Anti-Inflammatory Potential of Essential Oil from the Heart-Wood of the Folk Medicinal Tree Cinnamomum kanehirai Hayata in Macrophages
Abstract
1. Introduction
2. Results
2.1. EOC Inhibits the NLRP3 Inflammasome Activated by Adenosine Triphosphate (ATP)
2.2. EOC Inhibits the NLRP3 Inflammasome Activated by Multiple NLRP3 Activators
2.3. EOC Inhibits Inflammasomes Beyond the NLRP3 Inflammasome
2.4. EOC Inhibits the Priming Signals of the NLRP3 Inflammasome
2.5. EOC Enhances Mitochondrial Damage
2.6. EOC Inhibits the Inflammatory Response Independent of the NLRP3 Inflammasome
2.7. Effect of Major Compounds of EOC on NO Production
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Plant Materials
4.3. Isolation of EOC
4.4. EOC Analysis
4.5. Component Identification
4.6. Cell Cultures
4.7. Effect of EOC on the Activation of Inflammasomes
4.8. Effect of EOC on Pro-Inflammatory Mediator Expression in LPS-Activated Macrophages
4.9. Effect of EOC on the ROS Production
4.10. Effect of EOC on the Transcriptional Activity of NF-κB
4.11. Effect of EOC on the Mitochondrial Damage
4.12. Effect of EOC on the Cell Viability
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EOC | Essential oil derived from the heartwood of Cinnamomum kanehirai Hayata |
IL | Interleukin |
TNF-α | Tumor necrosis factor-α |
NLRP3 | NLR family pyrin domain containing 3 |
ASC | Apoptosis-associated speck-like protein |
ROS | Reactive oxygen species |
LPS | Lipopolysaccharide |
ATP | Adenosine triphosphate |
MSU | Monosodium urate |
CPPD | Calcium pyrophosphate dihydrate |
Alum | Aluminum hydroxide |
Nano-SiO2 | SiO2 nanoparticles |
MDP | Muramyl dipeptide |
FLA-ST | Flagellin from Salmonella typhimurium |
Pam3CSK4 | Synthetic triacylated lipopeptide |
GC–MS | Gas chromatography–mass spectrometry |
References
- Muralidharan, S.; Mandrekar, P. Cellular stress response and innate immune signaling: Integrating pathways in host defense and inflammation. J. Leukoc. Biol. 2013, 94, 1167–1184. [Google Scholar] [CrossRef] [PubMed]
- Koh, T.J.; DiPietro, L.A. Inflammation and wound healing: The role of the macrophage. Expert Rev. Mol. Med. 2011, 13, e23. [Google Scholar] [CrossRef] [PubMed]
- Ritter, B.; Greten, F.R. Modulating inflammation for cancer therapy. J. Exp. Med. 2019, 216, 1234–1243. [Google Scholar] [CrossRef]
- Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell 2010, 140, 918–934. [Google Scholar] [CrossRef] [PubMed]
- Fulop, T.; Larbi, A.; Pawelec, G.; Khalil, A.; Cohen, A.A.; Hirokawa, K.; Witkowski, J.M.; Franceschi, C. Immunology of Aging: The Birth of Inflammaging. Clin. Rev. Allergy Immunol. 2023, 64, 109–122. [Google Scholar] [CrossRef]
- Schleh, M.W.; Caslin, H.L.; Garcia, J.N.; Mashayekhi, M.; Srivastava, G.; Bradley, A.B.; Hasty, A.H. Metaflammation in obesity and its therapeutic targeting. Sci. Transl. Med. 2023, 15, eadf9382. [Google Scholar] [CrossRef]
- Fu, J.; Wu, H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu. Rev. Immunol. 2023, 41, 301–316. [Google Scholar] [CrossRef]
- Latz, E.; Duewell, P. NLRP3 inflammasome activation in inflammaging. Semin. Immunol. 2018, 40, 61–73. [Google Scholar] [CrossRef]
- Wang, H.; Ma, L.; Su, W.; Liu, Y.; Xie, N.; Liu, J. NLRP3 inflammasome in health and disease (Review). Int. J. Mol. Med. 2025, 55, 48. [Google Scholar] [CrossRef]
- Ma, Q. Pharmacological Inhibition of the NLRP3 Inflammasome: Structure, Molecular Activation, and Inhibitor-NLRP3 Interaction. Pharmacol. Rev. 2023, 75, 487–520. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, D.; Hu, D.; Zhou, X.; Zhou, Y. The role of mitochondria in NLRP3 inflammasome activation. Mol. Immunol. 2018, 103, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Bagherniya, M.; Khedmatgozar, H.; Fakheran, O.; Xu, S.; Johnston, T.P.; Sahebkar, A. Medicinal plants and bioactive natural products as inhibitors of NLRP3 inflammasome. Phytother. Res. 2021, 35, 4804–4833. [Google Scholar] [CrossRef] [PubMed]
- Jahan, S.; Kumar, D.; Chaturvedi, S.; Rashid, M.; Wahajuddin, M.; Khan, Y.A.; Goyal, S.N.; Patil, C.R.; Mohanraj, R.; Subramanya, S.; et al. Therapeutic Targeting of NLRP3 Inflammasomes by Natural Products and Pharmaceuticals: A Novel Mechanistic Approach for Inflammatory Diseases. Curr. Med. Chem. 2017, 24, 1645–1670. [Google Scholar] [CrossRef]
- Lee, M.H.; Jiang, C.B.; Juan, S.H.; Lin, R.D.; Hou, W.C. Antioxidant and heme oxygenase-1 (HO-1)-induced effects of selected Taiwanese plants. Fitoterapia 2006, 77, 109–115. [Google Scholar] [CrossRef]
- Liu, Y.K.; Chen, K.H.; Leu, Y.L.; Way, T.D.; Wang, L.W.; Chen, Y.J.; Liu, Y.M. Ethanol extracts of Cinnamomum kanehirai Hayata leaves induce apoptosis in human hepatoma cell through caspase-3 cascade. Onco Targets Ther. 2014, 8, 99–109. [Google Scholar] [CrossRef]
- Yeh, R.Y.; Shiu, Y.L.; Shei, S.C.; Cheng, S.C.; Huang, S.Y.; Lin, J.C.; Liu, C.H. Evaluation of the antibacterial activity of leaf and twig extracts of stout camphor tree, Cinnamomum kanehirae, and the effects on immunity and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2009, 27, 26–32. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Weitzberg, E. Nitric oxide signaling in health and disease. Cell 2022, 185, 2853–2878. [Google Scholar] [CrossRef]
- Facchin, B.M.; Dos Reis, G.O.; Vieira, G.N.; Mohr, E.T.B.; da Rosa, J.S.; Kretzer, I.F.; Demarchi, I.G.; Dalmarco, E.M. Inflammatory biomarkers on an LPS-induced RAW 264.7 cell model: A systematic review and meta-analysis. Inflamm. Res. 2022, 71, 741–758. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured: Carol Stream, DuPage County, IL, USA, 2007. [Google Scholar]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas liquid partition chromatography. J Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- NIST. NIST Chemistry Web Book: NIST Standard Reference Database Number 69. Available online: http://webbook.nist.gov/chemistry/ (accessed on 6 June 2021).
- Miyah, Y.; Benjelloun, M.; Lairini, S.; Lahrichi, A. COVID-19 Impact on Public Health, Environment, Human Psychology, Global Socioeconomy, and Education. Sci. World J. 2022, 2022, 5578284. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.S.; de Sá, K.S.G.; Ishimoto, A.Y.; Becerra, A.; Oliveira, S.; Almeida, L.; Gonçalves, A.V.; Perucello, D.B.; Andrade, W.A.; Castro, R.; et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 2021, 218, e20201707. [Google Scholar] [CrossRef]
- Bonaventura, A.; Vecchié, A.; Dagna, L.; Tangianu, F.; Abbate, A.; Dentali, F. Colchicine for COVID-19: Targeting NLRP3 inflammasome to blunt hyperinflammation. Inflamm Res. 2022, 71, 293–307. [Google Scholar] [CrossRef]
- Saeedi-Boroujeni, A.; Mahmoudian-Sani, M.R.; Nashibi, R.; Houshmandfar, S.; Tahmaseby Gandomkari, S.; Khodadadi, A. Tranilast: A potential anti-Inflammatory and NLRP3 inflammasome inhibitor drug for COVID-19. Immunopharmacol. Immunotoxicol. 2021, 43, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Li, L.H.; Chiu, H.W.; Wong, W.T.; Huang, K.C.; Lin, T.W.; Chen, S.T.; Hua, K.F. Antrodia cinnamomea May Interfere with the Interaction Between ACE2 and SARS-CoV-2 Spike Protein in vitro and Reduces Lung Inflammation in a Hamster Model of COVID-19. J. Inflamm. Res. 2023, 16, 4867–4884. [Google Scholar] [CrossRef] [PubMed]
- Galozzi, P.; Bindoli, S.; Luisetto, R.; Sfriso, P.; Ramonda, R.; Scanu, A.; Oliviero, F. Regulation of crystal induced inflammation: Current understandings and clinical implications. Expert Rev. Clin. Immunol. 2021, 17, 773–787. [Google Scholar] [CrossRef]
- Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440, 237–241. [Google Scholar] [CrossRef]
- Jia, H.; Liu, Y.; Guo, D.; He, W.; Zhao, L.; Xia, S. PM2.5-induced pulmonary inflammation via activating of the NLRP3/caspase-1 signaling pathway. Environ. Toxicol. 2021, 36, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Rathinam, V.A.; Jiang, Z.; Waggoner, S.N.; Sharma, S.; Cole, L.E.; Waggoner, L.; Vanaja, S.K.; Monks, B.G.; Ganesan, S.; Latz, E.; et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 2010, 11, 395–402. [Google Scholar] [CrossRef]
- Paulin, N.; Viola, J.R.; Maas, S.L.; de Jong, R.; Fernandes-Alnemri, T.; Weber, C.; Drechsler, M.; Döring, Y.; Soehnlein, O. Double-Strand DNA Sensing Aim2 Inflammasome Regulates Atherosclerotic Plaque Vulnerability. Circulation 2018, 138, 321–323. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, S.; Ruan, J.; Wu, J.; Tong, A.B.; Yin, Q.; Li, Y.; David, L.; Lu, A.; Wang, W.L.; et al. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 2015, 350, 404–409. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef]
- Hua, K.F.; Yang, T.J.; Chiu, H.W.; Ho, C.L. Essential oil from leaves of Liquidambar formosana ameliorates inflammatory response in lipopolysaccharide-activated mouse macrophages. Nat. Prod. Commun. 2014, 9, 869–872. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shen, P.; Lu, X.; Li, Y.; Liu, J.; Liu, B.; Fu, Y.; Cao, Y.; Zhang, N. In Vivo and In Vitro Study on the Efficacy of Terpinen-4-ol in Dextran Sulfate Sodium-Induced Mice Experimental Colitis. Front. Immunol. 2017, 8, 558. [Google Scholar] [CrossRef]
- Pelegrin, P.; Barroso-Gutierrez, C.; Surprenant, A. P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J. Immunol. 2008, 180, 7147–7157. [Google Scholar] [CrossRef]
- de Oliveira, M.G.; Marques, R.B.; de Santana, M.F.; Santos, A.B.; Brito, F.A.; Barreto, E.O.; De Sousa, D.P.; Almeida, F.R.; Badauê-Passos, D., Jr.; Antoniolli, A.R.; et al. α-terpineol reduces mechanical hypernociception and inflammatory response. Basic Clin. Pharmacol. Toxicol. 2012, 111, 120–125. [Google Scholar] [CrossRef]
- Ma, S.; Yang, B.; Du, Y.; Lv, Y.; Liu, J.; Shi, Y.; Huang, T.; Xu, H.; Deng, L.; Chen, X. 1,8-cineole ameliorates colon injury by downregulating macrophage M1 polarization via inhibiting the HSP90-NLRP3-SGT1 complex. J. Pharm. Anal. 2023, 13, 984–998. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Cui, W.; Lu, D.; Zhang, Y.; Liao, J.; Guo, L.; Jiao, C.; Tao, L.; Xu, Y.; et al. 1,8-cineole ameliorates experimental diabetic angiopathy by inhibiting NLRP3 inflammasome-mediated pyroptosis in HUVECs via SIRT2. Biomed. Pharmacother. 2024, 177, 117085. [Google Scholar] [CrossRef] [PubMed]
- Belabbes, R.; Dib, M.E.A.; Djabou, N.; Ilias, F.; Tabti, B.; Costa, J.; Muselli, A. Chemical Variability, Antioxidant and Antifungal Activities of Essential Oils and Hydrosol Extract of Calendula arvensis L. from Western Algeria. Chem. Biodivers. 2017, 14, e1600482. [Google Scholar] [CrossRef]
- Chiu, H.W.; Wu, C.H.; Lin, W.Y.; Wong, W.T.; Tsai, W.C.; Hsu, H.T.; Ho, C.L.; Cheng, S.M.; Cheng, C.C.; Yang, S.P.; et al. The Angiotensin II Receptor Neprilysin Inhibitor LCZ696 Inhibits the NLRP3 Inflammasome By Reducing Mitochondrial Dysfunction in Macrophages and Alleviates Dextran Sulfate Sodium-induced Colitis in a Mouse Model. Inflammation 2024, 47, 696–717. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Li, L.H.; Rao, Y.K.; Ju, T.C.; Nai, Y.S.; Chen, Y.W.; Hua, K.F. Mechanistic insight into the attenuation of gouty inflammation by Taiwanese green propolis via inhibition of the NLRP3 inflammasome. J. Cell. Physiol. 2019, 234, 4081–4094. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.L.; Hua, K.F.; Chen, A.; Wei, C.W.; Chen, W.S.; Wu, C.Y.; Chu, C.L.; Yu, Y.L.; Lo, C.W.; Ka, S.M. NLRP3 inflammasome: Pathogenic role and potential therapeutic target for IgA nephropathy. Sci. Rep. 2017, 7, 41123. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.B.; Barreto Sousa, M.D.D.; de Sousa Santos, W.; de Barros Leite, N.F.; Sobreiro Lima, E.M.; Lima Soares, A.; da Costa, C.L.S.; Silva Filho, F.A.e.; Maia Filho, A.L.M.; Soares Martins, E.P.; et al. Pharmacokinetic and toxicological prediction of the chemical constituents of the essential oil of the leaves of Croton heliotropiifolius Kunth. J. Toxicol. Environ. Health A 2023, 86, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.Z.; Chen, L.L.; Chang, C.; Zan, J.F.; Du, S.M. Pharmacokinetic and tissue distribution study of eight volatile constituents in rats orally administrated with the essential oil of Artemisiae argyi Folium by GC-MS/MS. J. Chromatogr. B 2021, 1181, 122904. [Google Scholar] [CrossRef]
- Ho, C.L.; Li, L.H.; Weng, Y.C.; Hua, K.F.; Ju, T.C. Eucalyptus essential oils inhibit the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages through reducing MAPK and NF-κB pathways. BMC Complement. Med. Ther. 2020, 20, 200. [Google Scholar] [CrossRef]
Peak No. | Compound I.D. | Classification a | LRILit b | LRIExp c | Concentration (%) | Identification d |
---|---|---|---|---|---|---|
1 | α-Pinene | MH | 939 | 938 | 0.2 | MS,LRI,CO-ST |
2 | β-Myrcene | MH | 991 | 992 | 0.5 | MS,LRI,CO-ST |
3 | α-Phellandrene | MH | 1003 | 1005 | 0.3 | MS,LRI,CO-ST |
4 | 1,4-Cineole | OM | 1015 | 1015 | 11.9 | MS,LRI,CO-ST |
5 | p-Cymene | MH | 1025 | 1024 | 9.3 | MS,LRI,CO-ST |
6 | Limonene | MH | 1029 | 1029 | 3.3 | MS,LRI,CO-ST |
7 | 1,8-Cineole | OM | 1031 | 1033 | 0.5 | MS,LRI,CO-ST |
8 | γ-Terpinene | MH | 1060 | 1059 | 9.7 | MS,LRI,CO-ST |
9 | Terpinolene | MH | 1089 | 1089 | 1.9 | MS,LRI,CO-ST |
10 | p-Cymenene | MH | 1091 | 1093 | 0.2 | MS,LRI,CO-ST |
11 | 1-Terpineol | OM | 1134 | 1135 | 2.4 | MS,LRI |
12 | trans-p-Menthan-8-ol | OM | 1148 | 1149 | 0.4 | MS,LRI |
13 | Terpinen-4-ol | OM | 1177 | 1178 | 20.5 | MS,LRI,CO-ST |
14 | α-Terpineol | OM | 1189 | 1191 | 1.0 | MS,LRI,CO-ST |
15 | γ-Terpineol | OM | 1199 | 1199 | 0.2 | MS,LRI,CO-ST |
16 | m-Propylphenol | OM | 1236 | 1236 | 0.3 | MS,LRI |
17 | Safrole | OM | 1287 | 1288 | 34.5 | MS,LRI,CO-ST |
18 | α-Terpinyl acetate | OM | 1349 | 1351 | 0.4 | MS,LRI,CO-ST |
19 | (E)-Isosafrole | OM | 1376 | 1374 | 0.4 | MS,LRI |
20 | (E)-β-Farnesene | SH | 1457 | 1458 | 1.0 | MS,LRI |
21 | δ-Cadinene | SH | 1523 | 1526 | 0.7 | MS,LRI |
22 | t-Muurolol | OS | 1642 | 1643 | 0.3 | MS,LRI |
23 | α-Cadinol | OS | 1654 | 1656 | 0.2 | MS,LRI |
Monoterpene hydrocarbons (%) | 25.4 | |||||
Oxygenated monoterpenes (%) | 72.6 | |||||
Sesquiterpene hydrocarbons (%) | 1.7 | |||||
Oxygenated sesquiterpenes (%) | 0.4 | |||||
Oil Yield (mL/100 g) | 2.58 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.-L.; Liu, P.-Y.; Chao, L.K.; Yang, T.-J.; Li, L.-H.; Weng, Y.-M.; Sommano, S.R.; Unpaprom, Y.; Ramaraj, R.; Ho, C.-L.; et al. Anti-Inflammatory Potential of Essential Oil from the Heart-Wood of the Folk Medicinal Tree Cinnamomum kanehirai Hayata in Macrophages. Int. J. Mol. Sci. 2025, 26, 5419. https://doi.org/10.3390/ijms26115419
Liu M-L, Liu P-Y, Chao LK, Yang T-J, Li L-H, Weng Y-M, Sommano SR, Unpaprom Y, Ramaraj R, Ho C-L, et al. Anti-Inflammatory Potential of Essential Oil from the Heart-Wood of the Folk Medicinal Tree Cinnamomum kanehirai Hayata in Macrophages. International Journal of Molecular Sciences. 2025; 26(11):5419. https://doi.org/10.3390/ijms26115419
Chicago/Turabian StyleLiu, May-Lan, Pang-Yen Liu, Louis Kuoping Chao, Tzu-Jung Yang, Lan-Hui Li, Yih-Ming Weng, Sarana Rose Sommano, Yuwalee Unpaprom, Rameshprabu Ramaraj, Chen-Lung Ho, and et al. 2025. "Anti-Inflammatory Potential of Essential Oil from the Heart-Wood of the Folk Medicinal Tree Cinnamomum kanehirai Hayata in Macrophages" International Journal of Molecular Sciences 26, no. 11: 5419. https://doi.org/10.3390/ijms26115419
APA StyleLiu, M.-L., Liu, P.-Y., Chao, L. K., Yang, T.-J., Li, L.-H., Weng, Y.-M., Sommano, S. R., Unpaprom, Y., Ramaraj, R., Ho, C.-L., & Hua, K.-F. (2025). Anti-Inflammatory Potential of Essential Oil from the Heart-Wood of the Folk Medicinal Tree Cinnamomum kanehirai Hayata in Macrophages. International Journal of Molecular Sciences, 26(11), 5419. https://doi.org/10.3390/ijms26115419