Spatial and Temporal Expression Patterns of EDA2R, PCDH9, and TRAF7 in Yotari (Dab1−/−) Mice: Implicationsfor Understanding CAKUT Pathogenesis
Abstract
1. Introduction
2. Results
2.1. EDA2R Immunoexpression
2.2. PCDH9 Immunoexpression
2.3. TRAF7 Immunoexpression
3. Discussion
4. Materials and Methods
4.1. Ethics
4.2. Generation of Dab1 Null Conventional Mice and Sample Acquisition
4.3. Immunofluorescence on Embryonic and Postnatal Mouse Renal Tissue
4.4. Data Acquisition and Analysis
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAKUT | congenital anomalies of the kidney and urinary tract |
EUROCAT | European Registration of Congenital Anomalies and Twins |
FFPE | formalin-fixed paraffin-embedded |
NHS | National Health Service |
KRT | kidney replacement therapy |
ESRD | end-stage renal disease |
CNV | copy number variations |
EDA2R | Ectodysplasin A2 Receptor |
PCDH9 | Protocadherin 9 |
TRAF7 | TNF receptor-associated factor 7 |
EMT | epithelial-to-mesenchymal transition |
DCT | distal convoluted tubules |
PCT | proximal convoluted tubule |
E | embryonic day |
P | postnatal day |
References
- Yerkes, E.; Nishimura, H.; Miyazaki, Y.; Tsuchida, S.; Brock, J.W., 3rd; Ichikawa, I. Role of angiotensin in the congenital anomalies of the kidney and urinary tract in the mouse and the human. Kidney Int. Suppl. 1998, 67, S75–S77. [Google Scholar] [CrossRef] [PubMed]
- Murugapoopathy, V.; Gupta, I.R. A primer on congenital anomalies of the kidneys and urinary tracts (CAKUT). Clin. J. Am. Soc. Nephrol. 2020, 15, 723–731. [Google Scholar] [CrossRef]
- European Commission. Prenatal Detection Rates Charts [Internet]. Available online: https://eu-rd-platform.jrc.ec.europa.eu/eurocat/eurocat-data/prenatal-screening-and-diagnosis_en#inline-nav-1 (accessed on 18 March 2025).
- NHS England. NCARDRS Congenital Anomaly Official Statistics Report, 2020 [Internet]. Available online: https://digital.nhs.uk/data-and-information/publications/statistical/ncardrs-congenital-anomaly-statistics-annual-data/ncardrs-congenital-anomaly-statistics-report-2020/prevalence-of-major-anomaly-subgroups (accessed on 18 March 2025).
- Bergman, J.E.; Perraud, A.; Barišić, I.; Kinsner-Ovaskainen, A.; Morris, J.K.; Tucker, D.; Wellesley, D.; Garne, E. Updated EUROCAT guidelines for classification of cases with congenital anomalies. Birth Defects Res. 2024, 116, e2314. [Google Scholar] [CrossRef] [PubMed]
- Kaijansinkko, H.; Bonthuis, M.; Jahnukainen, K.; Harambat, J.; Vidal, E.; Bakkaloglu, S.A.; Inward, C.; Sinha, M.D.; Roperto, R.M.; Kuehni, C.E.; et al. Clinical outcomes of pediatric kidney replacement therapy after childhood cancer-An ESPN/ERA Registry study. Am. J. Transplant. 2024, 25, 767–779. [Google Scholar] [CrossRef]
- Calderon-Margalit, R.; Golan, E.; Twig, G.; Leiba, A.; Tzur, D.; Afek, A.; Skorecki, K.; Vivante, A. History of childhood kidney disease and risk of adult end-stage renal disease. N. Engl. J. Med. 2018, 378, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Pope, J.C., 4th; Brock, J.W., 3rd; Adams, M.C.; Stephens, F.D.; Ichikawa, I. How they begin and how they end: Classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J. Am. Soc. Nephrol. 1999, 10, 2018–2028. [Google Scholar] [CrossRef]
- Costantini, F.; Kopan, R. Patterning a complex organ: Branching morphogenesis and nephron segmentation in kidney development. Dev. Cell 2010, 18, 698–712. [Google Scholar] [CrossRef]
- Gilbert, S.F. Intermediate Mesoderm; Sinauer Associates: Sunderland, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK10089/ (accessed on 25 May 2025).
- Nicolaou, N.; Renkema, K.Y.; Bongers, E.M.H.F.; Giles, R.H.; Knoers, N.V.A.M. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat. Rev. Nephrol. 2015, 11, 720–731. [Google Scholar] [CrossRef]
- van der Ven, A.T.; Vivante, A.; Hildebrandt, F. Novel insights into the pathogenesis of monogenic congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 2017, 29, 36–50. [Google Scholar] [CrossRef]
- Connaughton, D.M.; Kennedy, C.; Shril, S.; Mann, N.; Murray, S.L.; Williams, P.A.; Conlon, E.; Nakayama, M.; van der Ven, A.T.; Ityel, H.; et al. Monogenic causes of chronic kidney disease in adults. Kidney Int. 2019, 95, 914–928. [Google Scholar] [CrossRef]
- Weber, S.; Moriniere, V.; Knüppel, T.; Charbit, M.; Dusek, J.; Ghiggeri, G.M.; Jankauskiené, A.; Mir, S.; Montini, G.; Peco-Antic, A.; et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: Results of the ESCAPE study. J. Am. Soc. Nephrol. 2006, 17, 2864–2870. [Google Scholar] [CrossRef] [PubMed]
- Zarrei, M.; MacDonald, J.R.; Merico, D.; Scherer, S.W. A copy number variation map of the human genome. Nat. Rev. Genet. 2015, 16, 172–183. [Google Scholar] [PubMed]
- Sanna-Cherchi, S.; Westland, R.; Ghiggeri, G.M.; Gharavi, A.G. Genetic basis of human congenital anomalies of the kidney and urinary tract. J. Clin. Investig. 2018, 128, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.; Sunde, L.; Nielsen, M.L.; Ramsing, M.; Petersen, A.; Hjortshøj, T.D.; Olsen, T.E.; Tabor, A.; Hertz, J.M.; Johnsen, I.; et al. Targeted gene sequencing and whole-exome sequencing in autopsied fetuses with prenatally diagnosed kidney anomalies. Clin. Genet. 2018, 93, 860–869. [Google Scholar] [CrossRef]
- Westland, R.; Verbitsky, M.; Vukojevic, K.; Perry, B.J.; Fasel, D.A.; Zwijnenburg, P.J.G.; Bökenkamp, A.; Gille, J.J.P.; Saraga-Babic, M.; Ghiggeri, G.M.; et al. Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney. Kidney Int. 2015, 88, 1402–1410. [Google Scholar] [CrossRef]
- Veljačić Visković, D.; Lozić, M.; Vukoja, M.; Šoljić, V.; Vukojević, K.; Glavina Durdov, M.; Filipović, N.; Lozić, B. Spatio-temporal expression pattern of CAKUT candidate genes DLG1 and KIF12 during human kidney development. Biomolecules 2023, 13, 340. [Google Scholar] [CrossRef]
- Kelam, J.; Kelam, N.; Filipović, N.; Komić, L.; Racetin, A.; Komić, D.; Kostić, S.; Kuzmić Prusac, I.; Vukojević, K. Expression of congenital anomalies of the kidney and urinary tract (CAKUT) candidate genes EDA2R, PCDH9, and TRAF7 in normal human kidney development and CAKUT. Genes 2024, 15, 702. [Google Scholar] [CrossRef]
- EDA2R [Internet]. The Human Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000131080-EDA2Rall (accessed on 18 March 2025).
- Ghosh, S.; Karin, M. Missing pieces in the NF-kappaB puzzle. Cell 2002, 109, S81–S96. [Google Scholar] [CrossRef] [PubMed]
- Yamanishi, E.; Yoon, K.; Alberi, L.; Gaiano, N.; Mizutani, K.-I. NF-κB signaling regulates the generation of intermediate progenitors in the developing neocortex. Genes. Cells 2015, 20, 706–719. [Google Scholar] [CrossRef]
- Kraut, B.; Maier, H.J.; Kókai, E.; Fiedler, K.; Boettger, T.; Illing, A.; Kostin, S.; Walther, P.; Braun, T.; Wirth, T. Cardiac-specific activation of IKK2 leads to defects in heart development and embryonic lethality. PLoS ONE 2015, 10, e0141591. [Google Scholar] [CrossRef]
- Alvira, C.M. Nuclear factor-kappa-B signaling in lung development and disease: One pathway, numerous functions: Nuclear Factor κB in Lung Development and Disease. Birth Defects Res. A Clin. Mol. Teratol. 2014, 100, 202–216. [Google Scholar] [CrossRef]
- Freire-Maia, N. Ectodermal dysplasias. Hum. Hered. 1971, 21, 309–312. [Google Scholar] [CrossRef] [PubMed]
- PCDH9 [Internet]. The Human Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000184226-PCDH9 (accessed on 18 March 2025).
- Zhang, J.; Yang, H.Z.; Liu, S.; Islam, M.O.; Zhu, Y.; Wang, Z.; Chen, R. PCDH9 suppresses melanoma proliferation and cell migration. Front. Oncol. 2022, 12, 903554. [Google Scholar] [CrossRef]
- Lv, J.; Zhu, P.; Zhang, X.; Zhang, L.; Chen, X.; Lu, F.; Yu, Z.; Liu, S. PCDH9 acts as a tumor suppressor inducing tumor cell arrest at G0/G1 phase and is frequently methylated in hepatocellular carcinoma. Mol. Med. Rep. 2017, 16, 4475–4482. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Zheng, F.; Chang, H.; Ma, Y.; Yao, Y.G.; Luo, X.J.; Li, M. The gene encoding protocadherin 9 (PCDH9), a novel risk factor for major depressive disorder. Neuropsychopharmacology 2018, 43, 1128–1137. [Google Scholar] [CrossRef]
- TRAF7 [Internet]. The Human Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000131653-TRAF7/tissue (accessed on 18 March 2025).
- Neil, J.R.; Schiemann, W.P. Altered TAB1:I kappaB kinase interaction promotes transforming growth factor beta-mediated nuclear factor-kappaB activation during breast cancer progression. Cancer Res. 2008, 68, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Helfand, B.T.; Jang, T.L.; Zhu, L.J.; Chen, L.; Yang, X.J.; Kozlowski, J.; Smith, N.; Kundu, S.D.; Yang, G.; et al. Nuclear factor-kappaB-mediated transforming growth factor-beta-induced expression of vimentin is an independent predictor of biochemical recurrence after radical prostatectomy. Clin. Cancer Res. 2009, 15, 3557–3567. [Google Scholar] [CrossRef]
- Pantuck, A.J.; An, J.; Liu, H.; Rettig, M.B. NF-kappaB-dependent plasticity of the epithelial to mesenchymal transition induced by Von Hippel-Lindau inactivation in renal cell carcinomas. Cancer Res. 2010, 70, 752–761. [Google Scholar] [CrossRef]
- Chung, C.H.; Parker, J.S.; Ely, K.; Carter, J.; Yi, Y.; Murphy, B.A.; Ang, K.K.; El-Naggar, A.K.; Zanation, A.M.; Cmelak, A.J.; et al. Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-kappaB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res. 2006, 66, 8210–8218. [Google Scholar] [CrossRef]
- Jossin, Y. Reelin functions, mechanisms of action and signaling pathways during brain development and maturation. Biomolecules 2020, 10, 964. [Google Scholar] [CrossRef]
- Racetin, A.; Jurić, M.; Filipović, N.; Šolić, I.; Kosović, I.; Durdov, M.G.; Kunac, N.; Tomaš, S.Z.; Saraga, M.; Šoljić, V.; et al. Expression and localization of DAB1 and Reelin during normal human kidney development. Croat. Med. J. 2019, 60, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Racetin, A.; Filipovic, N.; Lozic, M.; Ogata, M.; Gudelj Ensor, L.; Kelam, N.; Kovacevic, P.; Watanabe, K.; Katsuyama, Y.; Saraga-Babic, M.; et al. A Homozygous Dab1−/− Is a Potential Novel Cause of Autosomal Recessive Congenital Anomalies of the Mice Kidney and Urinary Tract. Biomolecules 2021, 11, 609. [Google Scholar] [CrossRef]
- Maglica, M.; Kelam, N.; Haque, E.; Perutina, I.; Racetin, A.; Filipović, N.; Katsuyama, Y.; Vukojević, K. Immunoexpression pattern of autophagy markers in developing and postnatal kidneys of Dab1−/−(yotari) mice. Biomolecules 2023, 13, 402. [Google Scholar] [CrossRef]
- Perutina, I.; Kelam, N.; Maglica, M.; Racetin, A.; Ogorevc, M.; Filipović, N.; Katsuyama, Y.; Mišković, J.; Vukojević, K. Disturbances in switching between canonical and non-canonical Wnt signaling characterize developing and postnatal kidneys of Dab1−/− (yotari) mice. Biomedicines 2023, 11, 1321. [Google Scholar] [CrossRef]
- Clancy, B.; Darlington, R.B.; Finlay, B.L. Translating developmental time across mammalian species. Neuroscience 2001, 105, 7–17. [Google Scholar] [CrossRef]
- Lindström, N.O.; McMahon, J.A.; Guo, J.; Tran, T.; Guo, Q.; Rutledge, E.; Parvez, R.K.; Saribekyan, G.; Schuler, R.E.; Liao, C.; et al. Conserved and divergent features of human and mouse kidney organogenesis. J. Am. Soc. Nephrol. 2018, 29, 785–805. [Google Scholar] [CrossRef]
- Little, M.H.; McMahon, A.P. Mammalian kidney development: Principles, progress, and projections. Cold Spring Harb. Perspect. Biol. 2012, 4, a008300. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Kumar, V.; Jha, A.; Aslam, R.; Wang, H.; Chen, K.; Yu, Y.; He, W.; Chen, F.; Luo, H.; et al. EDA2R mediates podocyte injury in high glucose milieu. Biochimie 2020, 174, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Kelam, N.; Racetin, A.; Katsuyama, Y.; Vukojević, K.; Kostić, S. Immunohistochemical expression pattern of FGFR1, FGFR2, RIP5, and HIP2 in developing and postnatal kidneys of Dab1−/− (yotari) mice. Int. J. Mol. Sci. 2022, 23, 2025. [Google Scholar] [CrossRef]
- Mishra-Gorur, K.; Barak, T.; Kaulen, L.D.; Henegariu, O.; Jin, S.C.; Aguilera, S.M.; Yalbir, E.; Goles, G.; Nishimura, S.; Miyagishima, D.; et al. Pleiotropic role of TRAF7 in skull-base meningiomas and congenital heart disease. Proc. Natl. Acad. Sci. USA 2023, 120, e2214997120. [Google Scholar] [CrossRef]
- Pisan, E.; De Luca, C.; Brancati, F.; Sanchez Russo, R.; Li, D.; Bhoj, E.; Wenger, T.; Marwaha, A.; Johnson, N.; Beneteau, C.; et al. The spectrum of heart defects in the TRAF7-related multiple congenital anomalies-intellectual disability syndrome. Proc. Natl. Acad. Sci. USA 2024, 121, e2317601121. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, T.; Sequeira-Lopez, M.L.S. Development of the renal vasculature. Semin. Cell Dev. Biol. 2019, 91, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Munro, D.A.D.; Hohenstein, P.; Davies, J.A. Cycles of vascular plexus formation within the nephrogenic zone of the developing mouse kidney. Sci. Rep. 2017, 7, 3273. [Google Scholar] [CrossRef]
- Daniel, E.; Azizoglu, D.B.; Ryan, A.R.; Walji, T.A.; Chaney, C.P.; Sutton, G.I.; Carroll, T.J.; Marciano, D.K.; Cleaver, O. Spatiotemporal heterogeneity and patterning of developing renal blood vessels. Angiogenesis 2018, 21, 617–634. [Google Scholar] [CrossRef]
- Tsitsikov, E.N.; Phan, K.P.; Liu, Y.; Tsytsykova, A.V.; Kinter, M.; Selland, L.; Garman, L.; Griffin, C.; Dunn, I.F. TRAF7 is an essential regulator of blood vessel integrity during mouse embryonic and neonatal development. iScience 2023, 26, 107474. [Google Scholar] [CrossRef]
- Bock, H.H.; May, P. Canonical and non-canonical Reelin signaling. Front. Cell Neurosci. 2016, 10, 166. [Google Scholar] [CrossRef]
- Scott, E.; Dougherty, T.J.; Gorski, G.; Hatcher, C.J. Reelin signaling in vascular endothelial cell biology. FASEB J. 2019, 33, 83–84. [Google Scholar] [CrossRef]
- Sweetwyne, M.T.; Tao, J.; Susztak, K. Kick it up a notch: Notch signaling and kidney fibrosis. Kidney Int. Suppl. 2014, 4, 91–96. [Google Scholar] [CrossRef]
- Pavlović, N.; Kelam, N.; Racetin, A.; Filipović, N.; Pogorelić, Z.; Prusac, I.K.; Vukojević, K. Expression profiles of ITGA8 and VANGL2 are altered in congenital anomalies of the kidney and urinary tract (CAKUT). Molecules 2024, 29, 3294. [Google Scholar] [CrossRef]
- Kelam, N.; Racetin, A.; Polović, M.; Benzon, B.; Ogorevc, M.; Vukojević, K.; Glavina Durdov, M.; Dunatov Huljev, A.; Kuzmić Prusac, I.; Čarić, D.; et al. Aberrations in FGFR1, FGFR2, and RIP5 expression in human congenital anomalies of the kidney and urinary tract (CAKUT). Int. J. Mol. Sci. 2022, 23, 15537. [Google Scholar] [CrossRef]
- Kojima, T.; Nakajima, K.; Mikoshiba, K. The disabled 1 gene is disrupted by a replacement with L1 fragment in yotari mice. Brain Res. Mol. Brain Res. 2000, 75, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Imai, H.; Shoji, H.; Ogata, M.; Kagawa, Y.; Owada, Y.; Miyakawa, T.; Sakimura, K.; Terashima, T.; Katsuyama, Y. Dorsal Forebrain-Specific Deficiency of Reelin-Dab1 Signal Causes Behavioral Abnormalities Related to Psychiatric Disorders. Cereb. Cortex 2017, 27, 3485–3501. [Google Scholar] [CrossRef] [PubMed]
- Šitum Čeprnja, Z.; Kelam, N.; Ogorevc, M.; Racetin, A.; Vukoja, M.; Čeprnja, T.; Filipović, N.; Saraga-Babić, M.; Vukojević, K. Expression of LOXL3, NES, and SNAI1 in melanoma genesis and progression. Cells 2024, 13, 1450. [Google Scholar] [CrossRef] [PubMed]
Antibodies | Catalog Number | Host | Dilution | Source | |
---|---|---|---|---|---|
Primary | Anti-EDA2R/XEDAR antibody | ab203667 | Rabbit | 1:120 | Abcam (Cambridge, UK) |
PCDH9 Polyclonal antibody | 25090-1-AP | Rabbit | 1:200 | Proteintech Group, Inc. (Rosemont, IL, USA) | |
TRAF7 Polyclonal antibody | 11780-1-AP | Rabbit | 1:50 | Proteintech Group, Inc. (Rosemont, IL, USA) | |
Aquaporin 1/Aqp1 A antibody (B-11) | sc-25287 | Mouse | 1:50 | Santa Cruz Biotechnology (Dallas, TX, USA) | |
Aquaporin 2/Aqp2 antibody (E-2) | sc-515770 | Mouse | 1:50 | Santa Cruz Biotechnology (Dallas, TX, USA) | |
Lectins | Fluorescein labeled Lotus tetragonolobus lectin (LTL) | FL-1321 | N/A | 1:400 | Vector Laboratories Ltd., Peterborough, UK |
Fluorescein labeled Dolichos biflorus agglutinin (DBA) | FL-1031 | N/A | 1:400 | Vector Laboratories Ltd., Peterborough, UK | |
Secondary | Rhodamine Red™-X (RRX) AffiniPure™ Donkey Anti-Mouse IgG (H + L) | 715-295-151 | Donkey | 1:400 | Jackson Immuno Research Laboratories, Inc. (Baltimore, PA, USA) |
Alexa Fluor® 488 AffiniPure™ Donkey Anti-Mouse IgG (H + L) | 715-545-150 | Donkey | 1:300 | Jackson Immuno Research Laboratories, Inc., Baltimore, PA, USA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komić, J.; Kelam, N.; Racetin, A.; Filipović, N.; Saraga-Babić, M.; Ihara, D.; Katsuyama, Y.; Vukojević, K. Spatial and Temporal Expression Patterns of EDA2R, PCDH9, and TRAF7 in Yotari (Dab1−/−) Mice: Implicationsfor Understanding CAKUT Pathogenesis. Int. J. Mol. Sci. 2025, 26, 6421. https://doi.org/10.3390/ijms26136421
Komić J, Kelam N, Racetin A, Filipović N, Saraga-Babić M, Ihara D, Katsuyama Y, Vukojević K. Spatial and Temporal Expression Patterns of EDA2R, PCDH9, and TRAF7 in Yotari (Dab1−/−) Mice: Implicationsfor Understanding CAKUT Pathogenesis. International Journal of Molecular Sciences. 2025; 26(13):6421. https://doi.org/10.3390/ijms26136421
Chicago/Turabian StyleKomić, Jelena, Nela Kelam, Anita Racetin, Natalija Filipović, Mirna Saraga-Babić, Dai Ihara, Yu Katsuyama, and Katarina Vukojević. 2025. "Spatial and Temporal Expression Patterns of EDA2R, PCDH9, and TRAF7 in Yotari (Dab1−/−) Mice: Implicationsfor Understanding CAKUT Pathogenesis" International Journal of Molecular Sciences 26, no. 13: 6421. https://doi.org/10.3390/ijms26136421
APA StyleKomić, J., Kelam, N., Racetin, A., Filipović, N., Saraga-Babić, M., Ihara, D., Katsuyama, Y., & Vukojević, K. (2025). Spatial and Temporal Expression Patterns of EDA2R, PCDH9, and TRAF7 in Yotari (Dab1−/−) Mice: Implicationsfor Understanding CAKUT Pathogenesis. International Journal of Molecular Sciences, 26(13), 6421. https://doi.org/10.3390/ijms26136421