Circadian Disruption and Sleep Disorders in Astronauts: A Review of Multi-Disciplinary Interventions for Long-Duration Space Missions
Abstract
1. Introduction
2. Pharmacological Interventions
3. Light Therapy
4. Scheduling Optimization
- Nap Typology: Compensatory naps (taken after sleep deprivation) effectively reduce performance deficits, improving cognitive function and physical performance while alleviating perceived fatigue [41]. Proactive naps (pre-night shift) also enhance alertness, work quality, and workplace harmony [42,43];
5. Human Flora Therapy
6. Traditional Chinese Medicine Treatment
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACTH | Adrenocorticotropic Hormone |
ADME | Absorption, Distribution, Metabolism, Excretion |
AIS | Athens Insomnia Scale |
API | Active Pharmaceutical Ingredient |
BDI | Beck Depression Inventory |
BIS/BAS | Behavioral Inhibition System/Behavioral Activation System |
BL-VAS | Bond–Lader Visual Analog Scale |
CAR | Cortisol Awakening Response |
CANTAB | Cambridge Neuropsychological Test Automated Battery |
CFS | Chalder Fatigue Scale |
CYP | Cytochrome P450 |
EEG | Electroencephalogram |
ENS | Enteric Nervous System |
EAT | Eating Attitudes Test |
ESS | Epworth Sleepiness Scale |
FAST™ | Fatigue Avoidance Scheduling Tool |
FFQ | Food Frequency Questionnaire |
FMT | Fecal Microbiota Transplantation |
GABA | γ-Aminobutyric Acid |
GAD | Generalized Anxiety Disorder |
GASS | Glasgow Antipsychotic Side-effect Scale |
GH | Growth Hormone |
GHQ | General Health Questionnaire |
GI-VAS | Gastrointestinal Visual Analogue Scale |
Glu | Glutamate |
HADS | Hospital Anxiety and Depression Scale |
HAMA-14 | Hamilton Anxiety Rating Scale-14 |
HDRS-17 | Hamilton Depression Rating Scale-17 |
HDT | Head-Down Tilt |
HLU | Hindlimb Unloading |
IBD | Inflammatory Bowel Disease |
IBS | Irritable Bowel Syndrome |
IPAQ | International Physical Activity Questionnaire |
ipRGCs | Intrinsically Photosensitive Retinal Ganglion Cells |
ISI | Insomnia Severity Index |
ISS | International Space Station |
LED | Light-Emitting Diode |
LEIDS-R | Leiden Index of Depression Sensitivity-Revised |
LIR | Lymphocyte Irradiation Response |
LOT-R | Life Orientation Test-Revised |
MDA | Malondialdehyde |
MEQ | Morningness–Eveningness Questionnaire |
MGBA | Microbiota–Gut–Brain Axis |
MPSs | Microphysiological Systems |
NASA | National Aeronautics and Space Administration |
NSBRI | National Space Biomedical Research Institute |
OSA | Obstructive Sleep Apnea |
PASA | Post-Acute Stress Assessment |
PBPK | Physiologically Based Pharmacokinetic |
PD | Pharmacodynamics |
PHQ | Patient Health Questionnaire |
PK | Pharmacokinetics |
POMS | Profile of Mood States |
PSG | Polysomnography |
PSQI | Pittsburgh Sleep Quality Index |
PSS | Perceived Stress Scale |
REM | Rapid Eye Movement |
RCSQ | Richards–Campbell Sleep Questionnaire |
SAS | Self-Rating Anxiety Scale |
SCFAs | Short-Chain Fatty Acids |
SCN | Suprachiasmatic Nucleus |
SDS | Self-Rating Depression Scale |
SF-36 | 36-Item Short Form Health Survey |
SOD | Superoxide Dismutase |
SRI | Stress Response Inventory |
SRSS | Self-Rating Sleep Scale |
SSLA | Solid-State Lighting Assemblies |
STAI | State–Trait Anxiety Inventory |
SWS | Slow-Wave Sleep |
TCI | Temperament and Character Inventory |
TCM | Traditional Chinese Medicine |
USP | United States Pharmacopeia |
VAS | Visual Analogue Scale |
VSH | Verran Snyder–Halpern Sleep Scale |
WASO | Wake After Sleep Onset |
References
- Huang, W.; Ramsey, K.M.; Marcheva, B.; Bass, J. Circadian rhythms, sleep, and metabolism. J. Clin. Investig. 2011, 121, 2133–2141. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Wang, Y.; Wu, X.; Liu, D.; Xu, D.; Wang, F. On-orbit sleep problems of astronauts and countermeasures. Mil. Med. Res. 2018, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Flynn-Evans, E.E.; Gregory, K.; Arsintescu, L.; Whitmire, A. Evidence Report: Risk of Performance Decrements and Adverse Health Outcomes Resulting from Sleep Loss, Circadian Desynchronization, and Work Overload; National Aeronautics and Space Administration: Houston, TX, USA, 2016. Available online: https://ntrs.nasa.gov/citations/20160003864 (accessed on 4 April 2025).
- Wever, R. The effects of electric fields on circadian rhythmicity in men. Life Sci. Space Res. 1970, 8, 177–187. [Google Scholar]
- Bliss, V.L.; Heppner, F.H. Circadian activity rhythm influenced by near zero magnetic field. Nature 1976, 261, 411–412. [Google Scholar] [CrossRef]
- Zhao, W.; Mao, L.; He, C.; Ding, D.; Hu, N.; Song, X.; Long, D. Effects of low dose radiation on behavior rhythm of zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2023, 255, 114779. [Google Scholar] [CrossRef]
- Gundel, A.; Polyakov, V.V.; Zulley, J. The alteration of human sleep and circadian rhythms during spaceflight. J. Sleep Res. 1997, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Monk, T.H.; Buysse, D.J.; Billy, B.D.; Kennedy, K.S.; Willrich, L.M. Sleep and circadian rhythms in four orbiting astronauts. J. Biol. Rhythm. 1998, 13, 188–201. [Google Scholar] [CrossRef]
- NASA. Human Research Program Integrated Research Plan; NASA: Houston, TX, USA, 2024. Available online: https://humanresearchroadmap.nasa.gov/Documents/IRP_Rev-Current.pdf (accessed on 17 March 2025).
- Pandi-Perumal, S.R.; Gonfalone, A.A. Sleep in space as a new medical frontier: The challenge of preserving normal sleep in the abnormal environment of space missions. Sleep Sci. 2016, 9, 1–4. [Google Scholar] [CrossRef]
- Shanguang, C.; Chunhui, W.; Xiaoping, C.; Guohua, J. Study on Changes of Human Performance Capabilities in Long-duration Spaceflight. Space Med. Med. Eng. 2015, 28, 1–10. [Google Scholar] [CrossRef]
- Kanas, N.; Manzey, D. Space Psychology and Psychiatry; Springer: Dordrecht, The Netherlands, 2008; pp. 27–46. [Google Scholar]
- Putcha, L.; Berens, K.L.; Marshburn, T.H.; Ortega, H.J.; Billica, R.D. Pharmaceutical use by U.S. astronauts on space shuttle missions. Aviat. Space Environ. Med. 1999, 70, 705–708. [Google Scholar]
- Barger, L.K.; Flynn-Evans, E.E.; Kubey, A.; Walsh, L.; Ronda, J.M.; Wang, W.; Wright, K.P., Jr.; Czeisler, C.A. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: An observational study. Lancet Neurol. 2014, 13, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Dinges, D.F.; Basner, M.; Ecker, A.J.; Baskin, P.; Johnston, S.L. Effects of zolpidem and zaleplon on cognitive performance after emergent morning awakenings at Tmax: A randomized placebo-controlled trial. Sleep 2019, 42, zsy258. [Google Scholar] [CrossRef]
- Wang, T.; Chen, H.; Lv, K.; Ji, G.; Zhang, Y.; Wang, Y.; Li, Y.; Qu, L. iTRAQ-based proteomics analysis of hippocampus in spatial memory deficiency rats induced by simulated microgravity. J. Proteom. 2017, 160, 64–73. [Google Scholar] [CrossRef]
- Wang, Y.; Iqbal, J.; Liu, Y.; Su, R.; Lu, S.; Peng, G.; Zhang, Y.; Qing, H.; Deng, Y. Effects of simulated microgravity on the expression of presynaptic proteins distorting the GABA/glutamate equilibrium—A proteomics approach. Proteomics 2015, 15, 3883–3891. [Google Scholar] [CrossRef]
- Moskaleva, N.; Moysa, A.; Novikova, S.; Tikhonova, O.; Zgoda, V.; Archakov, A. Spaceflight Effects on Cytochrome P450 Content in Mouse Liver. PLoS ONE 2015, 10, e0142374. [Google Scholar] [CrossRef] [PubMed]
- Daniels, V.; Bayuse, T.; Mulcahy, R.; McGuire, K.; Antonsen, E. The Pathway to a Safe and Effective Medication Formulary for Exploration Spaceflight. Tech. Report No. 13658. In Proceedings of the NASA Human Research Program Investigator Workshop, Galveston, TX, USA, 23–26 January 2017. [Google Scholar]
- Wotring, V.E. Chemical Potency and Degradation Products of Medications Stored over 550 Earth Days at the International Space Station. AAPS J. 2016, 18, 210–216. [Google Scholar] [CrossRef]
- Grubač, Ž.; Šutulović, N.; Šuvakov, S.; Jerotić, D.; Puškaš, N.; Macut, D.; Rašić-Marković, A.; Simić, T.; Stanojlović, O.; Hrnčić, D. Anxiogenic Potential of Experimental Sleep Fragmentation Is Duration-Dependent and Mediated via Oxidative Stress State. Oxid. Med. Cell Longev. 2021, 2021, 2262913. [Google Scholar] [CrossRef]
- Grubac, Z.; Sutulovic, N.; Ademovic, A.; Velimirovic, M.; Rasic-Markovic, A.; Macut, D.; Petronijevic, N.; Stanojlovic, O.; Hrncic, D. Short-term sleep fragmentation enhances anxiety-related behavior: The role of hormonal alterations. PLoS ONE 2019, 14, e0218920. [Google Scholar] [CrossRef] [PubMed]
- Thapan, K.; Arendt, J.; Skene, D.J. An action spectrum for melatonin suppression: Evidence for a novel non-rod, non-cone photoreceptor system in humans. J. Physiol. 2001, 535, 261–267. [Google Scholar] [CrossRef]
- Lucas, R.J.; Peirson, S.N.; Berson, D.M.; Brown, T.M.; Cooper, H.M.; Czeisler, C.A.; Figueiro, M.G.; Gamlin, P.D.; Lockley, S.W.; O’Hagan, J.B.; et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014, 37, 1–9. [Google Scholar] [CrossRef]
- Brainard, G.C.; Hanifin, J.P.; Greeson, J.M.; Byrne, B.; Glickman, G.; Gerner, E.; Rollag, M.D. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J. Neurosci. 2001, 21, 6405–6412. [Google Scholar] [CrossRef] [PubMed]
- Ho Mien, I.; Chua, E.C.; Lau, P.; Tan, L.C.; Lee, I.T.; Yeo, S.C.; Tan, S.S.; Gooley, J.J. Effects of exposure to intermittent versus continuous red light on human circadian rhythms, melatonin suppression, and pupillary constriction. PLoS ONE 2014, 9, e96532. [Google Scholar] [CrossRef] [PubMed]
- Czeisler, C.A.; Chiasera, A.J.; Duffy, J.F. Research on sleep, circadian rhythms and aging: Applications to manned spaceflight. Exp. Gerontol. 1991, 26, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Seven Ways Astronauts Improve Sleep May Help You Snooze Better on Earth. 2016. Available online: https://www.nasa.gov/missions/station/seven-ways-astronauts-improve-sleep-may-help-you-snooze-better-on-earth/ (accessed on 17 November 2024).
- Brainard, G.C.; Barger, L.K.; Soler, R.R.; Hanifin, J.P. The development of lighting countermeasures for sleep disruption and circadian misalignment during spaceflight. Curr. Opin. Pulm. Med. 2016, 22, 535–544. [Google Scholar] [CrossRef]
- Treichel, T.H. Human Factor Evaluation of LED General Luminaire Assemblies for Spacecraft Lighting. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; pp. 1–12. [Google Scholar]
- van Maanen, A.; Meijer, A.M.; van der Heijden, K.B.; Oort, F.J. The effects of light therapy on sleep problems: A systematic review and meta-analysis. Sleep Med. Rev. 2016, 29, 52–62. [Google Scholar] [CrossRef]
- Blume, C.; Garbazza, C.; Spitschan, M. Effects of light on human circadian rhythms, sleep and mood. Somnologie 2019, 23, 147–156. [Google Scholar] [CrossRef]
- Lauteslager, T.; Kampakis, S.; Williams, A.J.; Maslik, M.; Siddiqui, F. Performance Evaluation of the Circadia Contactless Breathing Monitor and Sleep Analysis Algorithm for Sleep Stage Classification. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 5150–5153. [Google Scholar] [CrossRef]
- Campbell, S.S.; Murphy, P.J.; van den Heuvel, C.J.; Roberts, M.L.; Stauble, T.N. Etiology and treatment of intrinsic circadian rhythm sleep disorders. Sleep Med. Rev. 1999, 3, 179–200. [Google Scholar] [CrossRef]
- Terman, M.; Lewy, A.J.; Dijk, D.J.; Boulos, Z.; Eastman, C.I.; Campbell, S.S. Light treatment for sleep disorders: Consensus report. IV. Sleep phase and duration disturbances. J. Biol. Rhythm. 1995, 10, 135–147. [Google Scholar] [CrossRef]
- Circadian Light. 2023. Available online: https://www.nasa.gov/mission/station/research-explorer/investigation/?#id=8943 (accessed on 2 February 2025).
- Paul, M.A.; Gray, G.W.; Lieberman, H.R.; Love, R.J.; Miller, J.C.; Trouborst, M.; Arendt, J. Phase advance with separate and combined melatonin and light treatment. Psychopharmacology 2011, 214, 515–523. [Google Scholar] [CrossRef]
- Ma, X.; Tian, Z.; Li, Y.; Gan, X.; Li, S.; Zhang, Y.; Chen, S.; Liu, S.; Huang, Y.; Yang, Y.; et al. Comprehensive detrimental effects of a simulated frequently shifting schedule on diurnal rhythms and vigilance. Chronobiol. Int. 2022, 39, 1285–1296. [Google Scholar] [CrossRef]
- Struster, J. Behavioral Issues Associated with Long Duration Space Expeditions: Review and Analysis of Astronaut Journals; Tech. Rep. No. NASA/JSC-CN-21128; NASA Johnson Space Center: Houston, TX, USA, 2010. [Google Scholar]
- Basner, M.; Dinges, D.F.; Mollicone, D.; Ecker, A.; Jones, C.W.; Hyder, E.C.; Di Antonio, A.; Savelev, I.; Kan, K.; Goel, N.; et al. Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing. Proc. Natl. Acad. Sci. USA 2013, 110, 2635–2640. [Google Scholar] [CrossRef] [PubMed]
- Takeyama, H.; Kubo, T.; Itani, T. The nighttime nap strategies for improving night shift work in workplace. Ind. Health 2005, 43, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Rosa, R.R. Napping at home and alertness on the job in rotating shift workers. Sleep 1993, 16, 727–735. [Google Scholar] [CrossRef]
- Bonnet, M.H.; Arand, D.L. Impact of naps and caffeine on extended nocturnal performance. Physiol. Behav. 1994, 56, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Dutheil, F.; Danini, B.; Bagheri, R.; Fantini, M.L.; Pereira, B.; Moustafa, F.; Trousselard, M.; Navel, V. Effects of a Short Daytime Nap on the Cognitive Performance: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 212. [Google Scholar] [CrossRef]
- Hilditch, C.J.; Centofanti, S.A.; Dorrian, J.; Banks, S. A 30-Minute, but Not a 10-Minute Nighttime Nap is Associated with Sleep Inertia. Sleep 2016, 39, 675–685. [Google Scholar] [CrossRef]
- Hsouna, H.; Boukhris, O.; Abdessalem, R.; Trabelsi, K.; Ammar, A.; Shephard, R.J.; Chtourou, H. Effect of different nap opportunity durations on short-term maximal performance, attention, feelings, muscle soreness, fatigue, stress and Sleep. Physiol. Behav. 2019, 211, 112673. [Google Scholar] [CrossRef]
- Stepan, M.E.; Altmann, E.M.; Fenn, K.M. Slow-wave sleep during a brief nap is related to reduced cognitive deficits during sleep deprivation. Sleep 2021, 44, zsab152. [Google Scholar] [CrossRef]
- Tassi, P.; Muzet, A. Sleep inertia. Sleep Med. Rev. 2000, 4, 341–353. [Google Scholar] [CrossRef]
- Brooks, A.; Lack, L. A brief afternoon nap following nocturnal sleep restriction: Which nap duration is most recuperative? Sleep 2006, 29, 831–840. [Google Scholar] [CrossRef]
- Wang, B.; Fu, X.L. Gender difference in the effect of daytime sleep on declarative memory for pictures. J. Zhejiang Univ. Sci. B 2009, 10, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Deantoni, M.; Reyt, M.; Baillet, M.; Dourte, M.; De Haan, S.; Lesoinne, A.; Vandewalle, G.; Maquet, P.; Berthomier, C.; Muto, V.; et al. Napping and circadian sleep-wake regulation during healthy aging. Sleep 2024, 47, zsad287. [Google Scholar] [CrossRef] [PubMed]
- Di Muzio, M.; Diella, G.; Di Simone, E.; Pazzaglia, M.; Alfonsi, V.; Novelli, L.; Cianciulli, A.; Scarpelli, S.; Gorgoni, M.; Giannini, A.; et al. Comparison of Sleep and Attention Metrics Among Nurses Working Shifts on a Forward- vs Backward-Rotating Schedule. JAMA Netw. Open 2021, 4, e2129906. [Google Scholar] [CrossRef]
- Hulsegge, G.; Coenen, P.; Gascon, G.M.; Pahwa, M.; Greiner, B.; Bohane, C.; Wong, I.S.; Liira, J.; Riera, R.; Pachito, D.V. Adapting shift work schedules for sleep quality, sleep duration, and sleepiness in shift workers. Cochrane Database Syst. Rev. 2023, 9, Cd010639. [Google Scholar] [CrossRef] [PubMed]
- Shiffer, D.; Minonzio, M.; Dipaola, F.; Bertola, M.; Zamuner, A.R.; Dalla Vecchia, L.A.; Solbiati, M.; Costantino, G.; Furlan, R.; Barbic, F. Effects of Clockwise and Counterclockwise Job Shift Work Rotation on Sleep and Work-Life Balance on Hospital Nurses. Int. J. Environ. Res. Public Health 2018, 15, 2038. [Google Scholar] [CrossRef]
- Jack, G.; Melodie, Y.; John, K.; Jessica, M. Evaluation of Self-Scheduling Exercises Completed by Analog Crewmembers in NASA’s Human Exploration Research Analog (HERA); Tech. Report; Ames Research Center: Las Vegas, NV, USA, 2021. [Google Scholar]
- John, K.; Shivang, S.; Jessica, M. Validation of Self-Scheduling Countermeasures in NASA’s HERA Campaign 6; Tech. Report; Ames Research Center: Moffett Field, CA, USA, 2025. [Google Scholar]
- Marquez, J.J.; Edwards, T.; Karasinski, J.A.; Lee, C.N.; Shyr, M.C.; Miller, C.L.; Brandt, S.L. Human Performance of Novice Schedulers for Complex Spaceflight Operations Timelines. Hum. Factors 2023, 65, 1183–1198. [Google Scholar] [CrossRef]
- Flynn-Evans, E.E.; Kirkley, C.; Young, M.; Bathurst, N.; Gregory, K.; Vogelpohl, V.; End, A.; Hillenius, S.; Pecena, Y.; Marquez, J.J. Changes in performance and bio-mathematical model performance predictions during 45 days of sleep restriction in a simulated space mission. Sci. Rep. 2020, 10, 15594. [Google Scholar] [CrossRef]
- Morrison, M.D.; Thissen, J.B.; Karouia, F.; Mehta, S.; Urbaniak, C.; Venkateswaran, K.; Smith, D.J.; Jaing, C. Investigation of Spaceflight Induced Changes to Astronaut Microbiomes. Front. Microbiol. 2021, 12, 659179. [Google Scholar] [CrossRef]
- Garrett-Bakelman, F.E.; Darshi, M.; Green, S.J.; Gur, R.C.; Lin, L.; Macias, B.R.; McKenna, M.J.; Meydan, C.; Mishra, T.; Nasrini, J.; et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 2019, 364, eaau8650. [Google Scholar] [CrossRef]
- Ramos-Nascimento, A.; Grenga, L.; Haange, S.B.; Himmelmann, A.; Arndt, F.S.; Ly, Y.T.; Miotello, G.; Pible, O.; Jehmlich, N.; Engelmann, B.; et al. Human gut microbiome and metabolite dynamics under simulated microgravity. Gut Microbes 2023, 15, 2259033. [Google Scholar] [CrossRef]
- Gonzalez, E.; Lee, M.D.; Tierney, B.T.; Lipieta, N.; Flores, P.; Mishra, M.; Beckett, L.; Finkelstein, A.; Mo, A.; Walton, P.; et al. Spaceflight alters host-gut microbiota interactions. NPJ Biofilms Microbiomes 2024, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.; Peng, Y.; Guo, Z.; Wang, H.; Wei, T.; Shakir, Y.; Jiang, G.; Deng, Y. Microbiome in a ground-based analog cabin of China Space Station during a 50-day human occupation. ISME Commun. 2024, 4, ycae013. [Google Scholar] [CrossRef] [PubMed]
- Tierney, B.T.; Kim, J.; Overbey, E.G.; Ryon, K.A.; Foox, J.; Sierra, M.A.; Bhattacharya, C.; Damle, N.; Najjar, D.; Park, J.; et al. Longitudinal multi-omics analysis of host microbiome architecture and immune responses during short-term spaceflight. Nat. Microbiol. 2024, 9, 1661–1675. [Google Scholar] [CrossRef]
- Guarner, F.; Malagelada, J.R. Gut flora in health and disease. Lancet 2003, 361, 512–519. [Google Scholar] [CrossRef]
- Guarner, F. Enteric flora in health and disease. Digestion 2006, 73 (Suppl. S1), 5–12. [Google Scholar] [CrossRef]
- Voigt, R.M.; Forsyth, C.B.; Green, S.J.; Mutlu, E.; Engen, P.; Vitaterna, M.H.; Turek, F.W.; Keshavarzian, A. Circadian disorganization alters intestinal microbiota. PLoS ONE 2014, 9, e97500. [Google Scholar] [CrossRef] [PubMed]
- Thaiss, C.A.; Zeevi, D.; Levy, M.; Segal, E.; Elinav, E. A day in the life of the meta-organism: Diurnal rhythms of the intestinal microbiome and its host. Gut Microbes 2015, 6, 137–142. [Google Scholar] [CrossRef]
- Leone, V.; Gibbons, S.M.; Martinez, K.; Hutchison, A.L.; Huang, E.Y.; Cham, C.M.; Pierre, J.F.; Heneghan, A.F.; Nadimpalli, A.; Hubert, N.; et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 2015, 17, 681–689. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Lu, T.; Chen, W.; Yan, W.; Yuan, K.; Shi, L.; Liu, X.; Zhou, X.; Shi, J.; et al. The microbiota-gut-brain axis in sleep disorders. Sleep Med. Rev. 2022, 65, 101691. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Q.; Zhang, S.; Liu, Y.; Lu, G.; Wen, Q.; Cui, B.; Zhang, F.; Zhang, F. Washed microbiota transplantation targeting both gastrointestinal and extraintestinal symptoms in patients with irritable bowel syndrome. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 127, 110839. [Google Scholar] [CrossRef]
- Wang, J.W.; Kuo, C.H.; Kuo, F.C.; Wang, Y.K.; Hsu, W.H.; Yu, F.J.; Hu, H.M.; Hsu, P.I.; Wang, J.Y.; Wu, D.C. Fecal microbiota transplantation: Review and update. J. Formos. Med. Assoc. 2019, 118 (Suppl. S1), S23–S31. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Yao, T.; Li, W.; Pan, N.; Xu, H.; Zhao, Q.; Su, Y.; Xiong, K.; Wang, J. Efficacy and safety of fecal microbiota transplantation for chronic insomnia in adults: A real world study. Front. Microbiol. 2023, 14, 1299816. [Google Scholar] [CrossRef] [PubMed]
- Dinan, T.G.; Stanton, C.; Cryan, J.F. Psychobiotics: A novel class of psychotropic. Biol. Psychiatry 2013, 74, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Monoi, N.; Matsuno, A.; Nagamori, Y.; Kimura, E.; Nakamura, Y.; Oka, K.; Sano, T.; Midorikawa, T.; Sugafuji, T.; Murakoshi, M.; et al. Japanese sake yeast supplementation improves the quality of sleep: A double-blind randomised controlled clinical trial. J. Sleep Res. 2016, 25, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Nakakita, Y.; Tsuchimoto, N.; Takata, Y.; Nakamura, T. Effect of dietary heat-killed Lactobacillus brevis SBC8803 (SBL88™) on sleep: A non-randomised, double blind, placebo-controlled, and crossover pilot study. Benef. Microbes 2016, 7, 501–509. [Google Scholar] [CrossRef]
- Takada, M.; Nishida, K.; Gondo, Y.; Kikuchi-Hayakawa, H.; Ishikawa, H.; Suda, K.; Kawai, M.; Hoshi, R.; Kuwano, Y.; Miyazaki, K.; et al. Beneficial effects of Lactobacillus casei strain Shirota on academic stress-induced sleep disturbance in healthy adults: A double-blind, randomised, placebo-controlled trial. Benef. Microbes 2017, 8, 153–162. [Google Scholar] [CrossRef]
- Nishida, K.; Sawada, D.; Kawai, T.; Kuwano, Y.; Fujiwara, S.; Rokutan, K. Para-psychobiotic Lactobacillus gasseri CP2305 ameliorates stress-related symptoms and sleep quality. J. Appl. Microbiol. 2017, 123, 1561–1570. [Google Scholar] [CrossRef]
- Marotta, A.; Sarno, E.; Del Casale, A.; Pane, M.; Mogna, L.; Amoruso, A.; Felis, G.E.; Fiorio, M. Effects of Probiotics on Cognitive Reactivity, Mood, and Sleep Quality. Front. Psychiatry 2019, 10, 164. [Google Scholar] [CrossRef]
- Moloney, G.M.; Long-Smith, C.M.; Murphy, A.; Dorland, D.; Hojabri, S.F.; Ramirez, L.O.; Marin, D.C.; Bastiaanssen, T.F.S.; Cusack, A.M.; Berding, K.; et al. Improvements in sleep indices during exam stress due to consumption of a Bifidobacterium longum. Brain Behav. Immun. Health 2021, 10, 100174. [Google Scholar] [CrossRef]
- Lee, H.J.; Hong, J.K.; Kim, J.K.; Kim, D.H.; Jang, S.W.; Han, S.W.; Yoon, I.Y. Effects of Probiotic NVP-1704 on Mental Health and Sleep in Healthy Adults: An 8-Week Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 2660. [Google Scholar] [CrossRef]
- Ho, Y.T.; Tsai, Y.C.; Kuo, T.B.J.; Yang, C.C.H. Effects of Lactobacillus plantarum PS128 on Depressive Symptoms and Sleep Quality in Self-Reported Insomniacs: A Randomized, Double-Blind, Placebo-Controlled Pilot Trial. Nutrients 2021, 13, 2820. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Fang, Y.; Li, H.; Liu, Y.; Wei, J.; Zhang, S.; Wang, L.; Fan, R.; Wang, L.; Li, S.; et al. Psychobiotic Lactobacillus plantarum JYLP-326 relieves anxiety, depression, and insomnia symptoms in test anxious college via modulating the gut microbiota and its metabolism. Front. Immunol. 2023, 14, 1158137. [Google Scholar] [CrossRef] [PubMed]
- Mäkelä, S.M.; Griffin, S.M.; Reimari, J.; Evans, K.C.; Hibberd, A.A.; Yeung, N.; Ibarra, A.; Junnila, J.; Turunen, J.; Beboso, R.; et al. Efficacy and safety of Lacticaseibacillus paracasei Lpc-37® in students facing examination stress: A randomized, triple-blind, placebo-controlled clinical trial (the ChillEx study). Brain Behav. Immun. Health 2023, 32, 100673. [Google Scholar] [CrossRef]
- Lan, Y.; Lu, J.; Qiao, G.; Mao, X.; Zhao, J.; Wang, G.; Tian, P.; Chen, W. Bifidobacterium breve CCFM1025 Improves Sleep Quality via Regulating the Activity of the HPA Axis: A Randomized Clinical Trial. Nutrients 2023, 15, 4700. [Google Scholar] [CrossRef]
- Chan, H.H.Y.; Siu, P.L.K.; Choy, C.T.; Chan, U.K.; Zhou, J.; Wong, C.H.; Lee, Y.W.; Chan, H.W.; Tsui, J.C.C.; Loo, S.K.F.; et al. Novel Multi-Strain E3 Probiotic Formulation Improved Mental Health Symptoms and Sleep Quality in Hong Kong Chinese. Nutrients 2023, 15, 5037. [Google Scholar] [CrossRef]
- Patterson, E.; Tan, H.T.T.; Groeger, D.; Andrews, M.; Buckley, M.; Murphy, E.F.; Groeger, J.A. Bifidobacterium longum 1714 improves sleep quality and aspects of well-being in healthy adults: A randomized, double-blind, placebo-controlled clinical trial. Sci. Rep. 2024, 14, 3725. [Google Scholar] [CrossRef]
- Mutoh, N.; Moriya, M.; Xu, C.; Kato, K.; Arai, S.; Iwabuchi, N.; Tanaka, M.; Jinghua, Y.; Itamura, R.; Sakatani, K.; et al. Bifidobacterium breve M-16V regulates the autonomic nervous system via the intestinal environment: A double-blind, placebo-controlled study. Behav. Brain Res. 2024, 460, 114820. [Google Scholar] [CrossRef]
- Joseph, B.; Lauren, S.; Carol, M.; Corey, T. Assessment of Individualizing Lactobacillus Plantarum Supplementation with Precision Health to Preserve Muscle Health in Astronauts During Long Duration Spaceflight; Tech. Report; NASA Johnson Space Center: Houston, TX, USA, 2022. [Google Scholar]
- Arora, S.; Puri, S.; Bhambri, N. A designer diet layout for astronauts using a microbiome mediated approach. FEMS Microbiol. Lett. 2022, 369, fnac049. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Moteki, Y.; Takahashi, T.; Shida, K.; Kiwaki, M.; Shimakawa, Y.; Matsui, A.; Chonan, O.; Morikawa, K.; Ohta, T.; et al. Probiotics into outer space: Feasibility assessments of encapsulated freeze-dried probiotics during 1 month’s storage on the International Space Station. Sci. Rep. 2018, 8, 10687. [Google Scholar] [CrossRef]
- Castro, L.; Ott, M.; Douglas, L. Delivery of Probiotics in the Space Food System; Tech. Rep. No. NASA/JSC-CN-30311; NASA Johnson Space Center: Houston, TX, USA, 2014. [Google Scholar]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Zeb, F.; Osaili, T.; Obaid, R.S.; Naja, F.; Radwan, H.; Cheikh Ismail, L.; Hasan, H.; Hashim, M.; Alam, I.; Sehar, B.; et al. Gut Microbiota and Time-Restricted Feeding/Eating: A Targeted Biomarker and Approach in Precision Nutrition. Nutrients 2023, 15, 259. [Google Scholar] [CrossRef] [PubMed]
- Van Ombergen, A.; Demertzi, A.; Tomilovskaya, E.; Jeurissen, B.; Sijbers, J.; Kozlovskaya, I.B.; Parizel, P.M.; Van de Heyning, P.H.; Sunaert, S.; Laureys, S.; et al. The effect of spaceflight and microgravity on the human brain. J. Neurol. 2017, 264, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Ning, J.; Hong, H.; Shan-guang, C.; Meng-zhou, X.; Xin-min, L. Research progress on traditional Chinese medicine in protecting space special environmental stress damage. Chin. Tradit. Herbal. Drugs 2022, 53, 3811–3820. [Google Scholar]
- Huang, H.; Jiang, N.; Zhang, Y.W.; Lv, J.W.; Wang, H.X.; Lu, C.; Liu, X.M.; Lu, G.H. Gastrodia elata blume ameliorates circadian rhythm disorder-induced mice memory impairment. Life Sci. Space Res. 2021, 31, 51–58. [Google Scholar] [CrossRef]
- Defu, L.; Lin, Z.; Yuzhou, C.; Lei, Z.; Yufang, W.; Ping, W. Research progress of drugs for astronauts in space. J. Air Force Med. Univ. 2022, 43, 100–104. [Google Scholar] [CrossRef]
- Yong-zhi, L. Application of Chinese Medicine and Herbs in Manned Spaceflight. Space Med. Med. Eng. 2008, 21, 198–205. [Google Scholar] [CrossRef]
- Ming, X.E.; Yue, L.U. Interventionin Physiological Adaptationtothe Special Environment of Spaceflight with Chinese Medicine. J. Nat. 2006, 28, 261–265. [Google Scholar]
- Yanjiao, L.; Zhengyu, L.; Wushan, C. Sleep and Sleep Disorders in the Aerospace Environment. Sleep Environ. Sci. 2022, 9, 1571–1574. [Google Scholar]
- Wu, Y.L.; Xu, H.X.; Chen, S. Comparative Studies on the Sedative and Hypnotic Effeet of the Crude and Processed Semen of Ziziphi Spinosa, and the Effect of Total Flavonoid and Saponin. Lishizhen Med. Mater. Medica Res. 2005, 9, 868–869. [Google Scholar]
- Guo, J.H.; Qu, W.M.; Chen, S.G.; Chen, X.P.; Lv, K.; Huang, Z.L.; Wu, Y.L. Keeping the right time in space: Importance of circadian clock and sleep for physiology and performance of astronauts. Mil. Med. Res. 2014, 1, 23. [Google Scholar] [CrossRef]
- Bevelacqua, J.J.; Welsh, J.; Mortazavi, S.M.J. Comments on ‘An overview of space medicine’. Br. J. Anaesth. 2018, 120, 874–876. [Google Scholar] [CrossRef] [PubMed]
- Gandia, P.; Saivin, S.; Le-Traon, A.P.; Guell, A.; Houin, G. Influence of simulated weightlessness on the intramuscular and oral pharmacokinetics of promethazine in 12 human volunteers. J. Clin. Pharmacol. 2006, 46, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Gandia, P.; Saivin, S.; Lavit, M.; Houin, G. Influence of simulated weightlessness on the pharmacokinetics of acetaminophen administered by the oral route: A study in the rat. Fundam. Clin. Pharmacol. 2004, 18, 57–64. [Google Scholar] [CrossRef]
- Saivin, S.; Pavy-Le Traon, A.; Soulez-LaRivière, C.; Güell, A.; Houin, G. Pharmacology in space: Pharmacokinetics. Adv. Space Biol. Med. 1997, 6, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Saivin, S.; Pavy-Le Traon, A.; Cornac, A.; Güell, A.; Houin, G. Impact of a four-day head-down tilt (-6 degrees) on lidocaine pharmacokinetics used as probe to evaluate hepatic blood flow. J. Clin. Pharmacol. 1995, 35, 697–704. [Google Scholar] [CrossRef]
- Schuck, E.L.; Grant, M.; Derendorf, H. Effect of simulated microgravity on the disposition and tissue penetration of ciprofloxacin in healthy volunteers. J. Clin. Pharmacol. 2005, 45, 822–831. [Google Scholar] [CrossRef]
- Rumble, R.H.; Roberts, M.S.; Denton, M.J. Effects of posture and sleep on the pharmacokinetics of paracetamol (acetaminophen) and its metabolites. Clin. Pharmacokinet. 1991, 20, 167–173. [Google Scholar] [CrossRef]
- Leach, C.S.; Alfrey, C.P.; Suki, W.N.; Leonard, J.I.; Rambaut, P.C.; Inners, L.D.; Smith, S.M.; Lane, H.W.; Krauhs, J.M. Regulation of body fluid compartments during short-term spaceflight. J. Appl. Physiol. (1985) 1996, 81, 105–116. [Google Scholar] [CrossRef]
- Drummer, C.; Heer, M.; Dressendörfer, R.A.; Strasburger, C.J.; Gerzer, R. Reduced natriuresis during weightlessness. Clin. Investig. 1993, 71, 678–686. [Google Scholar] [CrossRef]
- Norsk, P.; Christensen, N.J.; Bie, P.; Gabrielsen, A.; Heer, M.; Drummer, C. Unexpected renal responses in space. Lancet 2000, 356, 1577–1578. [Google Scholar] [CrossRef]
- Putcha, L.; Cintron, N.M.; Vanderploeg, J.M.; Chen, Y.; Habis, J.; Adler, J. Effect of antiorthostatic bed rest on hepatic blood flow in man. Aviat. Space Environ. Med. 1988, 59, 306–308. [Google Scholar] [PubMed]
- Carcenac, C.; Herbute, S.; Masseguin, C.; Mani-Ponset, L.; Maurel, D.; Briggs, R.; Guell, A.; Gabrion, J.B. Hindlimb-suspension and spaceflight both alter cGMP levels in rat choroid plexus. J. Gravit. Physiol. 1999, 6, 17–24. [Google Scholar] [PubMed]
- Racine, R.N.; Cormier, S.M. Effect of spaceflight on rat hepatocytes: A morphometric study. J. Appl. Physiol. (1985) 1992, 73, 136s–141s. [Google Scholar] [CrossRef] [PubMed]
- Weibo, L.; Jindun, C.; Yibing, D. Support and Promotion of Space Medico-Engineering in Construction of China’s Space Station. Space Med. Med. Eng. 2018, 31, 90–96. [Google Scholar] [CrossRef]
- Eyal, S. How do the pharmacokinetics of drugs change in astronauts in space? Expert. Opin. Drug Metab. Toxicol. 2020, 16, 353–356. [Google Scholar] [CrossRef]
- Cintron, N.; Putcha, L.; Vanderploeg, J. In-Flight Pharmacokinetics of Acetaminophen in Saliva; Tech. Rep. NASA/TM-1987b-58280; NASA Johnson Space Center: Houston, TX, USA, 1987. [Google Scholar]
- Cintron, N.; Putcha, L.; Vanderploeg, J. In-Flight Salivary Pharmacokinetics of Scopalamine and Dextramphetamine; Tech. Rep. NASA/TM-1987-58280; NASA Johnson Space Center: Houston, TX, USA, 1987. [Google Scholar]
- Bewernitz, M.; Derendorf, H. Electroencephalogram-based pharmacodynamic measures: A review. Int. J. Clin. Pharmacol. Ther. 2012, 50, 162–184. [Google Scholar] [CrossRef]
- Bian, S.; Zhu, B.; Rong, G.; Sawan, M. Towards wearable and implantable continuous drug monitoring: A review. J. Pharm. Anal. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Li, X.; Dunn, J.; Salins, D.; Zhou, G.; Zhou, W.; Schüssler-Fiorenza Rose, S.M.; Perelman, D.; Colbert, E.; Runge, R.; Rego, S.; et al. Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health-Related Information. PLoS Biol. 2017, 15, e2001402. [Google Scholar] [CrossRef]
- Merrill, A.H., Jr.; Wang, E.; Jones, D.P.; Hargrove, J.L. Hepatic function in rats after spaceflight: Effects on lipids, glycogen, and enzymes. Am. J. Physiol. 1987, 252, R222–R226. [Google Scholar] [CrossRef]
- Hammond, T.G.; Allen, P.L.; Birdsall, H.H. Effects of Space Flight on Mouse Liver versus Kidney: Gene Pathway Analyses. Int. J. Mol. Sci. 2018, 19, 4106. [Google Scholar] [CrossRef]
- Merrill, A.H., Jr.; Hoel, M.; Wang, E.; Mullins, R.E.; Hargrove, J.L.; Jones, D.P.; Popova, I.A. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887. Faseb J. 1990, 4, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Selwyn, F.P.; Cheng, S.L.; Klaassen, C.D.; Cui, J.Y. Regulation of Hepatic Drug-Metabolizing Enzymes in Germ-Free Mice by Conventionalization and Probiotics. Drug Metab. Dispos. 2016, 44, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Grigoriev, A.I.; Bugrov, S.A.; Bogomolov, V.V.; Egorov, A.D.; Kozlovskaya, I.B.; Pestov, I.D.; Polyakov, V.V.; Tarasov, I.K. Preliminary medical results of the Mir year-long mission. Acta Astronaut. 1991, 23, 1–8. [Google Scholar] [CrossRef]
- Li, L. Application of Physiologically Based Pharmacokinetic Models for Assessing the Disposition of Promethazine in Simulated Weightless Rats. Ph.D. Thesis, The Fourth Military Medical University, Xi’an, China, 2015. [Google Scholar]
- Yang, Z. Study on the Pharmacokinetics of Folic Acid and Zolpidem in Simulated Weightlessness. Master’s Thesis, Air Force Medical University, Xi’an, China, 2018. [Google Scholar]
- Low, L.A.; Giulianotti, M.A. Tissue Chips in Space: Modeling Human Diseases in Microgravity. Pharm. Res. 2019, 37, 8. [Google Scholar] [CrossRef]
- Du, B.; Daniels, V.R.; Vaksman, Z.; Boyd, J.L.; Crady, C.; Putcha, L. Evaluation of physical and chemical changes in pharmaceuticals flown on space missions. AAPS J. 2011, 13, 299–308. [Google Scholar] [CrossRef]
- Mehta, P.; Bhayani, D. Impact of space environment on stability of medicines: Challenges and prospects. J. Pharm. Biomed. Anal. 2017, 136, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Jaworske, D.; Myers, J. Pharmaceuticals Exposed to the Space Environment: Problems and Prospects; Tech. Rep. No. NASA/TM-2016-218949; Glenn Research Center: Cleveland, OH, USA, 2016. [Google Scholar]
- Meents, A.; Gutmann, S.; Wagner, A.; Schulze-Briese, C. Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 1094–1099. [Google Scholar] [CrossRef]
- Moyne, P.; Botella, A.; Peyrouset, A.; Rey, L. Sterilization of injectable drugs solutions by irradiation. Radiat. Phys. Chem. 2002, 63, 703–704. [Google Scholar] [CrossRef]
- Huff, J.; Carnell, L.; Blattnig, S.; Chappell, L.; Kerry, G.; Lumpkins, S.; Simonsen, L.; Slaba, T.; Werneth, C. Evidence Report: Risk of Radiation Carcinogenesis; Tech. Rep. No. NASA/JSC-CN-35748; NASA Johnson Space Center: Houston, TX, USA, 2016. [Google Scholar]
- Simon, M.; Cerro, J.; Clowdsley, M. Radworks Storm Shelter Design for Solar Particle Event Shielding; Tech. Report No. NF1676L-15945; NASA Langley Research Center: Hampton, VA, USA, 2011. [Google Scholar]
- Riemann, D.; Baglioni, C.; Bassetti, C.; Bjorvatn, B.; Dolenc Groselj, L.; Ellis, J.G.; Espie, C.A.; Garcia-Borreguero, D.; Gjerstad, M.; Gonçalves, M.; et al. European guideline for the diagnosis and treatment of insomnia. J. Sleep Res. 2017, 26, 675–700. [Google Scholar] [CrossRef]
Author (Year) | Population | Intervention (Strain, Dose, Route) | Study Design | Duration | Outcome Measures | Intestinal Microbiota Alterations | Sleep-Related Outcomes | Other Psychological Stress-Related Phenotypes |
---|---|---|---|---|---|---|---|---|
Monoi et al. (2015) [75] | Healthy adults (N = 68) | Sake Yeast Powder GSP6 (Compressed Tablets) 125 mg/tablet 4 tablets/day | Randomized, double-blind, placebo-controlled, crossover trial | 4 days | EEG, OSA, GH secretion | Not reported | EEG: Increased Delta Power in First SWS Cycle; OSA:Improved subjective feeling of “sleepiness upon waking”; Activated human A2a receptors; Upregulated GH secretion during sleep | - Not reported |
Nakakita et al. (2016) [76] | Males aged 41–69 (N = 17) | L. brevis SBC8803 (capsule) 25 mg/day | Non-randomized, double-blind, placebo-controlled crossover pilot study | 10 days | EEG, AIS, Sleep diary, BDI | Not reported | EEG: Increased Delta Power in below-average individuals, AIS and EEG: NS, Sleep diary: Reduced nocturnal awakenings/movement | - Not reported |
Takada et al. (2017) [77] | Healthy fourth-year medical students under exam stress (N1 = 46, N2 = 48) | L. casei Shirota (Fermented Milk) 100 mL/day | Randomized, double-blind, placebo-controlled trial | 8 + 3 Weeks * | EEG, OSA, Subjective Anxiety | Not reported | EEG: Increased N3 Percentage maintained, Increased Delta Power in first SWS cycle, OSA: Increased Score, Improved alleviation of sleep quality decline, sleep quality restoration | - Not reported |
Nishida et al. (2017) [78] | Medical students participating in cadaver dissection course (N = 32) | L. gasseri CP2305 (Fermented Milk Beverage), 1 × 1010 cells/190g, 190g/day | Randomized placebo-controlled trial | 5 weeks | GHQ-28, Zung-SDS, HADS STAI, PSQI, 100-mm VAS EAT 26, Saliva Testing, 16S rRNA pyrosequencing (V6-V8) | Decreased Bacteroides vulgatus; Increased Dorea longicatena | Increased PSQI latency/duration scores | Reduced male diarrhea-like symptoms |
Marotta et al. (2019) [79] | Healthy adults Aged 18–35 (N = 38) | Probiotic mixture (L. fermentum LF16, L. rhamnosus LR06, L. plantarum LP01, and B. longum BL04, Maltodextrin), 4 × 109 CFU/AFU, 2.5 g/packet, 1 packet/day | Randomized, double-blind, placebo-controlled trial | 6 weeks | LEIDS-R, STAI, BDI-2, POMS, PSQI, TCI BIS/BAS, LOT-R | Not reported | PSQI: NS, subjective reports: Improved sleep quality | Increased LEIDS-R acceptance scores, Decreased POMS depression subscale scores |
Moloney et al. (2021) [80] | Healthy males Aged 18–30 (N = 30) | B. longum AH1714 (Capsule), 1 × 109 CFU/day | Randomized, placebo-controlled, repeated measures, crossover intervention study | 8 weeks + 8 weeks # | FFQ, IPAQ, GI-VAS, PSQI, PSS, BDI-II, Cognitive Performance CANTAB, PASA, CAR | α/β-diversity changes, species diversity, relative abundance: NS | Decreased PSQI Scores; Improved sleep duration/quality | Decreased PSS, BDI-II, PASA, Improved Neurocognitive performance post-acute stress |
Lee et al. (2021) [81] | Healthy Adults with Subclinical Symptoms of Depression, Anxiety, and Insomnia (N = 156) | Probiotic NVP-1704 (L. reuteri NK33 and B. adolescentis NK98, Capsule) 2.5 × 109 CFU/500mg (NK33: 2.0 × 109 CFU, NK98: 0.5 × 109 CFU), 2 capsules/dose, once daily | Randomized, double-blind, placebo-controlled trial | 8 weeks | SRI, BDI-II, BAI PSQI, ISI, Stress Response Inventory, Blood Biomarker Testing, 16S rRNA pyrosequencing | Increased Bifidobacteriaceae/Lactobacillaceae; Decreased Enterobacteriaceae | Decresed PSQI/ISI scores; Improved sleep efficiency/latency | SRI, BDI-II, BAI: Decresed depression/anxiety scores |
Ho et al. (2021) [82] | Participants Aged 20–40 with Self-reported Insomnia, (N = 40) | L. plantarum PS128 (capsule) 2 capsules/dose, once daily | Randomized, double-blind, placebo-controlled pilot trial | 30 days | PSG, PSQI, ISI, ESS, BDI-II, BAI, STAI, MEQ, VAS | Not reported | PSQI, ISI, ESS Scores: NS, Improved deep sleep quality, Decresed total bed time and REM percentage, Decreased awakening frequency in N3, Increased N3 Percentage | Decresed BDI-II and BAI Scores |
Zhu et al. (2023) [83] | Healthy Senior Students Under Exam Stress (N = 60) | L. plantarum JYLP-326 (Maltodextrin), 1.5 × 1010 CFU/packet, 1 packet/dose, twice daily | Randomized, double-blind, placebo-controlled trial | 3 weeks | HAMA-14, AIS-8, HDRS-17 16S rRNA pyrosequencing | Improved restoration of gut dysbiosis and fecal metabolome disorder, changes in fecal metabolites: Decreased Ethyl Sulfate, Increased Cyclohexylamine | Decreased AIS-8 scores | Decreased HAMA-14, HDRS-17 Scores |
Mäkelä et al. (2023) [84] | Healthy Participants Aged 18–40 Preparing for Semester Exams, (N = 190) | L. paracasei Lpc-37 (Capsule), 1.56 × 1010 CFU/day | Randomized, triple-blind, placebo-controlled trial | 10 weeks | STAI, CAR, VAS PSS, BL-VAS, PSQI IPAQ, 16S rRNA pyrosequencing | Fecal microbiota diversity or composition: NS | PSQI: Decreased sleep duration scores, Decreased sleep disturbance scores | BL-VAS: reduced Alertness |
Lan, Y. et al. (2023) [85] | Participants Diagnosed with Stress-induced Insomnia, (N = 40) | B. breve CCFM1025 (Maltodextrin), 109 CFU/day | Randomized, double-blind, placebo-controlled trial | 4 Weeks | PSQI, AIS, CAR ACTH, Serum Measurement | Not reported | Decreased PSQI Scores, Decreased AIS Scores, Improved sleep quality | - Not reported |
Chan, H.H. et al. (2023) [86] | Participants with Sleep Disorders and Emotional Symptoms, (N = 68) | Novel E3 Probiotic (L. acidophilus GKA7, L. casei GKC1, L. helveticus GKS3, L. plantarum GKM3, B. GKB2, and B. longum GKL7, Capsule) 2 × 1011 CFU/day | Self-controlled before–after study, 8 weeks | 8 Weeks | PSQI, GAD-7, PHQ-9 16S rRNA pyrosequencing | Increased relative abundance of Bifidobacterium, Lactobacillus acidophilus, Lactobacillus helveticus, and Lactobacillus plantarum | Decreased PSQI Scores, Improved subjective sleep quality | Decreased GAD-7, PHQ-9 Scores |
Patterson, E. et al. (2024) [87] | Adults with Impaired Sleep Quality Aged 18–45, (N = 89) | B. longum 1714 (Capsule), 1 × 109 CFU/day | Randomized, double-blind, placebo-controlled, parallel group, two-arm (allocation ratio 1:1) clinical trial | 8 Weeks | PSQI, ESS, WASO, SF-36, PSS, HADS GASS | Not reported | PSQI: Decreased sleep quality scores and daytime dysfunction scores, ESS, Diary reports, actigraphy: NS | SF-36: Increased Energy/Vitality Trend |
Mutoh, N. et al. (2024) [88] | Healthy Participants Aged 20–64, (N1 = 30, N2 = 30) | Bifidobacterium breve M-16V (Powdered Compressed Stick), 1 × 1010 CFU/stick, 2 sticks/day | Randomized, double-blind, placebo-controlled, parallel group clinical trial | 6 Weeks | POMS 2, STAI, SDS, AIS, CFS, metabolite measurement 16S rRNA gene sequencing analysis | No significant differences observed between groups | Decreased AIS Scores, Improved sleep quality | Reduced LIR Values, Increased mean bowel movement frequency, Increased metabolites of the gut microbiota: pipecolic acid levels |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, H.; Fei, Y.; Liu, N. Circadian Disruption and Sleep Disorders in Astronauts: A Review of Multi-Disciplinary Interventions for Long-Duration Space Missions. Int. J. Mol. Sci. 2025, 26, 5179. https://doi.org/10.3390/ijms26115179
Zong H, Fei Y, Liu N. Circadian Disruption and Sleep Disorders in Astronauts: A Review of Multi-Disciplinary Interventions for Long-Duration Space Missions. International Journal of Molecular Sciences. 2025; 26(11):5179. https://doi.org/10.3390/ijms26115179
Chicago/Turabian StyleZong, Hongjie, Yifei Fei, and Ningang Liu. 2025. "Circadian Disruption and Sleep Disorders in Astronauts: A Review of Multi-Disciplinary Interventions for Long-Duration Space Missions" International Journal of Molecular Sciences 26, no. 11: 5179. https://doi.org/10.3390/ijms26115179
APA StyleZong, H., Fei, Y., & Liu, N. (2025). Circadian Disruption and Sleep Disorders in Astronauts: A Review of Multi-Disciplinary Interventions for Long-Duration Space Missions. International Journal of Molecular Sciences, 26(11), 5179. https://doi.org/10.3390/ijms26115179