreatitis by attenuating leukocyte infiltration. World J. Gastroenterol. 2020, 26, 6361–6377. [Google Scholar] [CrossRef] [PubMed]
- Allan, H.E.; Hayman, M.A.; Marcone, S.; Chan, M.V.; Edin, M.L.; Maffucci, T.; Joshi, A.; Menke, L.; Crescente, M.; Mayr, M.; et al. Proteome and functional decline as platelets age in the circulation. J. Thromb. Haemost. 2021, 19, 3095–3112. [Google Scholar] [CrossRef] [PubMed]
- Alarabi, A.B.; Karim, Z.A.; Hinojos, V.; Lozano, P.A.; Hernandez, K.R.; Montes Ramirez, J.E.; Ali, H.E.A.; Khasawneh, F.T.; Alshbool, F.Z. The G-protein βγ subunits regulate platelet function. Life Sci. 2020, 262, 118481. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Anderson, P.J.; Rajagopal, S.; Lefkowitz, R.J.; Rockman, H.A. G Protein-Coupled Receptors: A Century of Research and Discovery. Circ. Res. 2024, 135, 174–197. [Google Scholar] [CrossRef] [PubMed]
- Soulet, C.; Sauzeau, V.; Plantavid, M.; Herbert, J.M.; Pacaud, P.; Payrastre, B.; Savi, P. Gi-dependent and -independent mechanisms downstream of the P2Y12 ADP-receptor. J. Thromb. Haemost. 2004, 2, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Bourguignon, A.; Tasneem, S.; Hayward, C.P.M. Update on platelet procoagulant mechanisms in health and in bleeding disorders. Int. J. Lab. Hematol. 2022, 44, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Künze, G.; Isermann, B. Targeting biased signaling by PAR1: Function and molecular mechanism of parmodulins. Blood 2023, 141, 2675–2684. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Luo, M.; Liu, B. The Role of CLEC-2 and Its Ligands in Thromboinflammation. Front. Immunol. 2021, 12, 688643. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, Z.; Liu, Z.; Mu, G.; Cui, Y.; Xiang, Q. C-type lectin-like receptor 2: Roles and drug target. Thromb. J. 2024, 22, 27. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Nechipurenko, D.Y.; Panteleev, M.A.; Xu, K.; Qiao, J. Redox regulation of platelet function and thrombosis. J. Thromb. Haemost. 2024, 22, 1550–1557. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Cui, B.; Zheng, J.; Yu, C.; Zheng, X.; Yi, L.; Zhang, S.; Wang, K. Platelet-derived microparticles and their cargos: The past, present and future. Asian J. Pharm. Sci. 2024, 19, 100907. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.M.; Wiesolek, H.L.; Sumagin, R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J. Leukoc. Biol. 2020, 108, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Mandel, J.; Casari, M.; Stepanyan, M.; Martyanov, A.; Deppermann, C. Beyond Hemostasis: Platelet Innate Immune Interactions and Thromboinflammation. Int. J. Mol. Sci. 2022, 23, 3868. [Google Scholar] [CrossRef] [PubMed]
- Kamolovna, J.Z. Disorders of Thrombopoietin Synthesis in Viral Hepatitis and Its Complications, Some Changes in the Hemostasis System, and Their Diagnostics. Eur. J. Mod. Med. Pract. 2025, 5, 62–66. Available online: https://inovatus.es/index.php/ejmmp/article/view/5630 (accessed on 3 July 2025).
- Reusswig, F.; Fazel Modares, N.; Brechtenkamp, M.; Wienands, L.; Krüger, I.; Behnke, K.; Lee-Sundlov, M.M.; Herebian, D.; Scheller, J.; Herebian, D.; et al. Efficiently Restored Thrombopoietin Production by Ashwell-Morell Receptor and IL-6R Induced Janus Kinase 2/Signal Transducer and Activator of Transcription Signaling Early After Partial Hepatectomy. Hepatology 2021, 74, 411–427. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, K.; Bonder, A. Thrombopoietin-receptor agonists in perioperative treatment of patients with chronic liver disease. World J. Meta-Anal. 2020, 8, 220–232. [Google Scholar] [CrossRef]
- Rose, P.D.; Au, M.; Woodman, R.J.; Tee, D.; Chinnaratha, M.A. Pre-procedural use of thrombopoietin-receptor agonists in cirrhosis and severe thrombocytopenia: A systematic review and meta-analysis. Dig. Liver Dis. 2021, 53, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Arnold, D.M.; Heddle, N.; Cook, R.; Hsia, C.C.; Blostein, M.; Jamula, E.; Sholzberg, M.; Lin, Y.; Kassis, J.; Larratt, L.; et al. Perioperative Eltrombopag or Intravenous Immune Globulin for Patients with Immune Thrombocytopenia: A Multicenter Randomized Trial. Blood 2019, 134 (Suppl. S1), 896. [Google Scholar] [CrossRef]
- Cusack, B.; Buggy, D.J. Anaesthesia, analgesia, and the surgical stress response. BJA Educ. 2020, 20, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Infantes, D.; Nus, M.; Navas-Madroñal, M.; Fité, J.; Pérez, B.; Barros-Membrilla, A.J.; Soto, B.; Martínez-González, J.; Camacho, M.; Rodriguez, C.; et al. Oxidative Stress and Inflammatory Markers in Abdominal Aortic Aneurysm. Antioxidants 2021, 10, 602. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, C.; Fitschek, F.; Bar-Or, D.; Klaus, D.A.; Tudor, B.; Fleischmann, E.; Roth, G.; Tamandl, D.; Wekerle, T.; Gnant, M.; et al. Inflammatory response and oxidative stress during liver resection. PLoS ONE 2017, 12, e0185685. [Google Scholar] [CrossRef] [PubMed]
- Leimkühler, M.; Bourgonje, A.R.; van Goor, H.; Campmans-Kuijpers, M.J.E.; de Bock, G.H.; van Leeuwen, B.L. Oxidative Stress Predicts Post-Surgery Complications in Gastrointestinal Cancer Patients. Ann. Surg. Oncol. 2022, 29, 4540–4547. [Google Scholar] [CrossRef] [PubMed]
- Zivkovic, A.; Jotic, A.; Dozic, I.; Randjelovic, S.; Cirkovic, I.; Medic, B.; Milovanovic, J.; Trivić, A.; Korugic, A.; Vukasinović, I.; et al. Role of Oxidative Stress and Inflammation in Postoperative Complications and Quality of Life After Laryngeal Cancer Surgery. Cells 2024, 13, 1951. [Google Scholar] [CrossRef] [PubMed]
- Alves Bersot, C.D.; Ferreira Gomes Pereira, L.; Goncho, V.G.V.; Pereira, J.E.G.; Falcão, L.F.D.R. Enhancing recovery and reducing inflammation: The impact of enhanced recovery after surgery recommendations on inflammatory markers in laparoscopic surgery—A scoping review. Front. Surg. 2024, 11, 1450434. [Google Scholar] [CrossRef] [PubMed]
- Koupenova, M.; Vitseva, O.; MacKay, C.R.; Beaulieu, L.M.; Benjamin, E.J.; Mick, E.; Kurt-Jones, E.A.; Ravid, K.; Freedman, J.E. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 2014, 124, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Assinger, A. Platelets and infection—An emerging role of platelets in viral infection. Front. Immunol. 2014, 5, 649. [Google Scholar] [CrossRef] [PubMed]
- Rondina, M.T.; Weyrich, A.S.; Zimmerman, G.A. Platelets as Cellular Effectors of Inflammation in Vascular Diseases. Circ. Res. 2013, 112, 1506–1519. [Google Scholar] [CrossRef] [PubMed]
- Zucoloto, A.Z.; Jenne, C.N. Platelet–neutrophil interplay: Insights into neutrophil extracellular trap (NET)-driven coagulation in infection. Front. Cardiovasc. Med. 2019, 6, 85. [Google Scholar] [CrossRef] [PubMed]
- Gros, A.; Ollivier, V.; Ho-Tin-Noé, B. Platelets in inflammation: Regulation of leukocyte activities and vascular repair. Front. Immunol. 2015, 5, 678. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Zarbock, A.; Hidalgo, A. Platelets as autonomous drones for hemostatic and immune surveillance. J. Exp. Med. 2017, 214, 2193–2204. [Google Scholar] [CrossRef] [PubMed]
- Shannon, O. The role of platelets in sepsis. Res. Pract. Thromb. Haemost. 2020, 5, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Cai, S.; Su, J. The pathogenesis of sepsis and potential therapeutic targets. Int. J. Mol. Sci. 2019, 20, 5376. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Mi, Y.; Wei, J.; Han, X.; Zhang, X.; Zhu, Q.; Yue, T.; Gao, W.; Niu, X.; Han, C.; et al. Advances in Nano-Functional Materials in Targeted Thrombolytic Drug Delivery. Molecules 2024, 29, 2325. [Google Scholar] [CrossRef] [PubMed]
- Gutmann, C.; Siow, R.; Gwozdz, A.M.; Saha, P.; Smith, A. Reactive Oxygen Species in Venous Thrombosis. Int. J. Mol. Sci. 2020, 21, 1918. [Google Scholar] [CrossRef] [PubMed]
- Saracoglu, A.; Tetik, S. Reactive Oxygen Species and their Interaction with Platelets. J. Med. Chem. Drug Des. 2018, 1. [Google Scholar] [CrossRef]
- Mladenov, M.; Lubomirov, L.; Grisk, O.; Avtanski, D.; Mitrokhin, V.; Sazdova, I.; Keremidarska-Markova, M.; Danailova, Y.; Nikolaev, G.; Konakchieva, R.; et al. Oxidative Stress, Reductive Stress and Antioxidants in Vascular Pathogenesis and Aging. Antioxidants 2023, 12, 1126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhao, Y.; Ding, Y.; Ruan, Y.; Li, X.; Zhou, Q.; Zhou, Y.; Zhang, C.; Hu, L.; Zhao, X.; et al. Autophagy ameliorates ROS-induced platelet storage lesions. Oxid. Med. Cell. Longev. 2022, 2022, 1898844. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Tellan, G.; Marandola, M.; Carnevale, R.; Loffredo, L.; Schillizzi, M.; Proietti, M.; Violi, F.; Chirletti, P.; Delogu, G. Effect of L-carnitine on oxidative stress and platelet activation after major surgery. Acta Anaesthesiol. Scand. 2011, 55, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Mezouar, S.; Frère, C.; Darbousset, R.; Mege, D.; Crescence, L.; Dignat-George, F.; Panicot-Dubois, L.; Dubois, C. Role of platelets in cancer and cancer-associated thrombosis: Experimental and clinical evidences. Thromb. Res. 2016, 139, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Scopelliti, F.; Cattani, C.; Dimartino, V.; Mirisola, C.; Cavani, A. Platelet Derivatives and the Immunomodulation of Wound Healing. Int. J. Mol. Sci. 2022, 23, 8370. [Google Scholar] [CrossRef] [PubMed]
- Khelfi, A. Oxidative Stress in Inflammation. In Biomarkers of Oxidative Stress; Springer: Cham, Switzerland, 2024; pp. 13–43. [Google Scholar] [CrossRef]
- Huilcaman, R.; Venturini, W.; Fuenzalida, L.; Cayo, A.; Segovia, R.; Valenzuela, C.; Brown, N.; Moore-Carrasco, R. Platelets, a Key Cell in Inflammation and Atherosclerosis Progression. Cells 2022, 11, 1014. [Google Scholar] [CrossRef] [PubMed]
- Hally, K.; Fauteux-Daniel, S.; Hamzeh-Cognasse, H.; Larsen, P.; Cognasse, F. Revisiting Platelets and Toll-Like Receptors (TLRs): At the Interface of Vascular Immunity and Thrombosis. Int. J. Mol. Sci. 2020, 21, 6150. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.S.; Rockman, C.B.; Berger, J.S. Platelet activation increases in patients undergoing vascular surgery. Thromb. Res. 2014, 134, 952–956. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, C.A.K.; Dallan, L.A.; Lisboa, L.A.; Jatene, F.B.; Hajjar, L.A.; Soeiro, A.M.; Furtado, R.H.; Dalcoquio, T.F.; Baracioli, L.M.; Lima, F.G.; et al. Platelet Reactivity in Patients with Acute Coronary Syndromes Awaiting Surgical Revascularization. J. Am. Coll. Cardiol. 2021, 77, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Mahla, E.; Tantry, U.S.; Prüller, F.; Gurbel, P.A. Is There a Role for Preoperative Platelet Function Testing in Patients Undergoing Cardiac Surgery During Antiplatelet Therapy? Circulation 2018, 138, 2145–2159. [Google Scholar] [CrossRef] [PubMed]
- Pazoki, A.; Dadfar, S.; Shadab, A.; Haghmorad, D.; Oksenych, V. Soluble CD40 Ligand as a Promising Biomarker in Cancer Diagnosis. Cells 2024, 13, 1267. [Google Scholar] [CrossRef] [PubMed]
- Herold, Z.; Herold, M.; Herczeg, G.; Fodor, A.; Szasz, A.M.; Dank, M.; Somogyi, A. High plasma CD40 ligand level is associated with more advanced stages and worse prognosis in colorectal cancer. World J. Clin. Cases 2022, 10, 4084–4096. [Google Scholar] [CrossRef] [PubMed]
- Mai, S.; Inkielewicz-Stepniak, I. Pancreatic Cancer and Platelets Crosstalk: A Potential Biomarker and Target. Front. Cell Dev. Biol. 2021, 9, 749689. [Google Scholar] [CrossRef] [PubMed]
- Morales-Pacheco, M.; Valenzuela-Mayen, M.; Gonzalez-Alatriste, A.M.; Mendoza-Almanza, G.; Cortés-Ramírez, S.A.; Losada-García, A.; Rodríguez-Martínez, G.; González-Ramírez, I.; Maldonado-Lagunas, V.; Vazquez-Santillan, K.; et al. The role of platelets in cancer: From their influence on tumor progression to their potential use in liquid biopsy. Biomark. Res. 2025, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Ghanavat, M.; Ebrahimi, M.; Rafieemehr, H.; Maniati, M.; Behzad, M.M.; Shahrabi, S. Thrombocytopenia in solid tumors: Prognostic significance. Oncol. Rev. 2019, 13, 413. [Google Scholar] [CrossRef] [PubMed]
- Pereira-da-Silva, T.; Napoleão, P.; Pinheiro, T.; Selas, M.; Silva, F.; Ferreira, R.C.; Carmo, M.M. The Proinflammatory Soluble CD40 Ligand Is Associated with the Systemic Extent of Stable Atherosclerosis. Medicina 2021, 57, 39. [Google Scholar] [CrossRef] [PubMed]
- Arauna, D.; García, F.; Rodríguez-Mañas, L.; Marrugat, J.; Sáez, C.; Alarcón, M.; Wehinger, S.; Espinosa-Parrilla, Y.; Palomo, I.; Fuentes, E. Older adults with frailty syndrome present an altered platelet function and an increased level of circulating oxidative stress and mitochondrial dysfunction biomarker GDF-15. Free Radic. Biol. Med. 2020, 149, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Al-Madhagi, H.; Masoud, A. Limitations and Challenges of Antioxidant Therapy. Phytother. Res. 2024, 38, 5549–5566. [Google Scholar] [CrossRef] [PubMed]
- Douketis, J.D.; Spyropoulos, A.C.; Murad, M.H.; Arcelus, J.I.; Dager, W.E.; Dunn, A.S.; Fargo, R.A.; Levy, J.H.; Samama, C.M.; Shah, S.H.; et al. Perioperative Management of Antithrombotic Therapy: An American College of Chest Physicians Clinical Practice Guideline. Chest 2022, 162, e207–e243. [Google Scholar] [CrossRef] [PubMed]
- Polania Gutierrez, J.J.; Rocuts, K.R. Perioperative Anticoagulation Management; StatPearls Publishing: Houston, TX, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557590/ (accessed on 3 July 2025).
- Lee, S.H.; Lee, E.K.; Ahn, H.J.; Lee, S.M.; Kim, J.A.; Yang, M.; Choi, J.W.; Kim, J.; Jeong, H.; Kim, S.; et al. Comparison of Early and Late Surgeries after Coronary Stent Implantation in Patients with Normal Preoperative Troponin Level: A Retrospective Study. J. Clin. Med. 2023, 12, 2524. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Pignatelli, P. Platelet oxidative stress and thrombosis. Thromb. Res. 2012, 129, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Tantry, U.S.; Etherington, A.; Bliden, K.P.; Gurbel, P.A. Antiplatelet therapy: Current strategies and future trends. Future Cardiol. 2006, 2, 343–366. [Google Scholar] [CrossRef] [PubMed]
Mediator/Component | Main Role in Inflammation | Relevance After Surgery | Platelet Participation |
---|---|---|---|
IL-6 | Pro-inflammatory cytokine | Early postoperative increase, correlates with syndrome severity | Increase in platelet activation and aggregation |
TNF-α | Starts an inflammatory chain reaction | Acute phase reaction | Promoting platelet-endothelial adhesion |
CRP | Acute-phase reactant | Surge after operation; indicates tissue damage | Indirect platelet stimulation via inflammatory pathways |
Endothelial cells | Signaling and barriers | Vascular leakage caused by disruption | Enhanced thrombosis |
ROS | Oxidative mediators | Elevated as a result of tissue damage during surgery | Enhanced platelet aggregation and reactivity |
Microparticles generated from platelets | Pro-coagulant vesicles | Rise following surgery; associated with complications | Systemic inflammation and platelet activation |
Antiplatelet Agent | Mechanism of Action | Surgical Bleeding Risk | Perioperative Management Recommendations |
---|---|---|---|
Aspirin | Irreversible COX-1 inhibition | Low to Moderate | Often continued for cardiovascular protection; stop 5–7 days prior for high-bleeding-risk surgery |
Clopidogrel | Irreversible P2Y12 receptor blocker | Moderate to High | Usually stopped 5–7 days pre-op; consider bridging if high thrombotic risk |
Ticagrelor | Reversible P2Y12 inhibitor | High | Discontinued 3–5 days pre-op; short half-life may benefit early resumption |
Prasugrel | Irreversible P2Y12 inhibitor | High | Stop 7 days before surgery; associated with higher bleeding risk |
Cangrelor | Short-acting reversible P2Y12 inhibitor | Low | Can be used as bridging; rapid offset (1–2 h) advantageous for surgery |
Dipyridamole | Phosphodiesterase inhibition, ↑NO | Low | Rarely used perioperatively alone; combined with aspirin in some cases |
Research Area | Current Gaps | Potential Clinical Impact |
---|---|---|
Platelet-derived biomarkers | Limited validation in surgical settings | Risk stratification and early complication detection |
Platelet–immune system interactions | Incomplete understanding of postoperative immune modulation | Tailored immunomodulatory therapies |
Redox–platelet interplay | Scarce data on dynamic changes perioperatively | Antioxidant therapies guided by platelet activity |
Personalized antiplatelet strategies | Lack of predictive markers for bleeding vs. thrombotic risk | Individualized perioperative antiplatelet plans |
Randomized controlled trials (RCTs) | Few high-quality studies in abdominal surgery populations | Evidence-based guidelines for platelet-targeted therapies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scripcariu, D.-V.; Huzum, B.; Mircea, C.; Tesoi, D.-F.; Badulescu, O.-V. Systemic Impact of Platelet Activation in Abdominal Surgery: From Oxidative and Inflammatory Pathways to Postoperative Complications. Int. J. Mol. Sci. 2025, 26, 7150. https://doi.org/10.3390/ijms26157150
Scripcariu D-V, Huzum B, Mircea C, Tesoi D-F, Badulescu O-V. Systemic Impact of Platelet Activation in Abdominal Surgery: From Oxidative and Inflammatory Pathways to Postoperative Complications. International Journal of Molecular Sciences. 2025; 26(15):7150. https://doi.org/10.3390/ijms26157150
Chicago/Turabian StyleScripcariu, Dragos-Viorel, Bogdan Huzum, Cornelia Mircea, Dragos-Florin Tesoi, and Oana-Viola Badulescu. 2025. "Systemic Impact of Platelet Activation in Abdominal Surgery: From Oxidative and Inflammatory Pathways to Postoperative Complications" International Journal of Molecular Sciences 26, no. 15: 7150. https://doi.org/10.3390/ijms26157150
APA StyleScripcariu, D.-V., Huzum, B., Mircea, C., Tesoi, D.-F., & Badulescu, O.-V. (2025). Systemic Impact of Platelet Activation in Abdominal Surgery: From Oxidative and Inflammatory Pathways to Postoperative Complications. International Journal of Molecular Sciences, 26(15), 7150. https://doi.org/10.3390/ijms26157150