Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = porcine endogenous retroviruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 413 KiB  
Review
Co-Cultivation Assays for Detecting Infectious Human-Tropic Porcine Endogenous Retroviruses (PERVs)
by Joachim Denner
Int. J. Mol. Sci. 2025, 26(15), 7111; https://doi.org/10.3390/ijms26157111 - 23 Jul 2025
Viewed by 255
Abstract
Porcine endogenous retroviruses (PERVs) are integrated into the genome of all pigs. As they can be released as infectious virus particles capable of infecting human cells in vitro, they pose a potential risk for xenotransplantation involving pig cells or organs. To assess whether [...] Read more.
Porcine endogenous retroviruses (PERVs) are integrated into the genome of all pigs. As they can be released as infectious virus particles capable of infecting human cells in vitro, they pose a potential risk for xenotransplantation involving pig cells or organs. To assess whether pigs produce infectious human-tropic viruses, infection assays with human cells are required. There are three main types of assays. First is the incubation of human target cells with gamma-irradiated pig cells. This method ensures that viral transmission is assessed in the absence of replicating pig cells. However, gamma irradiation may alter gene expression in pig cells, potentially affecting the results. Second is the co-culture in a double-chamber system in which pig and human cells are separated by a porous membrane, preventing direct cell-to-cell contact. While this method allows for the detection of infection by free virus particles, it does not account for infection via cell-to-cell transmission, which is a common mode of retroviral infection. And third is the co-culture of pig cells with human cells expressing a resistance gene. The resistance gene allows selective elimination of pig cells upon the addition of a selection medium. This assay enables both free virus and cell-to-cell transmission as well as complete removal of pig cells, which may not be fully achieved in the first type of assay. The third assay best simulates the conditions of in vivo xenotransplantation. However, in all cases the selection of donor and recipient cells is crucial to the experimental outcome. Results only indicate whether a specific pig cell type releases PERVs and whether a specific human cell type is susceptible to infection. A negative infection result does not necessarily reflect the in vivo situation, in which a transplanted organ consists of multiple pig cell types interacting with a diverse range of human cells within a living organism. Knowledge of these limitations is important for authorities regulating clinical applications for xenotransplantation. Full article
(This article belongs to the Special Issue Microbial Infections and Novel Biological Molecules for Treatment)
Show Figures

Figure 1

20 pages, 2381 KiB  
Article
Reliable Polymerase Chain Reaction Methods for Screening for Porcine Endogenous Retroviruses-C (PERV-C) in Pigs
by Hina Jhelum, Dusan Kunec, Vasileios Papatsiros, Benedikt B. Kaufer and Joachim Denner
Viruses 2025, 17(2), 164; https://doi.org/10.3390/v17020164 - 24 Jan 2025
Viewed by 1018
Abstract
Porcine endogenous retrovirus C (PERV-C) is a gammaretrovirus present in the genome of many, but not all, pigs. It is an ecotropic virus, able to infect only pig cells. In contrast, PERV-A and PERV-B, which are present in all pigs, can infect cells [...] Read more.
Porcine endogenous retrovirus C (PERV-C) is a gammaretrovirus present in the genome of many, but not all, pigs. It is an ecotropic virus, able to infect only pig cells. In contrast, PERV-A and PERV-B, which are present in all pigs, can infect cells of multiple host species, including humans, thereby posing a risk for xenotransplantation when pigs are used as donor animals. Notably, PERV-C can recombine with PERV-A to produce PERV-A/C recombinants that can infect human cells and replicate to higher titers compared to the paternal PERV-A. The objective of this study is to evaluate the reliability of both existing and newly developed polymerase chain reactions (PCR) methods for detecting PERV-C, with the aim of selecting PERV-C-free pigs to be used for xenotransplantation. To detect PERV-C by PCR, specific primers targeting the region of the envelope protein gene, which differs from that of PERV-A and PERV-B due to its unique receptor binding site, must be employed. In this study, new PCR assays were developed to detect PERV-C and a total of ten PCR assays and one real-time PCR assay were evaluated for their reliability in detecting PERV-C. These assays were used to screen indigenous Greek black pigs, Auckland Island pigs, and German slaughterhouse pigs. Two of the PCR assays consistently yielded reliable results, whereas the other PCRs and the real-time PCR gave false positive results. Using the reliable assays, it was shown that one out of four indigenous Greek black pigs (using the same method in a previous publication 11 of 21 pigs were found PERV-C-negative), one out of ten German slaughterhouse pigs, the pig kidney cell line PK15, and all the Auckland Island pigs were PERV-C-negative. The reliable PCR assays will enable the screening of PERV-C-negative donor pigs to be used in xenotransplantation. Most importantly, all the Auckland Island pigs that were genetically modified in Germany for use in clinical trials were PERV-C-negative. Full article
(This article belongs to the Special Issue Porcine Viruses 2024)
Show Figures

Figure 1

13 pages, 2808 KiB  
Article
Investigation of Polymorphisms Induced by the Solo Long Terminal Repeats (Solo-LTRs) in Porcine Endogenous Retroviruses (ERVs)
by Cai Chen, Zhanyu Du, Yao Zheng, Hong Chen, Ahmed A. Saleh, Naisu Yang, Mengli Wang, Phiri Azele, Xiaoyan Wang and Chengyi Song
Viruses 2024, 16(11), 1801; https://doi.org/10.3390/v16111801 - 20 Nov 2024
Viewed by 1050
Abstract
Homologous recombination events take place between the 5′ and 3′ long terminal repeats (LTRs) of ERVs, resulting in the generation of solo-LTR, which can cause solo-LTR-associated polymorphism across different genomes. In the current study, specific criteria were established for the filtration of solo-LTRs, [...] Read more.
Homologous recombination events take place between the 5′ and 3′ long terminal repeats (LTRs) of ERVs, resulting in the generation of solo-LTR, which can cause solo-LTR-associated polymorphism across different genomes. In the current study, specific criteria were established for the filtration of solo-LTRs, resulting in an average of 5630 solo-LTRs being identified in 21 genomes. Subsequently, a protocol was developed for detecting solo-LTR polymorphisms in the pig genomes, resulting in the discovery of 927 predicted solo-LTR polymorphic sites. Following verification and filtration processes, 603 highly reliable solo-LTR polymorphic sites were retained, involving 446 solo-LTR presence sites (solo-LTR+) and 157 solo-LTR absence sites (solo-LTR) relative to the reference genome. Intersection analysis with gene/functional regions revealed that 248 solo-LTR sites and 23 solo-LTR+ sites overlapped with genes or were in the vicinity of genes or functional regions, impacting a diverse range of gene structures. Moreover, through the utilization of 156 solo-LTR polymorphic sites for population genetic analysis, it was observed that these solo-LTR loci effectively clustered various breeds together, aligning with expectations and underscoring their practical utility. This study successfully established a methodology for detecting solo-LTR polymorphic sites. By applying these methods, a total of 603 high-reliability solo-LTR polymorphic sites were pinpointed, with nearly half of them being linked to genes or functional regions. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

15 pages, 486 KiB  
Article
Application of Methods Detecting Xenotransplantation-Relevant Viruses for Screening German Slaughterhouse Pigs
by Hina Jhelum, Benedikt Kaufer and Joachim Denner
Viruses 2024, 16(7), 1119; https://doi.org/10.3390/v16071119 - 11 Jul 2024
Cited by 3 | Viewed by 1656
Abstract
Detection methods have been developed to prevent transmission of zoonotic or xenozoonotic porcine viruses after transplantation of pig organs or cells to the recipient (xenotransplantation). Eleven xenotransplantation-relevant viruses, including porcine cytomegalovirus, porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses -1, -2, -3 (PLHV-1, 2, 3), [...] Read more.
Detection methods have been developed to prevent transmission of zoonotic or xenozoonotic porcine viruses after transplantation of pig organs or cells to the recipient (xenotransplantation). Eleven xenotransplantation-relevant viruses, including porcine cytomegalovirus, porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses -1, -2, -3 (PLHV-1, 2, 3), porcine parvovirus (PPV), porcine circovirus 2, 3, 4 (PCV2, 3, 4), hepatitis E virus genotype 3 (HEV3), porcine endogenous retrovirus-C (PERV-C), and recombinant PERV-A/C have been selected. In the past, several pig breeds, minipigs, and genetically modified pigs generated for xenotransplantation had been analyzed using these methods. Here, spleen, liver, and blood samples from 10 German slaughterhouse pigs were screened using both PCR-based and immunological assays. Five viruses: PCMV/PRV, PLHV-1, PLHV-3, and PERV-C, were found in all animals, and PCV3 in one animal. Some animals were latently infected with PCMV/PRV, as only virus-specific antibodies were detected. Others were also PCR positive in the spleen and/or liver, indicative of an ongoing infection. These results provide important information on the viruses that infect German slaughterhouse pigs, and together with the results of previous studies, they reveal that the methods and test strategies efficiently work under field conditions. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 664 KiB  
Article
Retroviral Insertion Polymorphism (RIP) of Porcine Endogenous Retroviruses (PERVs) in Pig Genomes
by Zhanyu Du, Cai Chen, Yao Zheng, Xiaoyan Wang and Chengyi Song
Animals 2024, 14(4), 621; https://doi.org/10.3390/ani14040621 - 15 Feb 2024
Cited by 4 | Viewed by 1718
Abstract
Endogenous retroviruses (ERVs) are one of the superfamilies of long terminal repeat retrotransposons (LTRs) in mice and humans. Approximately 8% of the pig genome is composed of sequences derived from LTRs. While the majority of ERVs in pigs have decayed, a small number [...] Read more.
Endogenous retroviruses (ERVs) are one of the superfamilies of long terminal repeat retrotransposons (LTRs) in mice and humans. Approximately 8% of the pig genome is composed of sequences derived from LTRs. While the majority of ERVs in pigs have decayed, a small number of full-length copies can still mobilize within the genome. This study investigated the unexplored retroviral insertion polymorphisms (RIPs) generated by the mobilization of full-length ERVs (Fl-ERVs), and evaluated their impact on phenotypic variation to gain insights into the biological role of Fl-ERVs in pigs. Overall, 39 RIPs (insertions or deletions relative to the pig reference genome) generated by Fl-ERVs were predicted by comparative genomic analysis, and 18 of them were confirmed by PCR detection. Four RIP sites (D5, D14, D15, and D18) were further evaluated by population analysis, and all of them displayed polymorphisms in multiple breeds. The RIP site of ERV-D14, which is a Fl-ERV inserted in the STAB2-like gene, was further confirmed by sequencing. Population analysis of the polymorphic site of ERV-D14 reveals that it presents moderate polymorphism information in the Large White pig breed, and the association analysis reveals that the RIP of ERV-D14 is associated with age variations at 30 kg body weight (p < 0.05) and 100 kg body weight (p < 0.01) in the population of Large White pigs (N = 480). Furthermore, the ERV-D14 RIP is associated with changes in the expression of the target gene STAB2-like in the liver, backfat, and leaf fat in Sushan pigs. These data suggest that some Fl-ERVs are still mobilizing in the pig’s genome, and contribute to genomic and phenotypic variations. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

14 pages, 2696 KiB  
Article
Screening for Viruses in Indigenous Greek Black Pigs
by Hina Jhelum, Vasileios Papatsiros, Georgios Papakonstantinou, Ludwig Krabben, Benedikt Kaufer and Joachim Denner
Microorganisms 2024, 12(2), 315; https://doi.org/10.3390/microorganisms12020315 - 2 Feb 2024
Cited by 6 | Viewed by 2214
Abstract
The successful advancement of xenotransplantation has led to the development of highly sensitive detection systems for the screening of potentially zoonotic viruses in donor pigs and preventing their transmission to the recipient. To validate these methods, genetically modified pigs generated for xenotransplantation, numerous [...] Read more.
The successful advancement of xenotransplantation has led to the development of highly sensitive detection systems for the screening of potentially zoonotic viruses in donor pigs and preventing their transmission to the recipient. To validate these methods, genetically modified pigs generated for xenotransplantation, numerous minipigs and other pig breeds have been tested, thereby increasing our knowledge concerning the pig virome and the distribution of pig viruses. Of particular importance are the porcine cytomegalovirus, a porcine roseolovirus (PCMV/PRV) and the hepatitis E virus genotype 3 (HEV3). PCMV/PRV has been shown to reduce the survival time of pig transplants in non-human primates and was also transmitted in the first pig heart transplantation to a human patient. The main aim of this study was to determine the sensitivities of our methods to detect PCMV/PRV, HEV3, porcine lymphotropic herpesvirus-1 (PLHV-1), PLHV-2, PLHV-3, porcine circovirus 2 (PCV2), PCV3, PCV4 and porcine parvovirus 1 (PPV1) and to apply the methods to screen indigenous Greek black pigs. The high number of viruses found in these animals allowed for the evaluation of numerous detection methods. Since porcine endogenous retroviruses (PERVs) type A and B are integrated in the genome of all pigs, but PERV-C is not, the animals were screened for PERV-C and PERV-A/C. Our detection methods were sensitive and detected PCMV/PRV, PLHV-1, PLHV-1, PLHV-3, PVC3 and PERV-C in most animals. PPV1, HEV3, PCV4 and PERV-A/C were not detected. These data are of great interest since the animals are healthy and resistant to diseases. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

15 pages, 1406 KiB  
Article
Determination of the Copy Number of Porcine Endogenous Retroviruses (PERV) in Auckland Island Pigs Repeatedly Used for Clinical Xenotransplantation and Elimination of PERV-C
by Uwe Fiebig, Luise Krüger and Joachim Denner
Microorganisms 2024, 12(1), 98; https://doi.org/10.3390/microorganisms12010098 - 3 Jan 2024
Cited by 5 | Viewed by 2283
Abstract
Auckland Island pigs represent an inbred population of feral pigs isolated on the sub-Antarctic island for over 100 years. The animals have been maintained under pathogen-free conditions in New Zealand; they are well characterized virologically and have been used as donor sources in [...] Read more.
Auckland Island pigs represent an inbred population of feral pigs isolated on the sub-Antarctic island for over 100 years. The animals have been maintained under pathogen-free conditions in New Zealand; they are well characterized virologically and have been used as donor sources in first clinical trials of porcine neonatal islet cell transplantation for the treatment of human diabetes patients. The animals do not carry any of the xenotransplantation-relevant viruses, and in the first clinical trials, no porcine viruses, including porcine endogenous retroviruses (PERVs) were transmitted to the human recipients. PERVs pose a special risk in xenotransplantation, since they are part of the pig genome. When the copy number of PERVs in these animals was analyzed using droplet digital PCR and primers binding to a conserved region of the polymerase gene (PERVpol), a copy number typical for Western pigs was found. This confirms previous phylogenetic analyses of microsatellites as well as mitochondrial analyses showing a closer relationship to European pigs than to Chinese pigs. When kidney cells from very young piglets were analyzed, only around 20 PERVpol copies were detected. Using these cells as donors in somatic cell nuclear transfer (SCNT), animals were born showing PERVpol copy numbers between 35 and 56. These data indicate that Auckland Island pigs have a similar copy number in comparison with other Western pig breeds and that the copy number is higher in adult animals compared with cells from young piglets. Most importantly, PERV-C-free animals were selected and the absence of an additional eight porcine viruses was demonstrated. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

12 pages, 1498 KiB  
Article
Evidence for Microchimerism in Baboon Recipients of Pig Hearts
by Hina Jhelum, Martin Bender, Bruno Reichart, Maren Mokelke, Julia Radan, Elisabeth Neumann, Ludwig Krabben, Jan-Michael Abicht, Benedikt Kaufer, Matthias Längin and Joachim Denner
Viruses 2023, 15(7), 1618; https://doi.org/10.3390/v15071618 - 24 Jul 2023
Cited by 5 | Viewed by 2181
Abstract
Xenotransplantation, like allotransplantation, is usually associated with microchimerism, i.e., the presence of cells from the donor in the recipient. Microchimerism was reported in first xenotransplantation trials in humans, as well as in most preclinical trials in nonhuman primates (for review, see Denner, Viruses [...] Read more.
Xenotransplantation, like allotransplantation, is usually associated with microchimerism, i.e., the presence of cells from the donor in the recipient. Microchimerism was reported in first xenotransplantation trials in humans, as well as in most preclinical trials in nonhuman primates (for review, see Denner, Viruses 2023, 15, 190). When using pigs as xenotransplantation donors, their cells contain porcine endogenous retroviruses (PERVs) in their genome. This makes it difficult to discriminate between microchimerism and PERV infection of the recipient. Here, we demonstrate the appropriate virological methods to be used for the identification of microchimerism, first by screening for porcine cellular genes, and then how to detect infection of the host. Using porcine short interspersed nuclear sequences (SINEs), which have hundreds of thousands of copies in the pig genome, significantly increased the sensitivity of the screening for pig cells. Second, absence of PERV RNA demonstrated an absence of viral genomic RNA or expression as mRNA. Lastly, absence of antibodies against PERV proteins conclusively demonstrated an absence of a PERV infection. When applying these methods for analyzing baboons after pig heart transplantation, microchimerism could be demonstrated and infection excluded in all animals. These methods can be used in future clinical trials. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Graphical abstract

4 pages, 193 KiB  
Commentary
Microchimerism, PERV and Xenotransplantation
by Joachim Denner
Viruses 2023, 15(1), 190; https://doi.org/10.3390/v15010190 - 10 Jan 2023
Cited by 9 | Viewed by 3200
Abstract
Microchimerism is the presence of cells in an individual that have originated from a genetically distinct individual. The most common form of microchimerism is fetomaternal microchimerism, i.e., cells from a fetus pass through the placenta and establish cell lineages within the mother. Microchimerism [...] Read more.
Microchimerism is the presence of cells in an individual that have originated from a genetically distinct individual. The most common form of microchimerism is fetomaternal microchimerism, i.e., cells from a fetus pass through the placenta and establish cell lineages within the mother. Microchimerism was also described after the transplantation of human organs in human recipients. Consequently, microchimerism may also be expected in xenotransplantation using pig cells or organs. Indeed, microchimerism was described in patients after xenotransplantations as well as in non-human primates after the transplantation of pig organs. Here, for the first time, a comprehensive review of microchimerism in xenotransplantation is given. Since pig cells contain porcine endogenous retroviruses (PERVs) in their genome, the detection of proviral DNA in transplant recipients may be misinterpreted as an infection of the recipient with PERV. To prevent this, methods discriminating between infection and microchimerism are described. This knowledge will be important for the interpretation of screening results in forthcoming human xenotransplantations. Full article
(This article belongs to the Special Issue Endogenous Retrovirus Proteins and Their Functions)
10 pages, 1989 KiB  
Communication
Efficient and Safe Editing of Porcine Endogenous Retrovirus Genomes by Multiple-Site Base-Editing Editor
by Shuwen Zheng, Haiwen Zhong, Xiaoqing Zhou, Min Chen, Wansheng Li, Yin Zi, Yue Chi, Jinling Wang, Wei Zheng, Qingjian Zou, Liangxue Lai and Chengcheng Tang
Cells 2022, 11(24), 3975; https://doi.org/10.3390/cells11243975 - 8 Dec 2022
Cited by 4 | Viewed by 2448
Abstract
Gene-modified miniature pigs serve as alternative tissue and organ donors for xenotransplantation to alleviate the shortage of human allogenic organs. However, the high copy number of porcine endogenous retrovirus (PERV) genomes integrates with the porcine genome, which has a potential risk of cross-species [...] Read more.
Gene-modified miniature pigs serve as alternative tissue and organ donors for xenotransplantation to alleviate the shortage of human allogenic organs. However, the high copy number of porcine endogenous retrovirus (PERV) genomes integrates with the porcine genome, which has a potential risk of cross-species transmission and hinders the clinical practice of xenotransplantation. Recently, CRISPR/Cas9 has been used to inactivate PERVs. However, Cas9 also triggers severe DNA damage at multiple integrated PERV sites in the porcine genome, which induces senescence and apoptosis of porcine cells. In this study, the cytosine base editor (CBE), an efficient and safe editor that does not cause DNA double strand breaks (DSBs), was used for PERV editing to reduce cytotoxic effects. Seven sgRNAs were set to target gag and pol loci of PERVs to induce premature stop codons. We found that approximately 10% of cell clones were completely inactivated for PERVs in pig ST cells, and the plasmid that was used for editing the PERVs did not integrate into host genome and influence the karyotype of the modified cells. Our studies offer a powerful and safe strategy for further generating PERV-knockout pigs using base editors. Full article
(This article belongs to the Special Issue CRISPR-Based Genome Editing in Translational Research)
Show Figures

Figure 1

14 pages, 1177 KiB  
Review
Virus Safety of Xenotransplantation
by Joachim Denner
Viruses 2022, 14(9), 1926; https://doi.org/10.3390/v14091926 - 30 Aug 2022
Cited by 40 | Viewed by 5796
Abstract
The practice of xenotransplantation using pig islet cells or organs is under development to alleviate the shortage of human donor islet cells or organs for the treatment of diabetes or organ failure. Multiple genetically modified pigs were generated to prevent rejection. Xenotransplantation may [...] Read more.
The practice of xenotransplantation using pig islet cells or organs is under development to alleviate the shortage of human donor islet cells or organs for the treatment of diabetes or organ failure. Multiple genetically modified pigs were generated to prevent rejection. Xenotransplantation may be associated with the transmission of potentially zoonotic porcine viruses. In order to prevent this, we developed highly sensitive PCR-based, immunologicals and other methods for the detection of numerous xenotransplantation-relevant viruses. These methods were used for the screening of donor pigs and xenotransplant recipients. Of special interest are the porcine endogenous retroviruses (PERVs) that are integrated in the genome of all pigs, which are able to infect human cells, and that cannot be eliminated by methods that other viruses can. We showed, using droplet digital PCR, that the number of PERV proviruses is different in different pigs (usually around 60). Furthermore, the copy number is different in different organs of a single pig, indicating that PERVs are active in the living animals. We showed that in the first clinical trials treating diabetic patients with pig islet cells, no porcine viruses were transmitted. However, in preclinical trials transplanting pig hearts orthotopically into baboons, porcine cytomegalovirus (PCMV), a porcine roseolovirus (PCMV/PRV), and porcine circovirus 3 (PCV3), but no PERVs, were transmitted. PCMV/PRV transmission resulted in a significant reduction of the survival time of the xenotransplant. PCMV/PRV was also transmitted in the first pig heart transplantation to a human patient and possibly contributed to the death of the patient. Transmission means that the virus was detected in the recipient, however it remains unclear whether it can infect primate cells, including human cells. We showed previously that PCMV/PRV can be eliminated from donor pigs by early weaning. PERVs were also not transmitted by inoculation of human cell-adapted PERV into small animals, rhesus monkey, baboons and cynomolgus monkeys, even when pharmaceutical immunosuppression was applied. Since PERVs were not transmitted in clinical, preclinical, or infection experiments, it remains unclear whether they should be inactivated in the pig genome by CRISPR/Cas. In summary, by using our sensitive methods, the safety of xenotransplantation can be ensured. Full article
(This article belongs to the Special Issue Viruses 2022 - At the Leading Edge of Virology Research)
Show Figures

Figure 1

10 pages, 1737 KiB  
Communication
Virological Characterization of Pigs with Erythema Multiforme
by Sabrina Halecker, Vasileios Papatsiros, Dimitra Psalla, Ludwig Krabben, Benedikt Kaufer and Joachim Denner
Microorganisms 2022, 10(3), 652; https://doi.org/10.3390/microorganisms10030652 - 18 Mar 2022
Cited by 7 | Viewed by 3690
Abstract
Erythema multiforme in pigs is an acute, self-limiting disease characterized by red skin areas and often associated with anorexia, fever and respiratory problems. The cause of the disease remains unknown. In a recent study, animals of a commercial breeding herd in Greece were [...] Read more.
Erythema multiforme in pigs is an acute, self-limiting disease characterized by red skin areas and often associated with anorexia, fever and respiratory problems. The cause of the disease remains unknown. In a recent study, animals of a commercial breeding herd in Greece were examined, and all animals were found seropositive for porcine reproductive and respiratory syndrome virus (PRRSV). However, neither PRRSV and porcine circovirus type 2 (PCV2) viremia nor antibodies against Aujeszky’s disease virus, African swine fever virus and classical swine fever virus were detected. Here, an extended examination of these pigs was performed on a wide range of porcine viruses using highly sensitive polymerase chain reaction (PCR)-based methods. Affected skin of five animals revealed the presence of porcine lymphotropic herpesvirus-1 (PLHV-1) in all cases, PLHV-2 in one animal and PLHV-3 in four animals. However, neither porcine cytomegalovirus (PCMV) nor porcine circoviruses (PCV1, PCV2, PCV3 and PCV4) were detected. In blood samples, PLHV-1 was present in two animals and PLHV-2, PCV2 and PCV3 in one individual, with PCMV, PCV1 and PCV4 in none of the animals. In one animal, four viruses were found in the blood (PLHV-1, PLHV-2, PCV2 and PCV3). A PRRSV viremia was also not detected. All animals carried porcine endogenous retrovirus C (PERV-C) in their genome, but recombinant PERV-A/C was not detected. The results suggest that porcine viruses may be involved in erythema multiforme in these animals and that further studies are needed to assess the role of these pathogens in the disease. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

15 pages, 544 KiB  
Article
Virological and Parasitological Characterization of Mini-LEWE Minipigs Using Improved Screening Methods and an Overview of Data on Various Minipig Breeds
by Sabrina Halecker, Julia Metzger, Christina Strube, Ludwig Krabben, Benedikt Kaufer and Joachim Denner
Microorganisms 2021, 9(12), 2617; https://doi.org/10.3390/microorganisms9122617 - 18 Dec 2021
Cited by 15 | Viewed by 3609
Abstract
Minipigs play an important role in biomedical research and have also been used as donor animals in xenotransplantation. To serve as a donor in xenotransplantation, the animals must be free of potential zoonotic viruses, bacteria and parasites. Porcine endogenous retroviruses (PERVs) are integrated [...] Read more.
Minipigs play an important role in biomedical research and have also been used as donor animals in xenotransplantation. To serve as a donor in xenotransplantation, the animals must be free of potential zoonotic viruses, bacteria and parasites. Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs and cannot be eliminated as most of the other pig viruses can. PERV-A and PERV-B infect human cells in cell culture and are integrated in all pigs, whereas PERV-C infects only pig cells and it is found in many, but not all pigs. Minipigs are known for a high prevalence of recombinant PERV-A/C viruses able to infect human cells (Denner and Schuurman, Viruses, 2021;13:1869). Here, Mini-LEWE minipigs are screened for the first time for pig viruses including PERV. Peripheral blood mononuclear cells (PBMCs) from 10 animals were screened using PCR-based methods (PCR, RT-PCR, and real-time PCR). In comparison with our previous screening assays, numerous improvements were introduced, e.g., the usage of gene blocks as a PCR standard and foreign RNA to control reverse transcription in RT-PCR. Using these improved detection methods, Mini-LEWE pigs were found to be negative for porcine cytomegalovirus (PCMV), porcine lymphotropic herpesviruses (PLHV-1, -2 and -3), porcine circoviruses (PCV1, 2, 3 and 4), porcine parvovirus (PPV) and hepatitis E virus (HEV). All animals carried PERV-A, PERV-B and PERV-C in their genome. PERV-A/C was not found. In contrast to all other minipig breeds (Göttingen minipigs, Aachen minipigs, Yucatan micropig, Massachusetts General Hospital miniature pigs), Mini-LEWE minipigs have less viruses and no PERV-A/C. Parasitological screening showed that none of the Mini-LEWE minipigs harbored ecto- and gastrointestinal parasites, but at least one animal tested positive for anti-Toxoplasma gondii antibodies. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

17 pages, 1691 KiB  
Review
Porcine Endogenous Retroviruses and Xenotransplantation, 2021
by Joachim Denner
Viruses 2021, 13(11), 2156; https://doi.org/10.3390/v13112156 - 26 Oct 2021
Cited by 47 | Viewed by 7934
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and some of them are able to infect human cells. Therefore, PERVs pose a risk for xenotransplantation, the transplantation of pig cells, tissues, or organ to humans in order to alleviate [...] Read more.
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and some of them are able to infect human cells. Therefore, PERVs pose a risk for xenotransplantation, the transplantation of pig cells, tissues, or organ to humans in order to alleviate the shortage of human donor organs. Up to 2021, a huge body of knowledge about PERVs has been accumulated regarding their biology, including replication, recombination, origin, host range, and immunosuppressive properties. Until now, no PERV transmission has been observed in clinical trials transplanting pig islet cells into diabetic humans, in preclinical trials transplanting pig cells and organs into nonhuman primates with remarkable long survival times of the transplant, and in infection experiments with several animal species. Nevertheless, in order to prevent virus transmission to the recipient, numerous strategies have been developed, including selection of PERV-C-free animals, RNA interference, antiviral drugs, vaccination, and genome editing. Furthermore, at present there are no more experimental approaches to evaluate the full risk until we move to the clinic. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

12 pages, 581 KiB  
Review
High Prevalence of Recombinant Porcine Endogenous Retroviruses (PERV-A/Cs) in Minipigs: A Review on Origin and Presence
by Joachim Denner and Hendrik Jan Schuurman
Viruses 2021, 13(9), 1869; https://doi.org/10.3390/v13091869 - 18 Sep 2021
Cited by 19 | Viewed by 3862
Abstract
Minipigs play an important role in biomedical research and they have also been used as donor animals for preclinical xenotransplantations. Since zoonotic microorganisms including viruses can be transmitted when pig cells, tissues or organs are transplanted, virus safety is an important feature in [...] Read more.
Minipigs play an important role in biomedical research and they have also been used as donor animals for preclinical xenotransplantations. Since zoonotic microorganisms including viruses can be transmitted when pig cells, tissues or organs are transplanted, virus safety is an important feature in xenotransplantation. Whereas most porcine viruses can be eliminated from pig herds by different strategies, this is not possible for porcine endogenous retroviruses (PERVs). PERVs are integrated in the genome of pigs and some of them release infectious particles able to infect human cells. Whereas PERV-A and PERV-B are present in all pigs and can infect cells from humans and other species, PERV-C is present in most, but not all pigs and infects only pig cells. Recombinant viruses between PERV-A and PERV-C have been found in some pigs; these recombinants infect human cells and are characterized by high replication rates. PERV-A/C recombinants have been found mainly in minipigs of different origin. The possible reasons of this high prevalence of PERV-A/C in minipigs, including inbreeding and higher numbers and expression of replication-competent PERV-C in these animals, are discussed in this review. Based on these data, it is highly recommended to use only pig donors in clinical xenotransplantation that are negative for PERV-C. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop