The Effects of AtNCED3 on the Cuticle of Rice Leaves During the Nutritional Growth Period
Abstract
1. Introduction
2. Results
2.1. Identification of Over-Expressing Plants
2.2. Altered Phenotypes in AtNCED3 Over-Expressing Rice Plants
2.3. Water-Holding Capacity of AtNCED3 Over-Expressing Rice Leaves
2.4. SEM Analysis of Epicuticular Wax Crystals on Rice Leaf Epidermis
2.5. Changes in Composition and Content of Rice Leaf Epicuticular Wax
2.6. Alterations in the Composition and Content of Rice Leaf Cutin Monomers
2.7. Transcription—Level Control of Wax and Cutin Biosynthesis—Related Genes in Rice Leaves
3. Discussion
3.1. The Impact of AtNCED3 on Rice Plant Architecture
3.2. The Impact of AtNCED3 on the Rice Leaf Cuticle
3.3. Limitations and Future Prospects of This Study
4. Materials and Methods
4.1. Plant Materials
4.2. Methods
4.2.1. Over-Expression Plant Identification
4.2.2. Real-Time Quantitative PCR Analysis of Over-Expressing Plants
4.2.3. Phenotypic Observation During Germination
4.2.4. Observation of Plant Phenotypes During Vegetative Growth Stage
4.2.5. Preparation of Semi-Thin Sections of Rice Leaves
4.2.6. Analysis of Relative Water Content in Rice Leaves
4.2.7. Analysis of Water Loss Rate of Detached Rice Leaves
4.2.8. Analysis of Chlorophyll Efflux Rate in Rice Leaves
4.2.9. Analysis of ABA Content in Rice Leaves
4.2.10. Preparation and Observation of Leaf Samples for Scanning Electron Microscopy
4.2.11. Analysis of Epidermal Wax and Cutin Extraction and Composition in Rice Leaves
4.2.12. Data Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dhanyalakshmi, K.H.; Soolanayakanahally, R.Y.; Rahman, T.; Tanino, K.K.; Nataraja, K.N. Leaf Cuticular Wax, a Trait for Multiple Stress Resistance in Crop Plants. In Abiotic and Biotic Stress in Plants; IntechOpen: London, UK, 2019. [Google Scholar]
- Shepherd, T.; Wynne Griffiths, D. The effects of stress on plant cuticular waxes. New Phytol. 2006, 171, 469–499. [Google Scholar] [CrossRef] [PubMed]
- Jetter, R.; Kunst, L. Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J. 2008, 54, 670–683. [Google Scholar] [CrossRef] [PubMed]
- Yeats, T.H.; Rose, J.K.C. The Formation and Function of Plant Cuticles. Plant Physiol. 2013, 163, 5–20. [Google Scholar] [CrossRef]
- Renault, H.; Alber, A.; Horst, N.A.; Basilio Lopes, A.; Fich, E.A.; Kriegshauser, L.; Wiedemann, G.; Ullmann, P.; Herrgott, L.; Erhardt, M.; et al. A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nat. Commun. 2017, 8, 14713. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Yang, S.U.; Pandey, G.; Kim, M.S.; Hyoung, S.; Choi, D.; Shin, J.S.; Suh, M.C. Occurrence of land-plant-specific glycerol-3-phosphate acyltransferases is essential for cuticle formation and gametophore development in Physcomitrella patens. New Phytol. 2020, 225, 2468–2483. [Google Scholar] [CrossRef]
- Zhou, J.-M.; Zhang, Y. Plant Immunity: Danger Perception and Signaling. Cell 2020, 181, 978–989. [Google Scholar] [CrossRef]
- Nawrath, C. Unraveling the complex network of cuticular structure and function. Curr. Opin. Plant Biol. 2006, 9, 281–287. [Google Scholar] [CrossRef]
- Tian, R.; Liu, W.; Wang, Y.; Wang, W. Cuticular wax in wheat: Biosynthesis, genetics, and the stress response. Front. Plant Sci. 2024, 15, 1498505. [Google Scholar] [CrossRef]
- Chen, K.; Li, G.J.; Bressan, R.A.; Song, C.P.; Zhu, J.K.; Zhao, Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr Plant Biol. 2020, 62, 25–54. [Google Scholar] [CrossRef]
- Wang, P.; Lu, S.; Zhang, X.; Hyden, B.; Qin, L.; Liu, L.; Bai, Y.; Han, Y.; Wen, Z.; Xu, J.; et al. Double NCED isozymes control ABA biosynthesis for ripening and senescent regulation in peach fruits. Plant Sci. Int. J. Exp. Plant Biol. 2021, 304, 110739. [Google Scholar] [CrossRef]
- Shu, K.; Liu, X.-d.; Xie, Q.; He, Z.-h. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Mol. Plant 2016, 9, 34–45. [Google Scholar] [CrossRef]
- He, S.; Yang, S.; Min, Y.; Ge, A.; Liu, J.; Liu, Z.; Guo, Y.; Chen, M. Brassica napus BnaWIP2 transcription factor promotes seed germination under salinity stress by repressing ABA biosynthesis and signaling. Crop J. 2025, 13, 444–455. [Google Scholar] [CrossRef]
- Chen, H. Obtainment of Transgenic Salt-Tolerant Upland Rice and Study on Stress Resistance of Transgenic AtNCED3 Rice. Ph.D. Thesis, China Agricultural University, Beijing, China, 2005. [Google Scholar]
- Molinari, M.D.C.; Fuganti-Pagliarini, R.; Marin, S.R.R.; Ferreira, L.C.; Barbosa, D.D.A.; Marcolino-Gomes, J.; Oliveira, M.C.N.D.; Mertz-Henning, L.M.; Kanamori, N.; Takasaki, H.; et al. Overexpression of AtNCED3 gene improved drought tolerance in soybean in greenhouse and field conditions. Genet. Mol. Biol. 2020, 43, e20190292. [Google Scholar] [CrossRef] [PubMed]
- Santos Mendoza, M.; Dubreucq, B.; Miquel, M.; Caboche, M.; Lepiniec, L. LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett. 2005, 579, 4666–4670. [Google Scholar] [CrossRef] [PubMed]
- Bies-Etheve, N.; da Silva Conceicao, A.; Giraudat, J.O.; Koornneef, M.; Léon-Kloosterziel, K.; Valon, C.; Delseny, M. Importance of the B2 domain of the Arabidopsis ABI3 protein for Em and 2S albumin gene regulation. Plant Mol. Biol. 1999, 40, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Qanmber, G.; Li, F.; Wang, Z. Updated role of ABA in seed maturation, dormancy, and germination. J. Adv. Res. 2022, 35, 199–214. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef]
- Lewandowska, M.; Keyl, A.; Feussner, I. Wax biosynthesis in response to danger: Its regulation upon abiotic and biotic stress. New Phytol. 2020, 227, 698–713. [Google Scholar] [CrossRef]
- Huang, H.; Ayaz, A.; Zheng, M.; Yang, X.; Zaman, W.; Zhao, H.; Lü, S. Arabidopsis KCS5 and KCS6 Play Redundant Roles in Wax Synthesis. Int. J. Mol. Sci. 2022, 23, 4450. [Google Scholar] [CrossRef]
- Zhou, X.; Jenks, M.A.; Liu, J.; Liu, A.; Zhang, X.; Xiang, J.; Zou, J.; Peng, Y.; Chen, X. Overexpression of Transcription Factor OsWR2 Regulates Wax and Cutin Biosynthesis in Rice and Enhances its Tolerance to Water Deficit. Plant Mol. Biol. Report. 2014, 32, 719–731. [Google Scholar] [CrossRef]
- Sanjari, S.; Shobbar, Z.S.; Ghanati, F.; Afshari-Behbahanizadeh, S.; Farajpour, M.; Jokar, M.; Khazaei, A.; Shahbazi, M. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress. Plant Physiol. Biochem. PPB 2021, 159, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Sumbur, B.; Zhou, M.; Dorjee, T.; Bing, J.; Ha, S.; Xu, X.; Zhou, Y.; Gao, F. Chemical and Transcriptomic Analyses of Leaf Cuticular Wax Metabolism in Ammopiptanthus mongolicus under Osmotic Stress. Biomolecules 2024, 14, 227. [Google Scholar] [CrossRef]
- Pascal, S.; Bernard, A.; Deslous, P.; Gronnier, J.; Fournier-Goss, A.; Domergue, F.; Rowland, O.; Joubès, J. Arabidopsis CER1-LIKE1 Functions in a Cuticular Very-Long-Chain Alkane-Forming Complex. Plant Physiol. 2019, 179, 415–432. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Wang, Y.; Wu, B.; Feng, Y.; Dang, Y.; Yang, B.; Ma, X.; Qiao, L. Analysis of Wheat Wax Regulation Mechanism by Liposome and Transcriptome. Front. Genet. 2021, 12, 757920. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, E.; Heredia-Guerrero, J.A.; Heredia, A. Plant cutin genesis: Unanswered questions. Trends Plant Sci. 2015, 20, 551–558. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Jia, Y. Effects of Endogenous and Exogenous ABA on Rice Leaf Cuticle During Vegetative Growth Stage. Master’s Thesis, Shanxi Normal University, Linfen, China, 2017. [Google Scholar]
- Lolle, S.J.; Hsu, W.; Pruitt, R.E. Genetic analysis of organ fusion in Arabidopsis thaliana. Genetics 1998, 149, 607–619. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jia, Y.; Chen, H.; Wang, M.; Li, X.; Jiang, L.; Hao, J.; Ma, X.; Ji, H. The Effects of AtNCED3 on the Cuticle of Rice Leaves During the Nutritional Growth Period. Int. J. Mol. Sci. 2025, 26, 6690. https://doi.org/10.3390/ijms26146690
Zhang Y, Jia Y, Chen H, Wang M, Li X, Jiang L, Hao J, Ma X, Ji H. The Effects of AtNCED3 on the Cuticle of Rice Leaves During the Nutritional Growth Period. International Journal of Molecular Sciences. 2025; 26(14):6690. https://doi.org/10.3390/ijms26146690
Chicago/Turabian StyleZhang, Yang, Yuwei Jia, Hui Chen, Min Wang, Xiaoli Li, Lanfang Jiang, Jianyu Hao, Xiaofei Ma, and Hutai Ji. 2025. "The Effects of AtNCED3 on the Cuticle of Rice Leaves During the Nutritional Growth Period" International Journal of Molecular Sciences 26, no. 14: 6690. https://doi.org/10.3390/ijms26146690
APA StyleZhang, Y., Jia, Y., Chen, H., Wang, M., Li, X., Jiang, L., Hao, J., Ma, X., & Ji, H. (2025). The Effects of AtNCED3 on the Cuticle of Rice Leaves During the Nutritional Growth Period. International Journal of Molecular Sciences, 26(14), 6690. https://doi.org/10.3390/ijms26146690