Genetic Correlates of Presenile Dementia and Cognitive Decline in the Armenian Population Following COVID-19: A Case-Control Study
Abstract
1. Introduction
2. Results
2.1. Virological Results and Hypovitaminosis
2.2. Genetic Testing Results
2.3. Cognitive Status and CNV Mutations
3. Discussion
3.1. Cognitive Functioning and Depressive Symptoms
3.2. Strengths and Limitations
3.2.1. Strengths
3.2.2. Limitations
4. Materials and Methods
4.1. Study Design
4.2. Participants
4.3. Cognitive Assessments
4.4. Depression Assessment
4.5. Genetic Analysis
4.6. Laboratory Measurements
4.7. Statistical Methods
- a.
- Non-Parametric Methods
- b.
- Categorical Variables
- c.
- Gene–Score Associations
- d.
- Multiple Comparison Adjustment
- e.
- Multiple Regression for Gene Validation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Launer, L.J. Statistics on the burden of dementia: Need for stronger data. Lancet Neurol. 2019, 18, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Neuner, S.M.; Tcw, J.; Goate, A.M. Genetic architecture of Alzheimer’s disease. Neurobiol. Dis. 2020, 143, 104976. [Google Scholar] [CrossRef] [PubMed]
- Bagyinszky, E.; Youn, Y.C.; An, S.; Kim, S. The genetics of Alzheimer’s disease. Clin. Interv. Aging 2014, 9, 535–551. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Watanabe, H.; Wu, B.; Lee, S.H.; Li, Y.; Tsvetkov, E.; Bolshakov, V.Y.; Shen, J.; Kelleher, R.J. Presenilin-1 Knockin Mice Reveal Loss-of-Function Mechanism for Familial Alzheimer’s Disease. Neuron 2015, 85, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Greaves, C.V.; Rohrer, J.D. An update on genetic frontotemporal dementia. J. Neurol. 2019, 266, 2075–2086. [Google Scholar] [CrossRef] [PubMed]
- Auwerx, C.; Jõeloo, M.; Sadler, M.C.; Tesio, N.; Ojavee, S.; Clark, C.J.; Mägi, R.; Estonian Biobank Research Team; Esko, T.; Metspalu, A.; et al. Rare copy-number variants as modulators of common disease susceptibility. Genome Med. 2024, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Cocoș, R.; Popescu, B.O. Scrutinizing neurodegenerative diseases: Decoding the complex genetic architectures through a mul-ti-omics lens. Hum. Genom. 2024, 141, 18. [Google Scholar] [CrossRef] [PubMed]
- Rahaie, Z.; Rabiee, H.R.; Alinejad-Rokny, H. CNVDeep: Deep association of copy number variants with neurocognitive disorders. BMC Bioinform. 2024, 25, 283. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-P.; Tucci, A.A.; Conery, M.; Leung, Y.Y.; Kuzma, A.B.; Valladares, O.; Chou, Y.-F.; Lu, W.; Wang, L.-S.; Schellenberg, G.D.; et al. Copy Number Variation Identification on 3800 Alzheimer’s Disease Whole Genome Sequencing Data from the Alzheimer’s Disease Sequencing Project. Front. Genet. 2021, 12, 752390. [Google Scholar] [CrossRef] [PubMed]
- Didonna, A.; Cantó, E.; Shams, H.; Isobe, N.; Zhao, C.; Caillier, S.J.; Condello, C.; Yamate-Morgan, H.; Tiwari-Woodruff, S.K.; Mofrad, M.R.; et al. Sex-specific Tau methylation patterns and synaptic transcriptional alterations are associated with neural vulnerability during chronic neuroinflammation. J. Autoimmun. 2019, 101, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Ljubenkov, P.A.; Miller, B.L. A Clinical Guide to Frontotemporal Dementias. Focus 2016, 14, 448–464. [Google Scholar] [CrossRef] [PubMed]
- Jagust, W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat. Rev. Neurosci. 2018, 19, 687–700. [Google Scholar] [CrossRef] [PubMed]
- De Alcântara, I.J.; Nuber-Champier, A.; Voruz, P.; Cionca, A.; Assal, F.; Péron, J.A. Cognitive Deficits in the Acute Phase of COVID-19: A Review and Meta-Analysis. J. Clin. Med. 2023, 12, 762. [Google Scholar] [CrossRef] [PubMed]
- Di Fazio, C.; Scaliti, E.; Stanziano, M.; Nigri, A.; Demichelis, G.; Tamietto, M.; Palermo, S. rTMS for enhancing cognitive reserve: A case report. Brain Disord. 2025, 18, 100221. [Google Scholar] [CrossRef]
- Palermo, S.; Di Fazio, C.; Scaliti, E.; Stanziano, M.; Nigri, A.; Tamietto, M. Cortical excitability and the aging brain: Toward a biomarker of cognitive resilience. Front. Psychol. 2025, 16, 1542880. [Google Scholar] [CrossRef] [PubMed]
- Sinsky, J.; Pichlerova, K.; Hanes, J. Tau Protein Interaction Partners and Their Roles in Alzheimer’s Disease and Other Tauopathies. Int. J. Mol. Sci. 2021, 22, 9207. [Google Scholar] [CrossRef] [PubMed]
- Andreadis, A. Tau gene alternative splicing: Expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim. Biophys. Acta. (BBA)—Mol. Basis Disease 2005, 1739, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Gabarre, D.; Carnero-Espejo, A.; Ávila, J.; García-Escudero, V. What’s in a Gene? The Outstanding Diversity of MAPT. Cells 2022, 11, 840. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, S.; Bell, M.; Klimek, J.; Zempel, H. Differential Effects of the Six Human TAU Isoforms: Somatic Retention of 2N-TAU and Increased Micro-tubule Number Induced by 4R-TAU. Front. Neurosci. 2021, 15, 643115. [Google Scholar] [CrossRef] [PubMed]
- Goedert, M. Tau filaments in neurodegenerative diseases. FEBS Lett. 2018, 592, 2383–2391. [Google Scholar] [CrossRef] [PubMed]
- Caillet-Boudin, M.-L.; Buée, L.; Sergeant, N.; Lefebvre, B. Regulation of human MAPT gene expression. Mol. Neurodegener. 2015, 28, 10. [Google Scholar] [CrossRef] [PubMed]
- Andreadis, A.; Nisson, P.E.; Kosik, K.S.; Watkins, P.C. The exon trapping assay partly discriminates against alternatively spliced exons. Nucleic Acids Res. 1993, 21, 2217–2221. [Google Scholar] [CrossRef] [PubMed]
- Park, S.A.; Ahn, S.I.; Gallo, J.-M. Tau mis-splicing in the pathogenesis of neurodegenerative disorders. BMB Rep. 2016, 49, 405–413. [Google Scholar] [CrossRef] [PubMed]
- De Houwer, J.F.H.; Dopper, E.G.P.; Rajicic, A.; van Buuren, R.; Arcaro, M.; Galimberti, D.; Breedveld, G.J.; Wilke, M.; van Minkelen, R.; Jiskoot, L.C.; et al. Two novel variants in GRN: The relevance of CNV analysis and genetic screening in FTLD patients with a negative family history. J. Neurol. 2024, 272, 64. [Google Scholar] [CrossRef] [PubMed]
- Milan, G.; Napoletano, S.; Pappatà, S.; Gentile, M.T.; Colucci-D’Amato, L.; Della Rocca, G.; Maciag, A.; Rossetti, C.P.; Fucci, L.; Puca, A.; et al. GRN deletion in familial frontotemporal dementia showing association with clinical variability in 3 familial cases. Neurobiol. Aging 2017, 53, 193.e9–193.e16. [Google Scholar] [CrossRef] [PubMed]
- Wauters, E.; Gossye, H.; Frydas, A.; Sieben, A.; Van Broeckhoven, C. Rare exonic variant affects GRN splicing and contributes to frontotemporal lobar degeneration. Neurobiol. Aging 2023, 130, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Fischer, I. Evolutionary perspective of Big tau structure: 4a exon variants of MAPT. Front. Mol. Neurosci. 2022, 15, 1019999. [Google Scholar] [CrossRef] [PubMed]
- Violet, M.; Delattre, L.; Tardivel, M.; Sultan, A.; Chauderlier, A.; Caillierez, R.; Talahari, S.; Nesslany, F.; Lefebvre, B.; Bonnefoy, E.; et al. A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front. Cell. Neurosci. 2014, 8, 84. [Google Scholar] [CrossRef] [PubMed]
- Wieczfinska, J.; Kleniewska, P.; Pawliczak, R.; Kouretas, D. Oxidative Stress-Related Mechanisms in SARS-CoV-2 Infections. Oxidative Med. Cell. Longev. 2022, 2022, 5589089. [Google Scholar] [CrossRef] [PubMed]
- Leveille, E.; Ross, O.A.; Gan-Or, Z. Tau and MAPT genetics in tauopathies and synucleinopathies. Park Relat. Disord. 2021, 90, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Strang, K.H.; Golde, T.E.; Giasson, B.I. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Mod. Pathol. 2019, 99, 912–928. [Google Scholar] [CrossRef] [PubMed]
- Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/europe/emergencies/situations/covid-19 (accessed on 6 January 2025).
- Premraj, L.; Kannapadi, N.V.; Briggs, J.; Seal, S.M.; Battaglini, D.; Fanning, J.; Suen, J.; Robba, C.; Fraser, J.; Cho, S.-M. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A me-ta-analysis. J. Neurol. Sci. 2022, 434, 120162. [Google Scholar] [CrossRef] [PubMed]
- Quan, M.; Wang, X.; Gong, M.; Wang, Q.; Li, Y.; Jia, J. Post-COVID cognitive dysfunction: Current status and research recommendations for high risk population. Lancet Reg. Heal West Pac. 2023, 38, 100836. [Google Scholar] [CrossRef] [PubMed]
- Dobielska, M.; Bartosik, N.K.; Zyzik, K.A.; Kowalczyk, E.; Karbownik, M.S. Mechanisms of Cognitive Impairment in Depression. May Probiotics Help? Front. Psychiatry 2022, 13, 904426. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, H.; Liu, Y.; Zhao, Z.; Zang, S. Association between depression status in adolescents and cognitive performance over the subsequent six years: A longitudinal study. J. Affect. Disord. 2023, 329, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Sultan, S.; Taimuri, U.; Basnan, S.A.; Ai-Orabi, W.K.; Awadallah, A.; Almowald, F.; Hazazi, A. Low Vitamin D and Its Association with Cognitive Impairment and Dementia. J. Aging Res. 2020, 2020, 6097820. [Google Scholar] [CrossRef] [PubMed]
- Jatoi, S.; Hafeez, A.; Riaz, S.U.; Ali, A.; Ghauri, M.I.; Zehra, M. Low Vitamin B12 Levels: An Underestimated Cause Of Minimal Cognitive Impairment And Dementia. Cureus 2020, 12, e6976. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.S.; Jacques, P.F.; Rosenberg, I.H.; Selhub, J. Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. Am. J. Clin. Nutr. 2007, 85, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Warren-Gash, C.; Forbes, H.J.; Williamson, E.; Breuer, J.; Hayward, A.C.; Mavrodaris, A.; Ridha, B.H.; Rossor, M.N.; Thomas, S.L.; Smeeth, L. Human herpesvirus infections and dementia or mild cognitive impairment: A systematic review and meta-analysis. Sci. Rep. 2019, 9, 4743. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-F.; Liu, C.-K.; Fang, T.-J.; Yu, Y.-H.; Lai, C.-L.; Kuo, H.-K. Previous Hepatitis A Virus Infection Is Related to Slower Psychomotor Speed in Elderly Adults. J. Gerontol. Ser. A 2009, 64, 1090–1096. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.-H.; Chang, M.-C.; Tsai, W.-F.; Chuang, W.-L.; Huang, J.-F.; Lin, Z.-Y.; Dai, C.-Y.; Yeh, M.-L.; Li, C.-T.; Yu, R.-L. Different profiles of neurocognitive impairment in patients with hepatitis B and C virus infections. Sci. Rep. 2022, 12, 10625. [Google Scholar] [CrossRef] [PubMed]
- Vaghi, G.; Gori, B.; Strigaro, G.; Burlone, M.; Minisini, R.; Barbaglia, M.N.; Brigatti, E.; Varrasi, C.; Pirisi, M.; Cantello, R. Direct antivirals and cognitive impairment in hepatitis C: A clinical-neurophysiologic study. J. Neurovirol. 2020, 26, 870–879. [Google Scholar] [CrossRef] [PubMed]
- Clifford, D.B.; Ances, B.M. HIV-associated neurocognitive disorder. Lancet Infect. Diseases 2013, 13, 976–986. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, S.; Rabinovici, G.D.; Cohn-Sheehy, B.I.; Madison, C.; Ayakta, N.; Ghosh, P.M.; La Joie, R.; Arthur-Bentil, S.K.; Vogel, J.W.; Marks, S.M.; et al. Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: Statistical and pathological evaluation. Brain 2015, 138, 2020–2033. [Google Scholar] [CrossRef] [PubMed]
- Sherrington, R.; Rogaev, E.I.; Liang, Y.; Rogaeva, E.A.; Levesque, G.; Ikeda, M.; Chi, H.; Lin, C.; Li, G.; Holman, K.; et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995, 375, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Shariati, S.A.M.; De Strooper, B. Redundancy and divergence in the amyloid precursor protein family. FEBS Lett. 2013, 587, 2036–2045. [Google Scholar] [CrossRef] [PubMed]
- Rockenstein, E.M.; McConlogue, L.; Tan, H.; Power, M.; Masliah, E.; Mucke, L. Levels and Alternative Splicing of Amyloid β Protein Precursor (APP) Transcripts in Brains of APP Transgenic Mice and Humans with Alzheimer’s Disease. J. Biol. Chem. 1995, 270, 28257–28267. [Google Scholar] [CrossRef] [PubMed]
- Grangeon, L.; Cassinari, K.; Rousseau, S.; Croisile, B.; Formaglio, M.; Moreaud, O.; Boutonnat, J.; Le Meur, N.; Miné, M.; Coste, T.; et al. Early-Onset Cerebral Amyloid Angiopathy and Alzheimer Disease Related to an APP Locus Triplication. Neurol. Genet. 2021, 7, e609. [Google Scholar] [CrossRef] [PubMed]
- Rovelet-Lecrux, A.; Hannequin, D.; Raux, G.; Le Meur, N.; Laquerrière, A.; Vital, A.; Dumanchin, C.; Feuillette, S.; Brice, A.; Vercelletto, M.; et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 2006, 38, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Liu, H.; Liu, X.; Zhang, W.; Zhang, S.; Jiao, B. APP, PSEN1, and PSEN2 Variants in Alzheimer’s Disease: Systematic Re-evaluation According to ACMG Guidelines. Front. Aging Neurosci. 2021, 13, 695808. [Google Scholar] [CrossRef] [PubMed]
- Mullan, M.; Crawford, F.; Axelman, K.; Houlden, H.; Lilius, L.; Winblad, B.; Lannfelt, L. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N–terminus of β–amyloid. Nat. Genet. 1992, 1, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Szaruga, M.; Munteanu, B.; Lismont, S.; Veugelen, S.; Horré, K.; Mercken, M.; Saido, T.C.; Ryan, N.S.; De Vos, T.; Savvides, S.N.; et al. Alzheimer’s-Causing Mutations Shift Aβ Length by Destabilizing γ-Secretase-Aβn Interactions. Cell 2017, 170, 443–456.e14. [Google Scholar] [CrossRef] [PubMed]
- Deyts, C.; Clutter, M.; Herrera, S.; Jovanovic, N.; Goddi, A.; Parent, A.T.; States, U. Loss of presenilin function is associated with a selective gain of APP function. eLife 2016, 5, e15645. [Google Scholar] [CrossRef] [PubMed]
- Grossman, M.; Seeley, W.W.; Boxer, A.L.; Hillis, A.E.; Knopman, D.S.; Ljubenov, P.A.; Miller, B.; Piguet, O.; Rademakers, R.; Whitwell, J.L.; et al. Frontotemporal lobar degeneration. Nat. Rev. Dis. Prim. 2023, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Sellami, L.; Saracino, D.; Le Ber, I. Genetic forms of frontotemporal lobar degeneration: Current diagnostic approach and new directions in therapeutic strategies. Rev. Neurol. 2020, 176, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Cruts, M.; Gijselinck, I.; van der Zee, J.; Engelborghs, S.; Wils, H.; Pirici, D.; Rademakers, R.; Vandenberghe, R.; Dermaut, B.; Martin, J.-J.; et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 2006, 442, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Shpilyukova, Y.; Abramycheva, N.; Grishina, D.; Fedotova, E.; Illarioshkin, S. Deletions/duplications in GRN and MAPT genes is not common in frontotemporal dementia. Alzheimer’s Dement. 2023, 19, e065342. [Google Scholar] [CrossRef]
- Nelson, P.T.; Stefansson, K.; Gulcher, J.; Saper, C.B. Molecular evolution of τ protein: Implications for Alzheimer’s disease. J. Neurochem. 1996, 67, 1622–1632. [Google Scholar] [CrossRef] [PubMed]
- Bassendine, M.F.; Taylor-Robinson, S.D.; Fertleman, M.; Khan, M.; Neely, D. Is Alzheimer’s Disease a Liver Disease of the Brain? Journal of Alzheimer’s Disease. J. Alzheimer’s Dis. 2020, 75, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Hsiung, G.-Y.R.; Feldman, H.H. GRN Frontotemporal Dementia. In GeneReviews; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Cruts, M.; Van Broeckhoven, C. Data Mining: Applying the AD&FTD Mutation Database to Progranulin. In Progranulin: Methods and Protocols; Bateman, A., Bennett, H.P.J., Cheung, S.T., Eds.; Springer: New York, NY, USA, 2018; pp. 81–92. [Google Scholar] [CrossRef]
- Itzhaki, R.F. Corroboration of a Major Role for Herpes Simplex Virus Type 1 in Alzheimer’s Disease. Front. Aging Neurosci. 2018, 10, 324. [Google Scholar] [CrossRef] [PubMed]
- Readhead, B.; Haure-Mirande, J.-V.; Funk, C.C.; Richards, M.A.; Shannon, P.; Haroutunian, V.; Sano, M.; Liang, W.S.; Beckmann, N.D.; Price, N.D.; et al. Multiscale Analysis of Independent Alzheimer’s Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Neuron. Neuron 2018, 99, 64–82.e7. [Google Scholar] [CrossRef] [PubMed]
- Cairns, D.M.; Rouleau, N.; Parker, R.N.; Walsh, K.G.; Gehrke, L.; Kaplan, D.L. A 3D human brain–like tissue model of herpes-induced Alzheimer’s disease. Sci. Adv. 2020, 6, eaay8828. [Google Scholar] [CrossRef] [PubMed]
- Yong, S.J.; Yong, M.H.; Teoh, S.L.; Soga, T.; Parhar, I.; Chew, J.; Lim, W.L. The Hippocampal Vulnerability to Herpes Simplex Virus Type I Infection: Relevance to Alzheimer’s Disease and Memory Impairment. Front. Cell. Neurosci. 2021, 15, 695738. [Google Scholar] [CrossRef] [PubMed]
- Mazzaro, C.; Quartuccio, L.; Adinolfi, L.E.; Roccatello, D.; Pozzato, G.; Nevola, R.; Tonizzo, M.; Gitto, S.; Andreone, P.; Gattei, V. A Review on Extrahepatic Manifestations of Chronic Hepatitis C Virus Infection and the Impact of Di-rect-Acting Antiviral Therapy. Viruses 2021, 13, 2249. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez-Samaniego, L.; Rapado-Castro, M.; Cabrero, L.; Navarrete, C.; García-Mulas, S.; Ahumada, A.; Marquez, L.; Pérez, M.D.; Rincon, D.; Bañares, R.; et al. Hepatitis C eradication improves cognitive function in patients with or without cirrhosis: A pro-spective real-life study. Eur. J. Neurol. 2022, 29, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-H.; Wang, Y.-R.; Xiang, Y.; Zhou, H.-D.; Giunta, B.; Mañucat-Tan, N.B.; Tan, J.; Zhou, X.-F.; Wang, Y.-J. Clearance of Amyloid-Beta in Alzheimer’s Disease: Shifting the Action Site from Center to Periphery. Mol. Neurobiol. 2015, 51, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Solinas, A. Cognitive dysfunction and hepatitis C virus infection. World J. Hepatol. 2015, 7, 922–925. [Google Scholar] [CrossRef] [PubMed]
- Kiely, K.M. Cognitive Function. In Encyclopedia of Quality of Life and Well-Being Research; Maggino, F., Michalos, A.C., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 974–978. [Google Scholar] [CrossRef]
- Azizian, A.; Yeghiyan, M.; Ishkhanyan, B.; Manukyan, Y.; Khandanyan, L. Clinical Validity of the Repeatable Battery for the Assessment of Neuropsychological Status among Patients with Schizophrenia in the Republic of Armenia. Arch. Clin. Neuropsychol. 2011, 26, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- The SALSA MLPA Probemix P471-A1 EOFAD; Product Description Version A1-01; Issued 27 September 2019. Available online: https://www.mrcholland.com/products/33513/Product%20description%20P471-A1%20EOFAD-v01.pdf (accessed on 17 July 2025).
- The SALSA MLPA Probemix P275 MAPT-GRN; Product Description Version C4-01; Issued 5 July 2021. Available online: https://www.mrcholland.com/products/36500/Product%20description%20P275-C4%20MAPT-GRN-v01.pdf (accessed on 17 July 2025).
A. Associations between PSEN1 and MoCA delayed recall | |||||||
a—model–submodel test | |||||||
Exon | Df | Sum of Sq | RSS | AIC | F Value | p Value | |
‘PSEN1 Exon 1’ | 2 | 32.00 | 450 | 190 | 5.100 | 0.0070 | |
‘PSEN1 Exon 2’ | 1 | 9.50 | 430 | 180 | 3.100 | 0.0820 | |
‘PSEN1 Exon 3’ | 1 | 4.00 | 430 | 180 | 1.300 | 0.2600 | |
‘PSEN1 Exon 5’ | 1 | 4.80 | 430 | 180 | 1.500 | 0.2200 | |
‘PSEN1 Exon 6’ | 2 | 0.18 | 420 | 180 | 0.029 | 0.9700 | |
‘PSEN1 Exon 7’ | 1 | 4.00 | 430 | 180 | 1.300 | 0.2600 | |
‘PSEN1 Exon 8’ | 1 | 4.80 | 430 | 180 | 1.500 | 0.2200 | |
‘PSEN1 Exon 9’ | 1 | 11.00 | 430 | 180 | 3.500 | 0.0650 | |
‘PSEN1 Exon 10’ | 1 | 5.70 | 430 | 180 | 1.900 | 0.1800 | |
‘PSEN1 Exon 12’ | 2 | 31.00 | 450 | 190 | 5.000 | 0.0079 | |
b—linear regression with dummy variables | |||||||
Ex. | Term | est. | SE | Statistic | p Value | conf.low | conf.high |
1 | (Intercept) | 2.80 | 4.60 | 6.00 × 10−1 | 0.547 | −6.30 | 12.00 |
2 | ‘PSEN1 Exon 1’1 | −1.50 | 0.49 | −3.00 | 0.004 | −2.40 | −0.48 |
3 | ‘PSEN1 Exon 1’2 | −1.60 | 0.51 | −3.10 | 0.002 | −2.60 | −0.57 |
4 | ‘PSEN1 Exon 2’2 | −1.10 | 0.61 | −1.80 | 0.082 | −2.30 | 0.14 |
5 | ‘PSEN1 Exon 3’2 | 2.40 | 2.10 | 1.10 | 0.258 | −1.80 | 6.50 |
6 | ‘PSEN1 Exon 5’2 | −2.30 | 1.90 | −1.20 | 0.217 | −6.00 | 1.40 |
7 | ‘PSEN1 Exon 6’1 | 1.60 × 10−1 | 2.30 | 7.20 × 10−2 | 0.943 | −4.30 | 4.60 |
8 | ‘PSEN1 Exon 6’2 | 4.90 × 10−15 | 2.20 | 2.30 × 10−15 | 1.000 | −4.30 | 4.30 |
9 | ‘PSEN1 Exon 7’2 | −9.40 × 10−1 | 0.83 | −1.10 | 0.257 | −2.60 | 0.70 |
10 | ‘PSEN1 Exon 8’2 | −2.30 | 1.90 | −1.20 | 0.217 | −6.00 | 1.40 |
11 | ‘PSEN1 Exon 9’2 | 3.50 | 1.90 | 1.90 | 0.065 | −0.22 | 7.10 |
12 | ‘PSEN1 Exon 10’2 | 2.60 | 1.90 | 1.40 | 0.176 | −1.20 | 6.30 |
13 | ‘PSEN1 Exon 12’1 | −2.40 | 1.40 | −1.80 | 0.075 | −5.10 | 0.25 |
14 | ‘PSEN1 Exon 12’2 | −7.20 × 10−1 | 1.30 | −5.70 × 10−1 | 0.570 | −3.20 | 1.80 |
B. Associations between PSEN1 and MoCA total score | |||||||
a—model–submodel test | |||||||
Exon | Df | Sum of Sq | RSS | AIC | F Value | p Value | |
‘PSEN1 Exon 1’ | 2 | 66.00 | 1500 | 370 | 3.000 | 0.051 | |
‘PSEN1 Exon 2’ | 1 | 26.00 | 1500 | 370 | 2.400 | 0.120 | |
‘PSEN1 Exon 3’ | 1 | 0.83 | 1500 | 370 | 0.077 | 0.780 | |
‘PSEN1 Exon 5’ | 1 | 11.00 | 1500 | 370 | 1.000 | 0.320 | |
‘PSEN1 Exon 6’ | 2 | 2.00 | 1500 | 370 | 0.094 | 0.910 | |
‘PSEN1 Exon 7’ | 1 | 3.00 | 1500 | 370 | 0.270 | 0.600 | |
‘PSEN1 Exon 8’ | 1 | 11.00 | 1500 | 370 | 1.000 | 0.320 | |
‘PSEN1 Exon 9’ | 1 | 55.00 | 1500 | 370 | 5.100 | 0.026 | |
‘PSEN1 Exon 10’ | 1 | 17.00 | 1500 | 370 | 1.500 | 0.220 | |
‘PSEN1 Exon 12’ | 2 | 80.00 | 1600 | 370 | 3.700 | 0.027 | |
b—linear regression with dummy variables | |||||||
Ex. | Term | est. | std.error | Statistic | p Value | conf.low | conf.high |
1 | (Intercept) | 33.00 | 8.60 | 3.80 | <0.001 | 16.00 | 50.00 |
2 | ‘PSEN1 Exon 1’1 | −0.23 | 0.92 | −0.25 | 0.800 | −2.10 | 1.60 |
3 | ‘PSEN1 Exon 1’2 | −1.70 | 0.95 | −1.70 | 0.085 | −3.50 | 0.23 |
4 | ‘PSEN1 Exon 2’2 | −1.80 | 1.10 | −1.60 | 0.122 | −4.00 | 0.48 |
5 | ‘PSEN1 Exon 3’2 | 1.10 | 3.90 | 0.28 | 0.782 | −6.60 | 8.80 |
6 | ‘PSEN1 Exon 5’2 | −3.50 | 3.50 | −1.00 | 0.320 | −10.00 | 3.40 |
7 | ‘PSEN1 Exon 6’1 | 0.55 | 4.20 | 0.13 | 0.897 | −7.80 | 8.90 |
8 | ‘PSEN1 Exon 6’2 | 1.00 | 4.00 | 0.25 | 0.804 | −7.00 | 9.00 |
9 | ‘PSEN1 Exon 7’2 | −0.81 | 1.50 | −0.52 | 0.602 | −3.90 | 2.20 |
10 | ‘PSEN1 Exon 8’2 | −3.50 | 3.50 | −1.00 | 0.320 | −10.00 | 3.40 |
11 | ‘PSEN1 Exon 9’2 | 7.90 | 3.50 | 2.30 | 0.026 | 0.98 | 15.00 |
12 | ‘PSEN1 Exon 10’2 | −4.40 | 3.50 | −1.20 | 0.217 | −11.00 | 2.60 |
13 | ‘PSEN1 Exon 12’1 | −4.90 | 2.50 | −1.90 | 0.056 | −9.90 | 0.12 |
14 | ‘PSEN1 Exon 12’2 | −2.30 | 2.40 | −0.98 | 0.329 | −7.00 | 2.40 |
A. Associations between MAPT and MoCA delayed recall | |||||||
a—model–submodel test | |||||||
Exon | Df | Sum of Sq | RSS | AIC | F Value | p Value | |
‘MAPT Exon 1’ | 2 | 6.100 | 420 | 190 | 0.9400 | 0.390 | |
‘MAPT Exon 2’ | 2 | 28.000 | 440 | 200 | 4.4000 | 0.014 | |
‘MAPT Exon 3’ | 0 | 0.000 | 410 | 190 | |||
‘MAPT Exon 4’ | 0 | 0.000 | 410 | 190 | |||
‘MAPT Exon 5’ | 1 | 2.900 | 420 | 190 | 0.9200 | 0.340 | |
‘MAPT Exon 6’ | 2 | 0.049 | 410 | 190 | 0.0076 | 0.990 | |
‘MAPT Exon 7’ | 1 | 0.910 | 410 | 190 | 0.2900 | 0.590 | |
‘MAPT Exon 8’ | 2 | 18.000 | 430 | 200 | 2.9000 | 0.060 | |
‘MAPT Exon 9’ | 1 | 9.800 | 420 | 200 | 3.1000 | 0.083 | |
‘MAPT Exon 10’ | 1 | 8.200 | 420 | 200 | 2.6000 | 0.110 | |
‘MAPT Exon 11’ | 1 | 3.600 | 420 | 190 | 1.1000 | 0.290 | |
‘MAPT Exon 12’ | 2 | 0.750 | 410 | 190 | 0.1200 | 0.890 | |
‘MAPT Exon 13’ | 2 | 9.400 | 420 | 190 | 1.5000 | 0.230 | |
‘MAPT Exon 14’ | 2 | 2.700 | 420 | 190 | 0.4300 | 0.650 | |
b—linear regression with dummy variables | |||||||
Ex. | Term | Est. | std.Error | Statistic | p Value | conf.low | conf.high |
1 | (Intercept) | −2.500 | 4.60 | −0.560 | 0.579 | −12.00 | 6.50 |
2 | ‘MAPT Exon 1’1 | 0.380 | 0.36 | 1.000 | 0.300 | −0.34 | 1.10 |
3 | ‘MAPT Exon 1’2 | 0.540 | 0.51 | 1.100 | 0.291 | −0.47 | 1.50 |
4 | ‘MAPT Exon 2’1 | 1.400 | 1.20 | 1.200 | 0.244 | −0.99 | 3.80 |
5 | ‘MAPT Exon 2’2 | 2.700 | 1.10 | 2.400 | 0.017 | 0.49 | 4.80 |
6 | ‘MAPT Exon 3’2 | 1.600 | 2.80 | 0.570 | 0.568 | −4.00 | 7.20 |
8 | ‘MAPT Exon 5’2 | 1.800 | 1.90 | 0.960 | 0.340 | −1.90 | 5.50 |
9 | ‘MAPT Exon 6’1 | 0.094 | 1.10 | 0.088 | 0.930 | −2.00 | 2.20 |
10 | ‘MAPT Exon 6’2 | 0.034 | 1.30 | 0.026 | 0.979 | −2.50 | 2.50 |
11 | ‘MAPT Exon 7’2 | 0.590 | 1.10 | 0.530 | 0.594 | −1.60 | 2.80 |
12 | ‘MAPT Exon 8’1 | −3.500 | 1.70 | −2.000 | 0.043 | −7.00 | −0.12 |
13 | ‘MAPT Exon 8’2 | −2.800 | 1.70 | −1.600 | 0.108 | −6.10 | 0.61 |
14 | ‘MAPT Exon 9’2 | 1.100 | 0.60 | 1.700 | 0.083 | −0.14 | 2.30 |
15 | ‘MAPT Exon 10’2 | −0.610 | 0.38 | −1.600 | 0.112 | −1.40 | 0.14 |
16 | ‘MAPT Exon 11’2 | −0.530 | 0.50 | −1.100 | 0.289 | −1.50 | 0.45 |
17 | ‘MAPT Exon 12’1 | −0.650 | 2.00 | −0.330 | 0.744 | −4.60 | 3.30 |
18 | ‘MAPT Exon 12’2 | −0.920 | 2.10 | −0.440 | 0.661 | −5.00 | 3.20 |
19 | ‘MAPT Exon 13’1 | 3.200 | 1.90 | 1.700 | 0.095 | −0.57 | 7.00 |
20 | ‘MAPT Exon 13’2 | 2.900 | 1.90 | 1.500 | 0.129 | −0.86 | 6.70 |
21 | ‘MAPT Exon 14’1 | −1.100 | 2.20 | −0.500 | 0.615 | −5.30 | 3.20 |
22 | ‘MAPT Exon 14’2 | −1.400 | 2.20 | −0.640 | 0.522 | −5.60 | 2.90 |
B. Associations between MAPT and MoCA total score | |||||||
a—model–submodel test | |||||||
Exon | Df | Sum of Sq | RSS | AIC | F Value | p Value | |
‘MAPT Exon 1’ | 2 | 7.9 | 1400 | 370 | 0.37 | 0.690 | |
‘MAPT Exon 2’ | 2 | 37.0 | 1400 | 370 | 1.70 | 0.180 | |
‘MAPT Exon 5’ | 1 | 25.0 | 1400 | 380 | 2.40 | 0.130 | |
‘MAPT Exon 6’ | 2 | 10.0 | 1400 | 370 | 0.49 | 0.610 | |
‘MAPT Exon 7’ | 1 | 33.0 | 1400 | 380 | 3.00 | 0.083 | |
‘MAPT Exon 8’ | 2 | 75.0 | 1500 | 380 | 3.50 | 0.033 | |
‘MAPT Exon 9’ | 1 | 14.0 | 1400 | 370 | 1.30 | 0.250 | |
‘MAPT Exon 10’ | 1 | 6.8 | 1400 | 370 | 0.63 | 0.430 | |
‘MAPT Exon 11’ | 1 | 8.3 | 1400 | 370 | 0.78 | 0.380 | |
‘MAPT Exon 12’ | 2 | 17.0 | 1400 | 370 | 0.77 | 0.460 | |
‘MAPT Exon 13’ | 2 | 40.0 | 1400 | 380 | 1.90 | 0.160 | |
‘MAPT Exon 14’ | 2 | 39.0 | 1400 | 380 | 1.80 | 0.160 | |
b—linear regression with dummy variables | |||||||
Ex. | term | Est. | std.error | statistic | p.value | conf.low | conf.high |
1 | (Intercept) | 28.00 | 8.40 | 3.30 | 0.001 | 11.00 | 44.00 |
2 | ‘MAPT Exon 1’1 | −0.18 | 0.66 | −0.26 | 0.792 | −1.50 | 1.10 |
3 | ‘MAPT Exon 1’2 | 0.70 | 0.93 | 0.76 | 0.448 | −1.10 | 2.50 |
4 | ‘MAPT Exon 2’1 | 1.70 | 2.20 | 0.78 | 0.436 | −2.70 | 6.10 |
5 | ‘MAPT Exon 2’2 | 3.10 | 2.00 | 1.50 | 0.125 | −0.87 | 7.10 |
6 | ‘MAPT Exon 3’2 | −11.00 | 5.20 | −2.00 | 0.044 | −21.00 | −0.27 |
7 | ‘MAPT Exon 4’2 | ||||||
8 | ‘MAPT Exon 5’2 | 5.30 | 3.40 | 1.50 | 0.125 | −1.50 | 12.00 |
9 | ‘MAPT Exon 6’1 | 1.70 | 2.00 | 0.90 | 0.372 | −2.10 | 5.60 |
10 | ‘MAPT Exon 6’2 | 2.30 | 2.30 | 0.98 | 0.328 | −2.30 | 6.90 |
11 | ‘MAPT Exon 7’2 | 3.50 | 2.00 | 1.70 | 0.083 | −0.47 | 7.60 |
12 | ‘MAPT Exon 8’1 | −7.20 | 3.20 | −2.30 | 0.023 | −13.00 | −1.00 |
13 | ‘MAPT Exon 8’2 | −5.70 | 3.10 | −1.80 | 0.068 | −12.00 | 0.44 |
14 | ‘MAPT Exon 9’2 | 1.30 | 1.10 | 1.20 | 0.248 | −0.9.00 | 3.50 |
15 | ‘MAPT Exon 10’2 | −0.55 | 0.69 | −0.80 | 0.428 | −1.9.00 | 0.82 |
16 | ‘MAPT Exon 11’2 | −0.80 | 0.91 | −0.88 | 0.379 | −2.60 | 0.99 |
17 | ‘MAPT Exon 12’1 | −1.70 | 3.60 | −0.48 | 0.633 | −9.00 | 5.50 |
18 | ‘MAPT Exon 12’2 | −3.40 | 3.80 | −0.88 | 0.379 | −11.00 | 4.20 |
19 | ‘MAPT Exon 13’1 | 6.80 | 3.50 | 1.90 | 0.055 | −0.16 | 14.00 |
20 | ‘MAPT Exon 13’2 | 6.50 | 3.50 | 1.90 | 0.064 | −0.38 | 13.00 |
21 | ‘MAPT Exon 14’1 | −3.40 | 3.90 | −0.87 | 0.384 | −11.00 | 4.30 |
22 | ‘MAPT Exon 14’2 | −4.60 | 3.90 | −1.20 | 0.240 | −12.00 | 3.10 |
A. Associations between GRN and MoCA delayed recall | |||||||
a—model–submodel test | |||||||
Exon | Df | Sum of Sq | RSS | AIC | F Value | p Value | |
‘GRN Exon 1’ | 1 | 0.6200 | 18 | −300 | 5.000 | 0.0270 | |
‘GRN Exon 3’ | 1 | 0.0032 | 17 | −310 | 0.026 | 0.8700 | |
‘GRN Exon 6’ | 2 | 1.5000 | 19 | −300 | 6.100 | 0.0029 | |
‘GRN Exon 10’ | 2 | 0.2200 | 18 | −310 | 0.880 | 0.4200 | |
‘GRN Exon 12’ | 2 | 0.7400 | 18 | −300 | 3.000 | 0.0530 | |
b—linear regression with dummy variables | |||||||
Ex. | Term | est. | std.Error | Statistic | p Value | conf.low | conf.high |
1 | (Intercept) | 1.300 | 0.22 | 5.90 | <0.001 | 0.860 | 1.700 |
2 | ‘GRN Exon 1’2 | 0.390 | 0.17 | 2.20 | 0.027 | 0.045 | 0.730 |
3 | ‘GRN Exon 3’2 | −0.017 | 0.11 | −0.16 | 0.872 | −0.230 | 0.190 |
4 | ‘GRN Exon 6’1 | 0.480 | 0.16 | 3.00 | 0.004 | 0.160 | 0.810 |
5 | ‘GRN Exon 6’2 | 0.280 | 0.18 | 1.60 | 0.120 | −0.075 | 0.640 |
6 | ‘GRN Exon 10’1 | −0.063 | 0.11 | −0.56 | 0.575 | −0.280 | 0.160 |
7 | ‘GRN Exon 10’2 | 0.087 | 0.16 | 0.53 | 0.598 | −0.240 | 0.410 |
8 | ‘GRN Exon 12’1 | −0.190 | 0.14 | −1.30 | 0.194 | −0.470 | 0.096 |
9 | ‘GRN Exon 12’2 | 0.073 | 0.18 | 0.40 | 0.691 | −0.290 | 0.430 |
B. Associations between GRN and MoCA total score | |||||||
a—model–submodel test | |||||||
Exon | Df | Sum of Sq | RSS | AIC | F Value | p Value | |
‘GRN Exon 1’ | 1 | 0.35 | 1500 | 360 | 0.033 | 0.86000 | |
‘GRN Exon 3’ | 1 | 16.00 | 1500 | 360 | 1.600 | 0.21000 | |
‘GRN Exon 6’ | 2 | 200.00 | 1700 | 380 | 9.400 | 0.00015 | |
‘GRN Exon 10’ | 2 | 56.00 | 1500 | 360 | 2.600 | 0.07500 | |
‘GRN Exon 12’ | 2 | 150.00 | 1600 | 370 | 7.000 | 0.00130 | |
b—linear regression with dummy variables | |||||||
Ex. | Term | Est. | std.error | Statistic | p Value | conf.low | conf.high |
1 | (Intercept) | 22.00 | 2.00 | 11.00 | <0.001 | 18.00 | 26.00 |
2 | ‘GRN Exon 1’2 | 0.29 | 1.60 | 0.18 | 0.856 | −2.90 | 3.40 |
3 | ‘GRN Exon 3’2 | 1.20 | 0.98 | 1.20 | 0.214 | −0.71 | 3.20 |
4 | ‘GRN Exon 6’1 | 3.90 | 1.50 | 2.60 | 0.010 | 0.95 | 6.90 |
5 | ‘GRN Exon 6’2 | 0.73 | 1.70 | 0.44 | 0.662 | −2.60 | 4.10 |
6 | ‘GRN Exon 10’1 | 2.20 | 1.00 | 2.10 | 0.037 | 0.14 | 4.20 |
7 | ‘GRN Exon 10’2 | 3.20 | 1.50 | 2.10 | 0.039 | 0.16 | 6.20 |
8 | ‘GRN Exon 12’1 | −3.60 | 1.30 | −2.70 | 0.007 | −6.20 | −0.97 |
9 | ‘GRN Exon 12’2 | −0.55 | 1.70 | −0.32 | 0.746 | −3.90 | 2.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hovhannisyan, Y.; Yeritsyan, H.; Hakobjanyan, G.; Petrosyan, G.; Harutyunyan, H.; Muradyan, A.; Azizian, A.; Yenkoyan, K. Genetic Correlates of Presenile Dementia and Cognitive Decline in the Armenian Population Following COVID-19: A Case-Control Study. Int. J. Mol. Sci. 2025, 26, 6965. https://doi.org/10.3390/ijms26146965
Hovhannisyan Y, Yeritsyan H, Hakobjanyan G, Petrosyan G, Harutyunyan H, Muradyan A, Azizian A, Yenkoyan K. Genetic Correlates of Presenile Dementia and Cognitive Decline in the Armenian Population Following COVID-19: A Case-Control Study. International Journal of Molecular Sciences. 2025; 26(14):6965. https://doi.org/10.3390/ijms26146965
Chicago/Turabian StyleHovhannisyan, Yekaterina, Hermine Yeritsyan, Gohar Hakobjanyan, Gayane Petrosyan, Hayk Harutyunyan, Armen Muradyan, Allen Azizian, and Konstantin Yenkoyan. 2025. "Genetic Correlates of Presenile Dementia and Cognitive Decline in the Armenian Population Following COVID-19: A Case-Control Study" International Journal of Molecular Sciences 26, no. 14: 6965. https://doi.org/10.3390/ijms26146965
APA StyleHovhannisyan, Y., Yeritsyan, H., Hakobjanyan, G., Petrosyan, G., Harutyunyan, H., Muradyan, A., Azizian, A., & Yenkoyan, K. (2025). Genetic Correlates of Presenile Dementia and Cognitive Decline in the Armenian Population Following COVID-19: A Case-Control Study. International Journal of Molecular Sciences, 26(14), 6965. https://doi.org/10.3390/ijms26146965