Screening out microRNAs and Their Molecular Pathways with a Potential Role in the Regulation of Parvovirus B19 Infection Through In Silico Analysis
Abstract
1. Introduction
2. Results
2.1. Alignment of miRNAs to the B19V Genome
2.2. Selection of the miRNAs
2.3. Prediction of miRNA Target Genes and the miRNA-mRNA Network
2.4. Pathway Enrichment Analysis
3. Discussion
4. Materials and Methods
4.1. Identification of miRNAs That Bind to the B19V NS1, VP1, and VP2 Transcripts
4.2. Prediction of miRNA Targets
4.3. Pathway Enrichment Analysis of miRNAs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cotmore, S.F.; Agbandje-McKenna, M.; Canuti, M.; Chiorini, J.A.; Eis-Hubinger, A.-M.; Hughes, J.; Mietzsch, M.; Modha, S.; Ogliastro, M.; Pénzes, J.J.; et al. ICTV Virus Taxonomy Profile: Parvoviridae. J. Gen. Virol. 2019, 100, 367–368. [Google Scholar] [CrossRef] [PubMed]
- Broliden, K.; Tolfvenstam, T.; Norbeck, O. Clinical Aspects of Parvovirus B19 Infection. J. Intern. Med. 2006, 260, 285–304. [Google Scholar] [CrossRef]
- Woolf, A.D.; Campion, G.V.; Chishick, A.; Wise, S.; Cohen, B.J.; Klouda, P.T.; Caul, O.; Dieppe, P.A. Clinical Manifestations of Human Parvovirus B19 in Adults. Arch. Intern. Med. 1989, 149, 1153–1156. [Google Scholar] [CrossRef]
- MOREY, A.L.; Keeling, J.W.; Porter, H.J.; Fleming, K.A. Clinical and Histopathological Features of Parvovirus B19 Infection in the Human Fetus. Br. J. Obstet. Gynaecol. 1992, 99, 566–574. [Google Scholar] [CrossRef]
- Yoto, Y.; Kudoh, T.; Haseyama, K.; Suzuki, N.; Oda, T.; Katoh, T.; Takahashi, T.; Sekiguchi, S.; Chiba, S. Incidence of Human Parvovirus B19 DNA Detection in Blood Donors. Br. J. Haematol. 1995, 91, 1017–1018. [Google Scholar] [CrossRef]
- Choi, S.H.; Chang, S.P.; Won, J.C.; Lee, J.S.; Chi, H.S.; Yang, W.S.; Park, S.K. A Case of Persistent Anemia in a Renal Transplant Recipient: Association with Parvovirus B19 Infection. Scand. J. Infect. Dis. 2002, 34, 71–75. [Google Scholar] [CrossRef]
- Setúbal, S.; Da Silva Cárdias, C.A.; De Oliveira, S.A.; Do Nascimento, J.P. Viremic Blood Donor Found by a Rapid Screening Method in a Season of High Human Parvovirus B19 Activity in Niterói, Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 2004, 99, 95–99. [Google Scholar] [CrossRef]
- Heegaard, E.D.; Brown, K.E. Human Parvovirus B19. Clin. Microbiol. Rev. 2002, 15, 485. [Google Scholar] [CrossRef]
- Pattison, J.R.; Jones, S.E.; Hodgson, J.; Davis, L.R.; White, J.M.; Stroud, C.E.; Murtaza, L. Parvovirus Infections and Hypoplastic Crisis in Sickle-Cell Anaemia. Lancet 1981, 317, 664–665. [Google Scholar] [CrossRef]
- Kurtzman, G.J.; Ozawa, K.; Cohen, B.; Hanson, G.; Oseas, R.; Young, N.S. Chronic Bone Marrow Failure Due to Persistent B19 Parvovirus Infection. N. Engl. J. Med. 1987, 317, 287–294. [Google Scholar] [CrossRef]
- Brown, K.E.; Green, S.W.; Antunez de Mayolo, J.; Young, N.S.; Bellanti, J.A.; Smith, S.D.; Smith, T. Congenital Anaemia after Transplacental B19 Parvovirus Infection. Lancet 1994, 343, 895–896. [Google Scholar] [CrossRef] [PubMed]
- Norja, P.; Hokynar, K.; Aaltonen, L.M.; Chen, R.; Ranki, A.; Partio, E.K.; Kiviluoto, O.; Davidkin, I.; Leivo, T.; Eis-Hübinger, A.M.; et al. Bioportfolio: Lifelong Persistence of Variant and Prototypic Erythrovirus DNA Genomes in Human Tissue. Proc. Natl. Acad. Sci. USA 2006, 103, 7450. [Google Scholar] [CrossRef]
- Qiu, J.; Söderlund-Venermo, M.; Young, N.S. Human Parvoviruses. Clin. Microbiol. Rev. 2017, 30, 43–113. [Google Scholar] [CrossRef]
- Servant-Delmas, A.; Morinet, F. Update of the Human Parvovirus B19 Biology. Transfus. Clin. Biol. 2016, 23, 5–12. [Google Scholar] [CrossRef]
- Weigel-Kelley, K.A.; Yoder, M.C.; Srivastava, A. A5β1 Integrin as a Cellular Coreceptor for Human Parvovirus B19: Requirement of Functional Activation of Β1 Integrin for Viral Entry. Blood 2003, 102, 3927–3933. [Google Scholar] [CrossRef]
- Munakata, Y.; Saito-Ito, T.; Kumura-Ishii, K.; Huang, J.; Kodera, T.; Ishii, T.; Hirabayashi, Y.; Koyanagi, Y.; Sasaki, T. Ku80 Autoantigen as a Cellular Coreceptor for Human Parvovirus B19 Infection. Blood 2005, 106, 3449–3456. [Google Scholar] [CrossRef]
- Brown, K.E.; Anderson, S.M.; Young, N.S. Erythrocyte P Antigen: Cellular Receptor for B19 Parvovirus. Science 1993, 262, 114–117. [Google Scholar] [CrossRef]
- Ganaie, S.S.; Qiu, J. Recent Advances in Replication and Infection of Human Parvovirus B19. Front. Cell. Infect. Microbiol. 2018, 8, 166. [Google Scholar] [CrossRef]
- Cotmore, S.F.; Tattersall, P. Parvoviruses: Small Does Not Mean Simple. Annu. Rev. Virol. 2014, 1, 517–537. [Google Scholar] [CrossRef]
- Ozawa, K.; Ayub, J.; Hao, Y.S.; Kurtzman, G.; Shimada, T.; Young, N. Novel Transcription Map for the B19 (Human) Pathogenic Parvovirus. J. Virol. 1987, 61, 2395. [Google Scholar] [CrossRef]
- Yoto, Y.; Qiu, J.; Pintel, D.J. Identification and Characterization of Two Internal Cleavage and Polyadenylation Sites of Parvovirus B19 RNA. J. Virol. 2006, 80, 1604–1609. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Qiu, J. Human Parvovirus B19: A Mechanistic Overview of Infection and DNA Replication. Future Virol. 2015, 10, 155. [Google Scholar] [CrossRef]
- Luo, W.; Astell, C.R. A novel protein encoded by small RNAs of parvovirus B19. Virology 1993, 195, 448–455. [Google Scholar] [CrossRef]
- Cotmore, S.F.; McKie, V.C.; Anderson, L.J.; Astell, C.R.; Tattersall, P. Identification of the Major Structural and Nonstructural Proteins Encoded by Human Parvovirus B19 and Mapping of Their Genes by Procaryotic Expression of Isolated Genomic Fragments. J. Virol. 1986, 60, 548–557. [Google Scholar] [CrossRef]
- Bonvicini, F.; Mirasoli, M.; Manaresi, E.; Bua, G.; Calabria, D.; Roda, A.; Gallinella, G. Single-Cell Chemiluminescence Imaging of Parvovirus B19 Life Cycle. Virus Res. 2013, 178, 517–521. [Google Scholar] [CrossRef]
- Pallier, C.; Greco, A.; Le Junter, J.; Saib, A.; Vassias, I.; Morinet, F. The 3′ Untranslated Region of the B19 Parvovirus Capsid Protein MRNAs Inhibits Its Own MRNA Translation in Nonpermissive Cells. J. Virol. 1997, 71, 9482–9489. [Google Scholar] [CrossRef]
- Berillo, O.; Khailenko, V.; Ivashchenko, A.; Perlmuter-Shoshany, L.; Bolshoy, A. MiRNA and Tropism of Human Parvovirus B19. Comput. Biol. Chem. 2012, 40, 1–6. [Google Scholar] [CrossRef]
- Anbarlou, A.; AkhavanRahnama, M.; Atashi, A.; Soleimani, M.; Arefian, E.; Gallinella, G. Possible Involvement of MiRNAs in Tropism of Parvovirus B19. Mol. Biol. Rep. 2016, 43, 175–181. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Rupaimoole, R.; Slack, F.J. MicroRNA Therapeutics: Towards a New Era for the Management of Cancer and Other Diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef]
- Girardi, E.; López, P.; Pfeffer, S. On the Importance of Host MicroRNAs During Viral Infection. Front. Genet. 2018, 9, 439. [Google Scholar] [CrossRef] [PubMed]
- Bakre, A.A.; Maleki, A.; Tripp, R.A. MicroRNA and Nonsense Transcripts as Putative Viral Evasion Mechanisms. Front. Cell. Infect. Microbiol. 2019, 9, 152. [Google Scholar] [CrossRef] [PubMed]
- Niskanen, E.A.; Kalliolinna, O.; Ihalainen, T.O.; Häkkinen, M.; Vihinen-Ranta, M. Mutations in DNA Binding and Transactivation Domains Affect the Dynamics of Parvovirus NS1 Protein. J. Virol. 2013, 87, 11762–11774. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Q.; Yao, Q.; Chen, L.; Li, J.; Qiu, J.; Sun, Y. The DNA Replication, Virogenesis and Infection of Canine Minute Virus in Non-Permissive and Permissive Cells. Virus Res. 2014, 179, 147–152. [Google Scholar] [CrossRef]
- Sanchez, J.L.; Romero, Z.; Quinones, A.; Torgeson, K.R.; Horton, N.C. DNA Binding and Cleavage by the Human Parvovirus B19 NS1 Nuclease Domain. Biochemistry 2016, 55, 6577–6593. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Z.; Gao, Y.; Fan, B.; Yang, J.; Chen, X.; Zhao, X.; Shao, Q.; Zhang, W.; Cao, C.; et al. Structures and Implications of the Nuclease Domain of Human Parvovirus B19 NS1 Protein. Comput. Struct. Biotechnol. J. 2022, 20, 4645–4655. [Google Scholar] [CrossRef]
- Yan, Y.-Q.; Jin, L.; Wang, Y.; Lu, S.-Y.; Pei, Y.-F.; Zhu, D.-W.; Pang, F.-S.; Dong, H.; Hu, G.-X. Goose Parvovirus and the Protein NS1 Induce Apoptosis through the AIF-Mitochondrial Pathway in Goose Embryo Fibroblasts. Res. Vet. Sci. 2021, 137, 68–76. [Google Scholar] [CrossRef]
- Wan, Z.; Zhi, N.; Wong, S.; Keyvanfar, K.; Liu, D.; Raghavachari, N.; Munson, P.J.; Su, S.; Malide, D.; Kajigaya, S.; et al. Human Parvovirus B19 Causes Cell Cycle Arrest of Human Erythroid Progenitors via Deregulation of the E2F Family of Transcription Factors. J. Clin. Investig. 2010, 120, 3530–3544. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, J.; Li, Y.; Liang, S.; Huo, S.; Wang, X.; Zuo, Y.; Cui, D.; Li, W.; Zhong, Z.; et al. Porcine Parvovirus Infection Causes Pig Placenta Tissue Damage Involving Nonstructural Protein 1 (NS1)-Induced Intrinsic ROS/Mitochondria-Mediated Apoptosis. Viruses 2019, 11, 389. [Google Scholar] [CrossRef]
- Chen, A.Y.; Kleiboeker, S.; Qiu, J. Productive Parvovirus B19 Infection of Primary Human Erythroid Progenitor Cells at Hypoxia Is Regulated by STAT5A and MEK Signaling but Not HIFα. PLoS Pathog. 2011, 7, e1002088. [Google Scholar] [CrossRef]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of Post-Transcriptional Regulation by MicroRNAs: Are the Answers in Sight? Nat. Rev. Genet. 2008, 9, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y. MicroRNAs in the Regulation of Immune Response against Infections. J. Zhejiang Univ. Sci. B 2013, 14, 1–7. [Google Scholar] [CrossRef]
- Huang, J.; Wang, F.; Argyris, E.; Chen, K.; Liang, Z.; Tian, H.; Huang, W.; Squires, K.; Verlinghieri, G.; Zhang, H. Cellular MicroRNAs Contribute to HIV-1 Latency in Resting Primary CD4+ T Lymphocytes. Nat. Med. 2007, 13, 1241–1247. [Google Scholar] [CrossRef]
- Haasnoot, J.; Berkhout, B. RNAi and Cellular Mirnas in Infections by Mammalian Viruses. Methods Mol. Biol. 2011, 721, 23–41. [Google Scholar] [CrossRef]
- Mishra, R.; Kumar, A.; Ingle, H.; Kumar, H. The Interplay Between Viral-Derived MiRNAs and Host Immunity During Infection. Front. Immunol. 2020, 10, 3079. [Google Scholar] [CrossRef]
- Skalsky, R.L.; Cullen, B.R. Viruses, MicroRNAs, and Host Interactions. Annu. Rev. Microbiol. 2010, 64, 123–141. [Google Scholar] [CrossRef]
- Bruscella, P.; Bottini, S.; Baudesson, C.; Pawlotsky, J.M.; Feray, C.; Trabucchi, M. Viruses and MiRNAs: More Friends than Foes. Front. Microbiol. 2017, 8, 824. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, Z.; Xiong, M.; Zou, W.; Deng, X.; Ganaie, S.S.; Kleiboeker, S.; Peng, J.; Liu, K.; Wang, S.; et al. Parvovirus B19 NS1 Protein Induces Cell Cycle Arrest at G2-Phase by Activating the ATR-CDC25C-CDK1 Pathway. PLoS Pathog. 2017, 13, e1006266. [Google Scholar] [CrossRef]
- Brown, K.E.; Young, N.S. Parvovirus B19 Infection and Hematopoiesis. Blood Rev. 1995, 9, 176–182. [Google Scholar] [CrossRef]
- Vaswani, C.M.; Varkouhi, A.K.; Gupta, S.; Ektesabi, A.M.; Tsoporis, J.N.; Yousef, S.; Plant, P.J.; da Silva, A.L.; Cen, Y.; Tseng, Y.-C.; et al. Preventing Occludin Tight-Junction Disruption via Inhibition of MicroRNA-193b-5p Attenuates Viral Load and Influenza-Induced Lung Injury. Mol. Ther. 2023, 31, 2681–2701. [Google Scholar] [CrossRef]
- Tan, Y.; Lin, B.; Ye, Y.; Wen, D.; Chen, L.; Zhou, X. Differential Expression of Serum MicroRNAs in Cirrhosis That Evolve into Hepatocellular Carcinoma Related to Hepatitis B Virus. Oncol. Rep. 2015, 33, 2863–2870. [Google Scholar] [CrossRef] [PubMed]
- Franco, S.; Buccione, D.; Pluvinet, R.; Mothe, B.; Ruiz, L.; Nevot, M.; Jordan-Paiz, A.; Ramos, L.; Aussó, S.; Morillas, R.M.; et al. Large-Scale Screening of Circulating MicroRNAs in Individuals with HIV-1 Mono-Infections Reveals Specific Liver Damage Signatures. Antivir. Res. 2018, 155, 106–114. [Google Scholar] [CrossRef]
- Rajput, R.; Periwal, N.; Mukherjee, C.; Verma, P.; Sharma, J.; Arora, P.; Kaur, B.; Sood, V. Novel Insights into Host Responses to Japanese Encephalitis Virus Infection: Reanalysis of Public Transcriptome and MicroRNAome Datasets. Virus Res. 2022, 320, 198887. [Google Scholar] [CrossRef]
- Pan, K.; Wang, Y.; Pan, P.; Xu, G.; Mo, L.; Cao, L.; Wu, C.; Shen, X. The Regulatory Role of MicroRNA-MRNA Co-Expression in Hepatitis B Virus-Associated Acute Liver Failure. Ann. Hepatol. 2019, 18, 883–892. [Google Scholar] [CrossRef]
- Srivastava, S.; Garg, I.; Singh, Y.; Meena, R.; Ghosh, N.; Kumari, B.; Kumar, V.; Eslavath, M.R.; Singh, S.; Dogra, V.; et al. Evaluation of Altered MiRNA Expression Pattern to Predict COVID-19 Severity. Heliyon 2023, 9, e13388. [Google Scholar] [CrossRef]
- Jing, J.; Wang, Z.; Li, H.; Sun, L.; Yuan, Y. Key Elements Involved in Epstein–Barr Virus-Associated Gastric Cancer and Their Network Regulation. Cancer Cell Int. 2018, 18, 146. [Google Scholar] [CrossRef]
- Alves, A.D.R.; Melgaço, J.G.; Cássia Nc Garcia, R.D.; Raposo, J.V.; De Paula, V.S.; Araújo, C.C.V.; Pinto, M.A.; Amado, L.A. Persistence of Parvovirus B19 in Liver from Transplanted Patients with Acute Liver Failure. Future Microbiol. 2020, 15, 307–317. [Google Scholar] [CrossRef]
- Sule, A.; Golding, S.E.; Ahmad, S.F.; Watson, J.; Ahmed, M.H.; Kellogg, G.E.; Bernas, T.; Koebley, S.; Reed, J.C.; Povirk, L.F.; et al. ATM Phosphorylates PP2A Subunit A Resulting in Nuclear Export and Spatiotemporal Regulation of the DNA Damage Response. Cell. Mol. Life Sci. 2022, 79, 603. [Google Scholar] [CrossRef]
- Pan, L.; Xue, Y.; Wang, K.; Zheng, X.; Islam, A.; Tapryal, N.; Chakraborty, A.; Bacsi, A.; Ba, X.; Hazra, T.K.; et al. Nei-like DNA Glycosylase 2 Selectively Antagonizes Interferon-β Expression upon Respiratory Syncytial Virus Infection. J. Biol. Chem. 2023, 299, 105028. [Google Scholar] [CrossRef]
- Ruan, P.; Wang, M.; Cheng, A.; Zhao, X.; Yang, Q.; Wu, Y.; Zhang, S.; Tian, B.; Huang, J.; Ou, X.; et al. Mechanism of Herpesvirus UL24 Protein Regulating Viral Immune Escape and Virulence. Front. Microbiol. 2023, 14, 1268429. [Google Scholar] [CrossRef]
- Cui, B.; Song, L.; Wang, Q.; Li, K.; He, Q.; Wu, X.; Gao, F.; Liu, M.; An, C.; Gao, Q.; et al. Non-Small Cell Lung Cancers (NSCLCs) Oncolysis Using Coxsackievirus B5 and Synergistic DNA-Damage Response Inhibitors. Signal Transduct. Target. Ther. 2023, 8, 366. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Yan, Z.; Cheng, F.; Engelhardt, J.F.; Qiu, J. Replication of an Autonomous Human Parvovirus in Non-Dividing Human Airway Epithelium Is Facilitated through the DNA Damage and Repair Pathways. PLoS Pathog. 2016, 12, e1005399. [Google Scholar] [CrossRef]
- Lou, S.; Luo, Y.; Cheng, F.; Huang, Q.; Shen, W.; Kleiboeker, S.; Tisdale, J.F.; Liu, Z.; Qiu, J. Human Parvovirus B19 DNA Replication Induces a DNA Damage Response That Is Dispensable for Cell Cycle Arrest at Phase G2/M. J. Virol. 2012, 86, 10748–10758. [Google Scholar] [CrossRef]
- Luo, Y.; Lou, S.; Deng, X.; Liu, Z.; Li, Y.; Kleiboeker, S.; Qiu, J. Parvovirus B19 Infection of Human Primary Erythroid Progenitor Cells Triggers ATR-Chk1 Signaling, Which Promotes B19 Virus Replication. J. Virol. 2011, 85, 8046–8055. [Google Scholar] [CrossRef]
- Giglia-Mari, G.; Zotter, A.; Vermeulen, W. DNA Damage Response. Cold Spring Harb. Perspect. Biol. 2011, 3, a000745. [Google Scholar] [CrossRef]
- Moffatt, S.; Yaegashi, N.; Tada, K.; Tanaka, N.; Sugamura, K. Human Parvovirus B19 Nonstructural (NS1) Protein Induces Apoptosis in Erythroid Lineage Cells. J. Virol. 1998, 72, 3018–3028. [Google Scholar] [CrossRef]
- Chen, A.Y.; Qiu, J. Parvovirus Infection-Induced Cell Death and Cell Cycle Arrest. Future Virol. 2010, 5, 731–743. [Google Scholar] [CrossRef]
- Su, C.; Zhan, G.; Zheng, C. Evasion of Host Antiviral Innate Immunity by HSV-1, an Update. Virol. J. 2016, 13, 38. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Ye, H.; Yao, M.; Li, S.; Chen, L. Nonstructural Protein (NS1) of Human Parvovirus B19 Stimulates Host Innate Immunity and Blunts the Exogenous Type I Interferon Signaling in Vitro. Virus Res. 2016, 222, 48–52. [Google Scholar] [CrossRef]
- Poole, B.D.; Kivovich, V.; Gilbert, L.; Naides, S.J. Parvovirus B19 Nonstructural Protein-Induced Damage of Cellular DNA and Resultant Apoptosis. Int. J. Med. Sci. 2011, 8, 88–96. [Google Scholar] [CrossRef]
- Pinzón, N.; Li, B.; Martinez, L.; Sergeeva, A.; Presumey, J.; Apparailly, F.; Seitz, H. MicroRNA Target Prediction Programs Predict Many False Positives. Genome Res. 2017, 27, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Eulalio, A.; Mano, M. MicroRNA Screening and the Quest for Biologically Relevant Targets. SLAS Discov. 2015, 20, 1003–1017. [Google Scholar] [CrossRef] [PubMed]
- Riolo, G.; Cantara, S.; Marzocchi, C.; Ricci, C. MiRNA Targets: From Prediction Tools to Experimental Validation. Methods Protoc. 2020, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zheng, J.; Chen, Z.; Liu, Y.; Dura, B.; Kwak, M.; Xavier-Ferrucio, J.; Lu, Y.-C.; Zhang, M.; Roden, C.; et al. Single-Cell MicroRNA-MRNA Co-Sequencing Reveals Non-Genetic Heterogeneity and Mechanisms of MicroRNA Regulation. Nat. Commun. 2019, 10, 95. [Google Scholar] [CrossRef]
- Sansom, S.E.; Nuovo, G.J.; Martin, M.M.; Kotha, S.R.; Parinandi, N.L.; Elton, T.S. MiR-802 Regulates Human Angiotensin II Type 1 Receptor Expression in Intestinal Epithelial C2BBe1 Cells. Am. J. Physiol.-Gastrointest. Liver Physiol. 2010, 299, G632–G642. [Google Scholar] [CrossRef]
- Nuovo, G.J. In Situ Detection of MicroRNAs in Paraffin Embedded, Formalin Fixed Tissues and the Co-Localization of Their Putative Targets. Methods 2010, 52, 307–315. [Google Scholar] [CrossRef]
- Thomas, M.; Lieberman, J.; Lal, A. Desperately Seeking MicroRNA Targets. Nat. Struct. Mol. Biol. 2010, 17, 1169–1174. [Google Scholar] [CrossRef]
- Trobaugh, D.W.; Klimstra, W.B. MicroRNA Regulation of RNA Virus Replication and Pathogenesis. Trends Mol. Med. 2017, 23, 80–93. [Google Scholar] [CrossRef]
- Zhi, N.; Zádori, Z.; Brown, K.E.; Tijssen, P. Construction and Sequencing of an Infectious Clone of the Human Parvovirus B19. Virology 2004, 318, 142–152. [Google Scholar] [CrossRef]
- Quillet, A.; Saad, C.; Ferry, G.; Anouar, Y.; Vergne, N.; Lecroq, T.; Dubessy, C. Improving Bioinformatics Prediction of MicroRNA Targets by Ranks Aggregation. Front. Genet. 2020, 10, 1330. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X. MiRDB: An Online Database for Prediction of Functional MicroRNA Targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting Effective MicroRNA Target Sites in Mammalian MRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- Betel, D.; Koppal, A.; Agius, P.; Sander, C.; Leslie, C. Comprehensive Modeling of MicroRNA Targets Predicts Functional Non-Conserved and Non-Canonical Sites. Genome Biol. 2010, 11, R90. [Google Scholar] [CrossRef]
- Kertesz, M.; Iovino, N.; Unnerstall, U.; Gaul, U.; Segal, E. The Role of Site Accessibility in MicroRNA Target Recognition. Nat. Genet. 2007, 39, 1278–1284. [Google Scholar] [CrossRef]
- Liu, H.; Yue, D.; Chen, Y.; Gao, S.-J.; Huang, Y. Improving Performance of Mammalian MicroRNA Target Prediction. BMC Bioinform. 2010, 11, 476. [Google Scholar] [CrossRef]
- Dweep, H.; Gretz, N. MiRWalk2.0: A Comprehensive Atlas of MicroRNA-Target Interactions. Nat. Methods 2015, 12, 697. [Google Scholar] [CrossRef]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A Comprehensive Gene Set Enrichment Analysis Web Server 2016 Update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef]
Ranking | miRNA | R1 | R1’ | R4 | R5 | R6 | R7 | Score 1 |
---|---|---|---|---|---|---|---|---|
1 | miR-4799-5p | 24 | 24 | 56 | 56 | 56 | 56 | 272 |
2 | miR-5690 | 35 | 35 | 47 | 47 | 35 | 35 | 234 |
3 | miR-335-3p | 48 | 48 | 36 | 36 | 24 | 24 | 216 |
4 | miR-193b-5p | 47 | 47 | 35 | 35 | 24 | 24 | 212 |
5 | miR-6771-3p | 47 | 47 | 35 | 35 | 24 | 24 | 212 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvado, V.d.A.; Alves, A.D.R.; Coelho, W.L.d.C.N.P.; Costa, M.A.; Guterres, A.; Amado, L.A. Screening out microRNAs and Their Molecular Pathways with a Potential Role in the Regulation of Parvovirus B19 Infection Through In Silico Analysis. Int. J. Mol. Sci. 2025, 26, 5038. https://doi.org/10.3390/ijms26115038
Salvado VdA, Alves ADR, Coelho WLdCNP, Costa MA, Guterres A, Amado LA. Screening out microRNAs and Their Molecular Pathways with a Potential Role in the Regulation of Parvovirus B19 Infection Through In Silico Analysis. International Journal of Molecular Sciences. 2025; 26(11):5038. https://doi.org/10.3390/ijms26115038
Chicago/Turabian StyleSalvado, Vívian de Almeida, Arthur Daniel Rocha Alves, Wagner Luis da Costa Nunes Pimentel Coelho, Mayla Abrahim Costa, Alexandro Guterres, and Luciane Almeida Amado. 2025. "Screening out microRNAs and Their Molecular Pathways with a Potential Role in the Regulation of Parvovirus B19 Infection Through In Silico Analysis" International Journal of Molecular Sciences 26, no. 11: 5038. https://doi.org/10.3390/ijms26115038
APA StyleSalvado, V. d. A., Alves, A. D. R., Coelho, W. L. d. C. N. P., Costa, M. A., Guterres, A., & Amado, L. A. (2025). Screening out microRNAs and Their Molecular Pathways with a Potential Role in the Regulation of Parvovirus B19 Infection Through In Silico Analysis. International Journal of Molecular Sciences, 26(11), 5038. https://doi.org/10.3390/ijms26115038