Tolypothrix Strains (Cyanobacteria) as a Source of Bioactive Compounds with Anticancer, Antioxidant and Anti-Inflammatory Activity
Abstract
1. Introduction
2. Results
2.1. Cytotoxicity and Anticancer Potential of Tolypothrix Extracts
2.2. Lipid Composition of Tolypothrix Extracts
2.3. Antioxidant Activity of Tolypothrix Extracts
2.4. Total Phenolic Content (TPC) in Non-Polar Tolypothrix Extracts
2.5. Anti-Inflammatory Activity of Tolypothrix Extracts
2.6. In Vitro Cytotoxicity of Stearidonic Acid (SDA)
2.7. Molecular Interaction of the Stearidonic Acid (SDA)
3. Discussion
3.1. Cytotoxicity and Anticancer Potential of Non-Polar Extracts from Tolypothrix Strains
3.2. Antioxidant Activity
3.3. Anti-Inflammatory Activity
3.4. In Vitro Effects of Stearidonic Acid (SDA)
4. Materials and Methods
4.1. Cyanobacterial Cultivation and Preparation of Extracts
4.2. Cell Lines
4.3. In Vitro Cytotoxicity Assays
4.4. MTT Test
4.5. Determination of Lipid Content and Fatty Acid Composition
4.6. Antioxidant Activity (DPPH and ABTS Assays)
4.7. Total Phenolic Content (TPC)
4.8. Anti-Inflammatory Activity
4.9. Molecular Interaction Analysis
4.10. Statistics
5. Research Limitations and Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PACC | Plovdiv Algal Culture Collection |
CCALA | Culture Collection of Autotrophic Organisms |
SAG | Sammlung von Algenkulturen (Culture Collection of Algae) |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
LPS | Lipopolysaccharides |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin 6 |
TNF-α | Tumor necrosis factor alpha |
IC50 | Half-maximal inhibitory concentration |
DMSO | Dimethyl sulfoxide |
DPBS | Dulbecco’s Phosphate-Buffered Saline |
TPC | Total phenolic content |
GAE | Gallic acid equivalents |
SFAs | Saturated fatty acids |
MUFAs | Monounsaturated fatty acids |
PUFAs | Polyunsaturated fatty acids |
SDA | Stearidonic acid |
EPA | Eicosapentaenoic acid |
DHA | Docosahexaenoic acid |
ALA | Alpha-linolenic acid |
AA | Arachidonic acid |
DPA | Docosapentaenoic acid |
NO | Nitric oxide |
NF-κB | Nuclear factor kappa B |
COX-2 | Cyclooxygenase-2 |
ALOX5 | Arachidonate 5-lipoxygenase |
PPAR-γ | Peroxisome proliferator-activated receptor gamma |
References
- Berrendero, E.; Perona, E.; Mateo, P. Phenotypic variability and phylogenetic relationships of the genera Tolypothrix and Calothrix (Nostocales, Cyanobacteria) from running water. Int. J. Syst. Evol. Microbiol. 2011, 61, 3039–3051. [Google Scholar] [CrossRef]
- Das, S.; Singh, D.; Madduluri, M.; Chandrababunaidu, M.M.; Gupta, A.; Adhikary, S.P.; Tripathy, S. Draft Genome Sequence of Bioactive-Compound-Producing Cyanobacterium Tolypothrix campylonemoides Strain VB511288. Genome Announc. 2015, 3, e00226-15. [Google Scholar] [CrossRef]
- Xue, Y.; Zhao, P.; Quan, C.; Zhao, Z.; Gao, W.; Li, J.; Zu, X.; Fu, D.; Feng, S.; Bai, X.; et al. Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides 2018, 107, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Burja, A.M.; Banaigs, B.; Abou-Mansour, E.; Grant Burgess, J.; Wright, P.C. Marine cyanobacteria—A prolific source of natural products. Tetrahedron 2001, 57, 9347–9377. [Google Scholar] [CrossRef]
- Dixit, R.B.; Suseela, M.R. Cyanobacteria: Potential candidates for drug discovery. Antonie Van. Leeuwenhoek 2013, 103, 947–961. [Google Scholar] [CrossRef] [PubMed]
- Niedermeyer, T. Anti-infective Natural Products from Cyanobacteria. Planta Medica 2015, 81, 1309–1325. [Google Scholar] [CrossRef]
- Shishido, T.; Humisto, A.; Jokela, J.; Liu, L.; Wahlsten, M.; Tamrakar, A.; Fewer, D.; Permi, P.; Andreote, A.; Fiore, M.; et al. Antifungal Compounds from Cyanobacteria. Mar. Drugs 2015, 13, 2124–2140. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; He, S.; Yan, X. A Review Study on Macrolides Isolated from Cyanobacteria. Mar. Drugs 2017, 15, 126. [Google Scholar] [CrossRef]
- Chorus, I.; Welker, M. Toxic Cyanobacteria in Water, 2nd ed.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2021. [Google Scholar]
- Teneva, I.; Batsalova, T.; Bardarov, K.; Moten, D.; Dzhambazov, B. A Novel Approach for Fast Screening of a Complex Cyanobacterial Extract for Immunomodulatory Properties and Antibacterial Activity. Appl. Sci. 2022, 12, 2847. [Google Scholar] [CrossRef]
- Hrouzek, P.; Tomek, P.; Lukešová, A.; Urban, J.; Voloshko, L.; Pushparaj, B.; Ventura, S.; Lukavský, J.; Štys, D.; Kopecký, J. Cytotoxicity and secondary metabolites production in terrestrial Nostoc strains, originating from different climatic/geographic regions and habitats: Is their cytotoxicity environmentally dependent? Environ. Toxicol. 2011, 26, 345–358. [Google Scholar] [CrossRef]
- Welker, M.; Von Döhren, H. Cyanobacterial peptides—Nature’s own combinatorial biosynthesis. FEMS Microbiol. Rev. 2006, 30, 530–563. [Google Scholar] [CrossRef] [PubMed]
- Hrouzek, P.; Kuzma, M.; Cerny, J.; Novak, P.; Fiser, R.; Simek, P.; Lukesova, A.; Kopecky, J. The cyanobacterial cyclic lipopeptides puwainaphycins F/G are inducing necrosis via cell membrane permeabilization and subsequent unusual actin relocalization. Chem. Res. Toxicol. 2012, 25, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Jokela, J.; Oftedal, L.; Herfindal, L.; Permi, P.; Wahlsten, M.; Doskeland, S.O.; Sivonen, K. Anabaenolysins, novel cytolytic lipopeptides from benthic Anabaena cyanobacteria. PLoS ONE 2012, 7, e41222. [Google Scholar] [CrossRef] [PubMed]
- Radau, G. Serine proteases inhibiting cyanopeptides. Pharmazie 2000, 55, 555–560. [Google Scholar]
- van Apeldoorn, M.E.; van Egmond, H.P.; Speijers, G.J.; Bakker, G.J. Toxins of cyanobacteria. Mol. Nutr. Food Res. 2007, 51, 7–60. [Google Scholar] [CrossRef]
- Sisay, M.T.; Hautmann, S.; Mehner, C.; Konig, G.M.; Bajorath, J.; Gutschow, M. Inhibition of human leukocyte elastase by brunsvicamides a-C: Cyanobacterial cyclic peptides. ChemMedChem 2009, 4, 1425–1429. [Google Scholar] [CrossRef]
- Matthew, S.; Ratnayake, R.; Becerro, M.A.; Ritson-Williams, R.; Paul, V.J.; Luesch, H. Intramolecular modulation of serine protease inhibitor activity in a marine cyanobacterium with antifeedant properties. Mar. Drugs 2010, 8, 1803–1816. [Google Scholar] [CrossRef]
- Trevisan, M.T.S.; Macedo, F.V.V.; Meent, M.v.d.; Rhee, I.K.; Verpoorte, R. Seleção de plantas com atividade anticolinasterase para tratamento da doença de Alzheimer. Química Nova 2003, 26, 301–304. [Google Scholar] [CrossRef]
- Al-Awadhi, F.H.; Simon, E.F.; Liu, N.; Ratnayake, R.; Paul, V.J.; Luesch, H. Discovery and Anti-Inflammatory Activity of a Cyanobacterial Fatty Acid Targeting the Keap1/Nrf2 Pathway. Mar. Drugs 2023, 21, 553. [Google Scholar] [CrossRef]
- Anahas, A.M.P.; Muralitharan, G. Characterization of heterocystous cyanobacterial strains for biodiesel production based on fatty acid content analysis and hydrocarbon production. Energy Convers. Manag. 2018, 157, 423–437. [Google Scholar] [CrossRef]
- Bhatnagar, M.; Parwani, L.; Sharma, V.; Ganguly, J.; Bhatnagar, A. Exopolymers from Tolypothrix tenuis and three Anabaena sp. (Cyanobacteriaceae) as novel blood clotting agents for wound management. Carbohydr. Polym. 2014, 99, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, S.; Rath, C.C.; Singh, L. Isolation, identification and screening for bioactive compounds with antimicrobial activities from sub-aerial Cyanobacteria of Eastern region, Odisha. Int. J. Pharm. Sci. Res. 2021, 12, 3716–3730. [Google Scholar] [CrossRef]
- Vestola, J.; Shishido, T.K.; Jokela, J.; Fewer, D.P.; Aitio, O.; Permi, P.; Wahlsten, M.; Wang, H.; Rouhiainen, L.; Sivonen, K. Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proc. Natl. Acad. Sci. USA 2014, 111, E1909–E1917. [Google Scholar] [CrossRef]
- Bonjouklian, R.; Smitka, T.A.; Doolin, L.E.; Molloy, R.M.; Debono, M.; Shaffer, S.A.; Moore, R.E.; Stewart, J.B.; Patterson, G.M.L. Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. Tetrahedron 1991, 47, 7739–7750. [Google Scholar] [CrossRef]
- Jaki, B.; Zerbe, O.; Heilmann, J.; Sticher, O. Two Novel Cyclic Peptides with Antifungal Activity from the Cyanobacterium Tolypothrix byssoidea (EAWAG 195). J. Nat. Prod. 2001, 64, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Morlière, P.; Mazière, J.C.; Santus, R.; Smith, C.D.; Prinsep, M.R.; Stobbe, C.C.; Fenning, M.C.; Golberg, J.L.; Chapman, J.D. Tolyporphin: A natural product from cyanobacteria with potent photosensitizing activity against tumor cells in vitro and in vivo. Cancer Res. 1998, 58, 3571–3578. [Google Scholar]
- Farooqui, A.; Biswas, D.; Rizvi, S.D.; Mahfooz, S.; Shamim, A.; Arif, J.M. Comparative free radical scavenging potential and antiproliferative activity of crude methanolic extract and partially purified compounds isolated from Tolypothrix sp. J. Algal Biomass Utln. 2019, 10, 14–25. [Google Scholar]
- Westheim, A.J.F.; Stoffels, L.M.; Dubois, L.J.; van Bergenhenegouwen, J.; van Helvoort, A.; Langen, R.C.J.; Shiri-Sverdlov, R.; Theys, J. The Modulatory Effects of Fatty Acids on Cancer Progression. Biomedicines 2023, 11, 280. [Google Scholar] [CrossRef] [PubMed]
- Prinsep, M.R.; Thomson, R.A.; West, M.L.; Wylie, B.L. Tolypodiol, an antiinflammatory diterpenoid from the cyanobacterium Tolypothrix nodosa. J. Nat. Prod. 1996, 59, 786–788. [Google Scholar] [CrossRef]
- Tena Pérez, V.; Apaza Ticona, L.; Cabanillas, A.H.; Maderuelo Corral, S.; Rosero Valencia, D.F.; Quintana, A.M.; Ortega Domenech, M.; Rumbero Sánchez, Á. Anti-inflammatory activity of glycolipids isolated from cyanobacterium Nodularia harveyana. Nat. Prod. Res. 2021, 35, 6204–6209. [Google Scholar] [CrossRef]
- Ku, C.S.; Pham, T.X.; Park, Y.; Kim, B.; Shin, M.S.; Kang, I.; Lee, J. Edible blue-green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-kappaB pathway in macrophages and splenocytes. Biochim. Biophys. Acta 2013, 1830, 2981–2988. [Google Scholar] [CrossRef] [PubMed]
- Petkova, Z.; Teneva, O.; Antova, G.; Angelova-Romova, M.; Gecheva, G.; Dimitrova-Dyulgerova, I. Chemical Composition, Lipid-Soluble Bioactive Compounds and Potential Health Benefits of the Moss Hypnum cupressiforme Hedw. Plants 2023, 12, 4190. [Google Scholar] [CrossRef] [PubMed]
- Rezanka, T.; Lukavsky, J.; Siristova, L.; Sigler, K. Regioisomer separation and identification of triacylglycerols containing vaccenic and oleic acids, and alpha- and gamma-linolenic acids, in thermophilic cyanobacteria Mastigocladus laminosus and Tolypothrix sp. Phytochemistry 2012, 78, 147–155. [Google Scholar] [CrossRef]
- Terra de Oliveira, D.; de Jesus Paiva, R.; Albuquerque de Mescouto, V.; Ferreira da Silva, S.R.; Farias Da Costa, A.A.; Santos, A.V.; Gonçalves, E.C.; Narciso da Rocha Filho, G.; Rodrigues Noronha, R.C.; Santos do Nascimento, L.A. The potential of third-generation biodiesel from Tolypothrix sp. CACIAM22 as a feedstock. Heliyon 2024, 10, e36343. [Google Scholar] [CrossRef] [PubMed]
- Gomez Candela, C.; Bermejo Lopez, L.M.; Loria Kohen, V. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health: Nutritional recommendations. Nutr. Hosp. 2011, 26, 323–329. [Google Scholar]
- Williams, C.D.; Whitley, B.M.; Hoyo, C.; Grant, D.J.; Iraggi, J.D.; Newman, K.A.; Gerber, L.; Taylor, L.A.; McKeever, M.G.; Freedland, S.J. A high ratio of dietary n-6/n-3 polyunsaturated fatty acids is associated with increased risk of prostate cancer. Nutr. Res. 2011, 31, 1–8. [Google Scholar] [CrossRef]
- Granados, S.; Quiles, J.L.; Gil, A.; Ramírez-Tortosa, M.C. Lípidos de la dieta y cáncer. Nutr. Hosp. 2006, 21, 44–54. [Google Scholar]
- Shanab, S.M.M.; Hafez, R.M.; Fouad, A.S. A review on algae and plants as potential source of arachidonic acid. J. Adv. Res. 2018, 11, 3–13. [Google Scholar] [CrossRef]
- Siddiqui, R.; Shaikh, S.; Sech, L.; Yount, H.; Stillwell, W.; Zaloga, G. Omega 3-Fatty Acids: Health Benefits and Cellular Mechanisms of Action. Mini-Rev. Med. Chem. 2004, 4, 859–871. [Google Scholar] [CrossRef]
- Berquin, I.M.; Edwards, I.J.; Chen, Y.Q. Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett. 2008, 269, 363–377. [Google Scholar] [CrossRef]
- Mansour, M.; van Ginkel, S.; Dennis, J.C.; Mason, B.; Elhussin, I.; Abbott, K.; Pondugula, S.R.; Samuel, T.; Morrison, E. The Combination of Omega-3 Stearidonic Acid and Docetaxel Enhances Cell Death over Docetaxel Alone in Human Prostate Cancer Cells. J. Cancer 2018, 9, 4536–4546. [Google Scholar] [CrossRef] [PubMed]
- Prendeville, H.; Lynch, L. Diet, lipids, and antitumor immunity. Cell. Mol. Immunol. 2022, 19, 432–444. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L. Stearidonic acid (18:4n-3): Metabolism, nutritional importance, medical uses and natural sources. Eur. J. Lipid Sci. Technol. 2007, 109, 1226–1236. [Google Scholar] [CrossRef]
- Surette, M.E. Dietary omega-3 PUFA and health: Stearidonic acid-containing seed oils as effective and sustainable alternatives to traditional marine oils. Mol. Nutr. Food Res. 2013, 57, 748–759. [Google Scholar] [CrossRef]
- Silva, I.V.G.; Silva, K.L.; Maia, R.C.; Duarte, H.M.; Coutinho, R.; Neves, M.H.C.B.; Soares, A.R.; Lopes, G.P.F. Crosstalk between biological and chemical diversity with cytotoxic and cytostatic effects of Aphanothece halophytica in vitro. An. Acad. Bras. De. Ciências 2022, 94, e20211585. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.F.; Ramos, M.F.; Herfindal, L.; Sousa, J.A.; Skaerven, K.; Vasconcelos, V.M. Antimicrobial and cytotoxic assessment of marine cyanobacteria—Synechocystis and Synechococcus. Mar. Drugs 2008, 6, 1–11. [Google Scholar] [CrossRef]
- Batsalova, T.; Basheva, D.; Bardarov, K.; Bardarov, V.; Dzhambazov, B.; Teneva, I. Assessment of the cytotoxicity, antioxidant activity and chemical composition of extracts from the cyanobacterium Fischerella major Gomont. Chemosphere 2019, 218, 93–103. [Google Scholar] [CrossRef]
- Surakka, A.; Sihvonen, L.M.; Lehtimaki, J.M.; Wahlsten, M.; Vuorela, P.; Sivonen, K. Benthic cyanobacteria from the Baltic Sea contain cytotoxic Anabaena, Nodularia, and Nostoc strains and an apoptosis-inducing Phormidium strain. Env. Toxicol. 2005, 20, 285–292. [Google Scholar] [CrossRef]
- De Rosa, T.; Ponticelli, M.; Teta, R.; Carlucci, V.; Milella, L.; Esposito, G.; Costantino, V. Harnessing Cyanobacteria’s Bioactive Potential: A Sustainable Strategy for Antioxidant Production. Microorganisms 2024, 12, 175. [Google Scholar] [CrossRef]
- Dash, S.; Pradhan, S.; Sahoo, B.; Rath, B. Characterization of selected marine cyanobacteria as a source of compounds with antioxidant activity. Discov. Plants 2024, 1, 65. [Google Scholar] [CrossRef]
- Machu, L.; Misurcova, L.; Ambrozova, J.V.; Orsavova, J.; Mlcek, J.; Sochor, J.; Jurikova, T. Phenolic content and antioxidant capacity in algal food products. Molecules 2015, 20, 1118–1133. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2015, 1851, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Aldhafiri, F.K. Investigating the Role of EPA and DHA on Cellular Oxidative Stress; Profiling Antidiabetic and Antihypertensive Potential. J. Pharm. Bioallied Sci. 2022, 14, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Sarikaya, M.; Aslan, M.; Cinar, V.; Cibuk, S.; Selcuk, M.; Embiyaoglu, N.M.; Oge, B. Antioxidant effect of omega-3 fatty acids on exercise-induced oxidative stress in rats. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 8324–8329. [Google Scholar] [CrossRef]
- Santa-María, C.; López-Enríquez, S.; Montserrat-de la Paz, S.; Geniz, I.; Reyes-Quiroz, M.E.; Moreno, M.; Palomares, F.; Sobrino, F.; Alba, G. Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients 2023, 15, 224. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 Fatty Acids in Inflammation and Autoimmune Diseases. J. Am. Coll. Nutr. 2002, 21, 495–505. [Google Scholar] [CrossRef]
- Khan, Z.; Bhadouria, P.; Bisen, P. Nutritional and Therapeutic Potential of Spirulina. Curr. Pharm. Biotechnol. 2005, 6, 373–379. [Google Scholar] [CrossRef]
- Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as sources of high added-value compounds—A brief review of recent work. Biotechnol. Prog. 2011, 27, 597–613. [Google Scholar] [CrossRef]
- Gantar, M.; Svircev, Z. Microalgae and Cyanobacteria: Food for Thought(1). J. Phycol. 2008, 44, 260–268. [Google Scholar] [CrossRef]
- He, H.; Li, W.; Chen, S.-Y.; Zhang, S.; Chen, Y.-T.; Hayashida, Y.; Zhu, Y.-T.; Tseng, S.C.G. Suppression of Activation and Induction of Apoptosis in RAW264.7 Cells by Amniotic Membrane Extract. Investig. Opthalmology Vis. Sci. 2008, 49, 4468–4475. [Google Scholar] [CrossRef]
- Pagels, F.; Guedes, A.C.; Vasconcelos, V.; Lopes, G. Anti-inflammatory compounds from cyanobacteria. In The Pharmacological Potential of Cyanobacteria; Academic Press: Cambridge, MA, USA, 2022; pp. 81–105. [Google Scholar] [CrossRef]
- Apaza, T.L.; Tena Pérez, V.; Serban, A.M.; Alonso Navarro, M.J.; Rumbero, A. Alkamides from Tropaeolum tuberosum inhibit inflammatory response induced by TNF–α and NF–κB. J. Ethnopharmacol. 2019, 235, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Ishii, M.; Nakahara, T.; Araho, D.; Murakami, J.; Nishimura, M. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling. Biomed. Pharmacother. 2017, 91, 111–120. [Google Scholar] [CrossRef]
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential fatty acids as functional components of foods—A review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef]
- Zárate, R.; el Jaber-Vazdekis, N.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Subedi, K.; Yu, H.M.; Newell, M.; Weselake, R.J.; Meesapyodsuk, D.; Qiu, X.; Shah, S.; Field, C.J. Stearidonic acid-enriched flax oil reduces the growth of human breast cancer in vitro and in vivo. Breast Cancer Res. Treat. 2014, 149, 17–29. [Google Scholar] [CrossRef]
- Teneva, I.; Dzhambazov, B.; Koleva, L.; Mladenov, R.; Schirmer, K. Toxic potential of five freshwater Phormidium species (Cyanoprokaryota). Toxicon 2005, 45, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Breil, C.; Abert Vian, M.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents. Int. J. Mol. Sci. 2017, 18, 708. [Google Scholar] [CrossRef]
- ISO 12966-4:2015; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography. ISO: Geneva, Switzerland, 2015.
- ISO 12966-2:2017; Animal and Vegetable Fat and Oils. Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017.
- Ichikawa, K.; Sasada, R.; Chiba, K.; Gotoh, H. Effect of Side Chain Functional Groups on the DPPH Radical Scavenging Activity of Bisabolane-Type Phenols. Antioxidants 2019, 8, 65. [Google Scholar] [CrossRef]
- Batsalova, T.; Moten, D.; Basheva, D.; Teneva, I.; Dzhambazov, B. In Vitro Cytotoxicity and Antioxidative Potential of Nostoc Microscopicum (Nostocales, Cyanobacteria). Toxicol. Forensic Med.—Open J. 2016, 1, 9–17. [Google Scholar] [CrossRef]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef]
- Kim, S.; Cheng, T.; He, S.; Thiessen, P.A.; Li, Q.; Gindulyte, A.; Bolton, E.E. PubChem Protein, Gene, Pathway, and Taxonomy Data Collections: Bridging Biology and Chemistry through Target-Centric Views of PubChem Data. J. Mol. Biol. 2022, 434, 167514. [Google Scholar] [CrossRef] [PubMed]
- Vita, R.; Blazeska, N.; Marrama, D.; Members, I.C.T.; Duesing, S.; Bennett, J.; Greenbaum, J.; De Almeida Mendes, M.; Mahita, J.; Wheeler, D.K.; et al. The Immune Epitope Database (IEDB): 2024 update. Nucleic Acids Res. 2025, 53, D436–D443. [Google Scholar] [CrossRef]
- Temml, V.; Kaserer, T.; Kutil, Z.; Landa, P.; Vanek, T.; Schuster, D. Pharmacophore modeling for COX-1 and -2 inhibitors with LigandScout in comparison to Discovery Studio. Future Med. Chem. 2014, 6, 1869–1881. [Google Scholar] [CrossRef]
- Yoshikawa, N.; Hutchison, G.R. Fast, efficient fragment-based coordinate generation for Open Babel. J. Cheminform 2019, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Lasker, K.; Schneidman-Duhovny, D.; Webb, B.; Huang, C.C.; Pettersen, E.F.; Goddard, T.D.; Meng, E.C.; Sali, A.; Ferrin, T.E. UCSF Chimera, MODELLER, and IMP: An integrated modeling system. J. Struct. Biol. 2012, 179, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.D.; Huang, J.F. An extension strategy of Discovery Studio 2.0 for non-bonded interaction energy automatic calculation at the residue level. Dongwuxue Yanjiu 2011, 32, 262–266. [Google Scholar]
- Chen, Y.; Zhang, H.; Wang, W.; Shen, Y.; Ping, Z. Rapid generation of high-quality structure figures for publication with PyMOL-PUB. Bioinformatics 2024, 40, btae139. [Google Scholar] [CrossRef]
Sample | Tolypothrix tenuis PACC 5497 | Tolypothrix tenuis PACC 8648 | Tolypothrix distorta CCALA 194 | Tolypothrix distorta SAG 1482-2 | Tolypothrix sp. PACC 5501 |
---|---|---|---|---|---|
Oil content (% in the wet sample) | 0.72 ± 0.22 | 0.97 ± 0.31 | 0.31 ± 0.14 | 0.45 ± 0.25 | 1.09 ± 0.37 |
Fatty Acids (%) | Tolypothrix tenuis PACC 5497 | Tolypothrix tenuis PACC 8648 | Tolypothrix distorta CCALA 194 | Tolypothrix distorta SAG 1482-2 | Tolypothrix sp. PACC 5501 | |
---|---|---|---|---|---|---|
C8:0 | Caprylic | 1.1 ± 0.1 | 1.5 ± 0.3 | 4.2 ± 0.2 | 5.1 ± 0.1 | 0.3 ± 0.0 |
C10:0 | Capric | 0.5 ± 0.2 | 0.7 ± 0.1 | 2.8 ± 0.3 | 2.8 ± 0.2 | 0.2 ± 0.0 |
C11:0 | Undecanoic | 1.7 ± 0.4 | 0.6 ± 0.1 | 0.8 ± 0.2 | 0.3 ± 0.0 | - |
C12:0 | Lauric | 0.3 ± 0.1 | 0.9 ± 0.2 | 0.5 ± 0.1 | 0.3 ± 0.0 | 1.3 ± 0.2 |
C13:0 | Tridecanoic | 0.2 ± 0.0 | 0.3 ± 0.0 | 0.4 ± 0.0 | 0.6 ± 0.1 | 0.3 ± 0.0 |
C14:0 | Myristic | 1.1 ± 0.2 | 3.5 ± 0.3 | 0.7 ± 0.1 | 0.9 ± 0.2 | 2.8 ± 0.3 |
C14:1 | Myristoleic | 0.3 ± 0.1 | 0.4 ± 0.1 | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.2 ± 0.0 |
C15:0 | Pentadecanoic | 0.2 ± 0.0 | 1.1 ± 0.2 | 0.5 ± 0.1 | 0.6 ± 0.2 | 1.5 ± 0.2 |
C15:1 | Pentadecenic | 0.5 ± 0.2 | 0.4 ± 0.0 | 0.2 ± 0.0 | 0.3 ± 0.0 | 0.4 ± 0.1 |
C16:0 | Palmitic | 32.0 ± 0.5 | 35.2 ± 0.3 | 21.3 ± 0.5 | 24.9 ± 0.5 | 36.2 ± 0.4 |
C16:1 | Palmitoleic | 2.3 ± 0.3 | 9.2 ± 0.2 | 13.5 ± 0.3 | 15.9 ± 0.4 | 6.3 ± 0.3 |
C16:2 n-6 | 7,10-hexadienoic | 0.4 ± 0.1 | 0.6 ± 0.1 | 1.4 ± 0.1 | 1.6 ± 0.2 | 0.4 ± 0.1 |
C17:0 | Margaric | 0.7 ± 0.2 | 0.5 ± 0.1 | 1.8 ± 0.2 | 2.1 ± 0.1 | 0.7 ± 0.2 |
C16:3 n-3 | 7,10,13-Hexadecatrienoic | 0.8 ± 0.2 | 0.9 ± 0.2 | 0.8 ± 0.1 | 0.9 ± 0.2 | 0.9 ± 0.1 |
C17:1 | Heptadecenoic | 1.2 ± 0.1 | 1.1 ± 0.1 | 3.0 ± 0.3 | 3.6 ± 0.2 | 1.3 ± 0.2 |
C18:0 | Stearic | 4.6 ± 0.3 | 2.8 ± 0.1 | 6.5 ± 0.2 | 2.8 ± 0.1 | 2.8 ± 0.2 |
C18:1 | Oleic | 21.0 ± 0.5 | 16.3 ± 0.3 | 21.8 ± 0.5 | 19.6 ± 0.4 | 10.2 ± 0.3 |
C18:2 n-6 | Linoleic | 7.7 ± 0.2 | 18.2 ± 0.2 | 16.1 ± 0.3 | 16.1 ± 0.3 | 11.2 ± 0.4 |
C18:3 n-6 | γ-Linolenic | 7.7 ± 0.3 | - | 0.4 ± 0.1 | - | 9.7 ± 0.2 |
C18:3 n-3 | α-Linolenic | 2.9 ± 0.4 | 2.9 ± 0.3 | 1.1 ± 0.1 | 1.3 ± 0.2 | 2.3 ± 0.1 |
C18:4 n-3 | Stearidonic | 10.7 ± 0.5 | 0.2 ± 0.0 | 0.3 ± 0.0 | - | 8.5 ± 0.3 |
C20:0 | Arachidic | - | - | 1.3 ± 0.2 | - | - |
C20:2 n-6 | Eicosadienoic | 1.8 ± 0.3 | - | - | - | - |
C22:0 | Behenic | 0.3 ± 0.0 | 2.3 ± 0.2 | 0.3 ± 0.0 | - | 0.3 ± 0.1 |
C22:6 n-3 | Docosahexaenoic | - | - | - | - | 2.2 ± 0.2 |
C24:0 | Tetracosanoic | 0.4 ± 0.1 | - | - | - | - |
Omega-6 (n-6) | 17.6 | 4.0 | 17.9 | 17.7 | 21.3 | |
Omega-3 (n-3) | 14.4 | 18.8 | 2.2 | 2.2 | 13.9 | |
Ratio n-6/n-3 | 1.22 | 0.21 | 8.14 | 8.05 | 1.53 |
Sample | Tolypothrix tenuis PACC 5497 | Tolypothrix tenuis PACC 8648 | Tolypothrix distorta CCALA 194 | Tolypothrix distorta SAG 1482-2 | Tolypothrix sp. PACC 5501 |
---|---|---|---|---|---|
µg/mg GAE | 4.70 ± 0.91 | 3.63 ± 0.33 | 12.49 ± 0.16 | 8.79 ± 0.64 | 2.10 ± 0.13 |
Targets | Binding Affinity | Type of Interacting Bonds | Distance (Å) |
---|---|---|---|
ALOX5 | −6.2 kcal/mol | Conventional hydrogen bonds | |
N:UNK1:H-A:GLN168:O * | 2.63 | ||
A:PHE402:HN-N:UNK1:O | 2.15 | ||
N:UNK1:H-A:ASP166:O | 2.42 | ||
Alkyl bonds | |||
A:TYR81:HH-N:UNK1:C | 4.29 | ||
A:LYS83:HH-N:UNK1:C | 5.57 | ||
COX-2 | −7.3 kcal/mol | Conventional hydrogen bonds | |
N:UNK1:H-A:GLN192:OE1 | 2.09 | ||
N:UNK1:H-A:LEU352:O | 2.33 | ||
Alkyl bonds | |||
N:UNK1:C-A:VAL116 | 4.22 | ||
N:UNK1:C-A:VAL349 | 4.99 | ||
N:UNK1:C-A:LEU359 | 4.34 | ||
N:UNK1:C-A:LEU531 | 3.91 | ||
Carbon hydrogen bonds | |||
A:HIS90:CE1-N:UNK1:O | 3.72 | ||
NF-κB | −4.2 kcal/mol | Conventional hydrogen bonds | |
A:GLU280:HN-N:UNK1:O | 2.04 | ||
Carbon hydrogen bonds | |||
A:SER279:CB-N:UNK1:O | 3.52 | ||
PPAR-γ | −6.7 kcal/mol | Conventional hydrogen bonds | |
N:UNK1:H-A:LEU340:O | 2.91 | ||
A:SER342:HN-N:UNK1:O | 2.94 | ||
A:GLU343:HN-N:UNK1:O | 1.83 | ||
A:GLY344:HN-N:UNK1:O | 2.54 | ||
Alkyl bonds | |||
A:ARG288-N:UNK1 | 3.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teneva, I.; Batsalova, T.; Moten, D.; Petkova, Z.; Teneva, O.; Angelova-Romova, M.; Antova, G.; Dzhambazov, B. Tolypothrix Strains (Cyanobacteria) as a Source of Bioactive Compounds with Anticancer, Antioxidant and Anti-Inflammatory Activity. Int. J. Mol. Sci. 2025, 26, 5086. https://doi.org/10.3390/ijms26115086
Teneva I, Batsalova T, Moten D, Petkova Z, Teneva O, Angelova-Romova M, Antova G, Dzhambazov B. Tolypothrix Strains (Cyanobacteria) as a Source of Bioactive Compounds with Anticancer, Antioxidant and Anti-Inflammatory Activity. International Journal of Molecular Sciences. 2025; 26(11):5086. https://doi.org/10.3390/ijms26115086
Chicago/Turabian StyleTeneva, Ivanka, Tsvetelina Batsalova, Dzhemal Moten, Zhana Petkova, Olga Teneva, Maria Angelova-Romova, Ginka Antova, and Balik Dzhambazov. 2025. "Tolypothrix Strains (Cyanobacteria) as a Source of Bioactive Compounds with Anticancer, Antioxidant and Anti-Inflammatory Activity" International Journal of Molecular Sciences 26, no. 11: 5086. https://doi.org/10.3390/ijms26115086
APA StyleTeneva, I., Batsalova, T., Moten, D., Petkova, Z., Teneva, O., Angelova-Romova, M., Antova, G., & Dzhambazov, B. (2025). Tolypothrix Strains (Cyanobacteria) as a Source of Bioactive Compounds with Anticancer, Antioxidant and Anti-Inflammatory Activity. International Journal of Molecular Sciences, 26(11), 5086. https://doi.org/10.3390/ijms26115086