Importance of Advanced Detection Methodologies from Plant Cells to Human Microsystems Targeting Anticancer Applications
Abstract
1. Introduction
2. Definition of Small Plant Metabolites (SPMs) and Their Importance
Importance of a Comprehensive Database of SPM Metabolite Functionalities
3. Advanced Micro-Spectroscopy Technologies in Single Plant Cell Targeting Its Metabolomics
Technique | Description | Applications | Advantages | Reference |
---|---|---|---|---|
Stable Isotope Probing (Sis) | It utilizes stable isotopes to track metabolic pathways in real time. | Monitoring the biosynthesis of bioactive compounds and tracking nutrient usage. | High specificity, non-destructive. | [31] |
Raman Microspectroscopy | Provides molecular fingerprints of cells based on vibrational spectroscopy. | Identify genomic variations and track the accumulation of metabolites. | Label-free, high resolution. | [32] |
NanoSIMS | High-resolution spatial mapping of stable isotopes in cells and tissues. | Mapping nutrient utilization and visualizing metabolic activity. | High spatial resolution, multi-isotope detection. | [33] |
Hyperspectral SRS | Combines Raman spectroscopy with hyperspectral imaging for 3D molecular maps. | Visualizing the biosynthesis of metabolites and mapping the distribution of lipids and carotenoids. | High sensitivity, 3D imaging. | [34] |
Integration of Sis and Raman | Combines Sis and Raman spectroscopy for real-time metabolic tracking. | Tracking paramylon biosynthesis and monitoring metabolic activity in microalgae. | Real-time monitoring, non-destructive. | [14] |
Important Example for Single Plant Cell Tracking Technology by Raman-Sis Metabolic Mode of Action
4. The Potential Application of Spectroscopy and Sis Integration in Plant Studies
5. The Linkage Between Plant Cell Studies and Their Metabolite Applications in Cancer Studies
6. The Core Biological Applications of Detection Technologies in Cancer Cells Are Different Approaches from the SPM Metabolites’ Mode of Actions
Phytochemical Class | Key Compounds | Mechanisms of Action | Pathways Affected | Reference |
---|---|---|---|---|
Terpenoids | D-limonene, Cucurbitacin | Induces apoptosis, inhibits the PI3K/Akt pathway, and disrupts the cell cycle. | PI3K/Akt, JAK2/STAT3 | [56] |
Phenolics | Curcumin, Gallic acid | Modulates NF-κB, induces cell cycle arrest, and promotes apoptosis. | NF-κB, Cyclin D1/CDK4 | [57] |
Flavonoids | Quercetin, Catechins | Inhibits Wnt/β-catenin, induces oxidative stress, and promotes apoptosis. | Wnt/β-catenin, ROS | [58] |
Carotenoids | β-carotene, β-cryptoxanthin | Modulates oxidative stress, inhibits EMT, and induces apoptosis. | TGF-β1, MMPs | [59] |
Alkaloids | Sophocarpine, Vinblastine | Induces apoptosis, inhibits inflammation, and reduces cytokine production. | Caspase-3, TNF-α, IL-6 | [60] |
7. Meta-Analysis of Articles on SPMs as Bioactive Anticancer Agents
Database of Articles on SPMs as Bioactive Anticancer Agents Used for Meta-Analysis
8. Critical Analysis of Plant SPMs’ Pathway Mode of Action
9. Intervention of Plant SPM Metabolites Based on Their Chemical Structure
9.1. Hexacyclic Compounds
SPMs Molecule | PubMed * | Target Genes | Target Pathways | Mode of Action | Reference |
---|---|---|---|---|---|
Tanshinone IIA | 560 | c-Myc, STARD13, Nrf2, GCLC, NQO1, P53, and HO-1. | Apoptosis and miR30b-P53-PTPN11/SHP2 pathway. | The suppressive effect on c-Myc gene binding patterns can significantly trigger P53 activation and enhance RNAPII enzyme phosphorylation, resulting in apoptosis. Additionally, it downregulates the miR-125b level while upregulating the target gene STARD13 (StAR-related lipid transfer protein 13). | [77,85] |
Tanshinone I | 560 | Bcl-2, Bid, ITGA2, PPAT, AURKA, VEGF, PI3K, Akt, PRK, JNK, MMP9, ABCG2, AMPKα, PARP, Bax, and Caspase-3. | Akt/Nrf2, SAPK/JNK, PI3K/Akt/mTOR, JAK/STAT3, and ATF-2/ERK kinases. | Disruption of mitochondrial membrane potential (MMP) induces apoptosis in liver cancer cells, inhibits their proliferation, downregulates membrane fluidity, and suppresses the expression of the anti-apoptotic protein Bcl-2. | [86,87,88,89] |
Thymoquinone | 703 | P-Akt, P65, XIAP, Bcl-2, COX-2, VEGF, NF-κB, Bcl-2, XIAPs, Bax, Bid, PARP, GRP78, CHOP, Rac1, and Caspase-3. | Inhibits the growth of cancer cells through the downregulation of PI3K/Akt, STAT3, VEGF, NF-κB, the non-protein sulfhydryl pathway, lactate dehydrogenase, and creatine kinase. | Induces the phosphorylation of extracellular signal-regulated kinase (ERK), MMP, Akt, and cyclic AMP-activated protein kinase-α (AMPKα). Inhibits Akt and AMPKα while inducing the nuclear localization of Nrf2 and the expression of HO-1. Induces the generation of ROS. | [90,91] |
Dihydrotanshinone I | 69 | TNF-α, COX2 (Cyclooxygenase-2), IL-8 in the DOX, and NF-κB. | Activate IKKs (IκB kinases) to induce the inactivation of cytokine expression. | Inactivates NF-κB, which is sequestered in the cytoplasm by phosphorylated IκB (inhibitor of NF-κB) on serine residues. | [92,93] |
Zeylenone | 12 | Bcl-2, Bcl-xl, Bax, and Caspase-3. | Hsp90/Akt/GSK3β apoptosis and necrosis pathway, PI3K/Akt/mTOR, Akt/GSK3β signaling, ERK mitochondrial apoptotic pathway, Fanconi anemia (FA) pathway, and Chk1/P53 pathway. | A 13.2 μM treatment induced a loss of MMP (p < 0.01) and ATM/Chk activation in DNA damage-mediated cycle arrest and phosphorylation of Chk and P53. This led to a decline in the anti-apoptotic proteins Bcl-xl and Bcl-2, coupled with an increase in the pro-apoptotic protein Bax, resulting in decreased levels of pro-caspase-3. | [94,95] |
Cryptotanshinone | 246 | IGF1R, MEK1, IRS1, PIK3CA, STAT3, EGFR, ERBB2, mTOR, ERK | STAT3 signaling pathway. | It has a high affinity for binding to STAT3. A dose of 2.5–10 μM decreases the elevated expression of MuRF1 and MAFbx/Atrogin-1 in C2C12 myotubes. | [96,97] |
9.2. Phenolics
SPMs Molecules | PubMed * | Target Genes | Target Pathways | Mode of Action | Reference |
---|---|---|---|---|---|
Genistein | 3008 | CDK1, TERT, TR, EGFR, PDGFR, IR, Abl, Fgr, Fyn, and Src | PI3K/Akt pathway, Cyclin B1 | Increase p21 expression, which inhibits HER2 and NF-κB signaling. ZAP-70 expressing cells become activated. It activates caspase-3, inhibits TGF-β-induced EMT, and inhibits NFAT1. It also inhibits FAK expression and enhances the efficacy of EGFR inhibitors. Furthermore, it downregulates NF-κB expression and prevents NF-κB DNA binding. | [103,104] |
Protocatechuic | 246 | PI3K, P-Akt, PKCε, Bax, Bcl-2, caspase-3, P53, and PARP | Apoptosis, Ras/Akt/NF-κB, RhoB, RhoA, PI3K/Akt, Rac1, and Cdc4 pathways | Downregulate MMP-2 and TIMP-2 production. Upregulating the formation of RhoB/PKCε complexes in cancer cells at 25 μM for 8 h significantly reduces Bcl-2 and PARP expression. It induces Bax expression, which is responsible for the intrinsic apoptotic pathway. | [105,106] |
Gallic | 1530 | P21, P53, Mcl-1, Caspase-3, Bcl-2, CD31, VEGF, JNK, GRP78, NF-κB, Nrf2, HO-1, NF-κB, PCNA, FAS, NF-κB, b-Raf, p-MEK, Akt, EGFR-1, VEGF, Bad, MDR1, and PARP | Migration, metastasis, apoptosis, ferroptosis, P53/IL-6/STAT3 pathway, cell cycle arrest, oncogene expression, and M2 macrophage polarization | Reducing anti-apoptotic Bcl-2, nuclear ataxia-telangiectasia mutated (ATM), matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), urokinase plasminogen activator (uPA), and its receptor (uPAR) regulates the activity of hypoxia-inducible factor-1α (HIF-1α). | [12,107,108] |
Cinnamic | 2534 | TGF-β1, iNOS and COX-2, NF-κB, claudin-2, Akt, and ESR1 | Vascular endothelial growth factor (VEGF), Bax/Bcl-2, phosphorylation of the P65 subunit and its binding affinity to NFκB, TNF-α protein expression, LPS-mediated pathway, MAPK3 | Induces cell cycle arrest at the G0/G1 phase through regulating G1-related protein expression (Cdk4), triggers apoptosis by inhibiting the Akt/Bad pathway, and depolarizes the mitochondrial membrane potential while increasing ROS release. | [109,110,111] |
Curcumin | 8682 | COX-2, NF-κB, Akt, LOX, STAT3, AP1, IL-1, IL-2, Bcl-2, and Bcl-xL, IL-6, EGFR, PDGF, leukemia inhibitory factor (LIF), TNF-α, oncostatin M, MAPKs, ERK1/2, and CNTF | Interferon-γ (IFNγ) pathway, and phosphorylation of the P65 subunit and its binding affinity to NFκB | Increases the production of pro-inflammatory molecules, such as cytokines and ROS. Inhibits phosphorylation by IκB kinase (IKK). Downregulates genes that are anti-apoptotic, mitogenic, and pro-angiogenic. | [57,112] |
9.3. Flavonoids
9.4. Carotenoids
9.5. Alkaloids
9.6. Terpenoids
10. Emerging Technologies for Detecting Plant SPM Structures and Their Bioactivities
10.1. Real-Time Tracking Technologies for Plants’ SPM Bioactivities onto Cancer Cell Metabolism
10.2. Nanoparticle Applications in Spectroscopy and Metal Oxide Sensors for SPM Biomarker Integration Technologies
10.3. Nanotechnology in Terms of Particles and Sensors for SPM Biomarker Integration
10.4. Acoustic Sensors for SPM Biomarker Integration Technologies
11. Integration Between the Emerging Technologies
12. Limitations of the Current Review
13. Conclusions and Future Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Gouda, M.M. Editorial—Natural Antioxidant Phytochemicals: Anticancer Impacts, Mode of Action, and Recent Biotechnological Applications. Nat. Prod. Commun. 2025, 20, 1934578X241311079. [Google Scholar] [CrossRef]
- Gouda, M.; Lv, J.-M.; Huang, Z.; Chen, J.-C.; He, Y.; Li, X. Bioprobe-RNA-seq-microRaman system for deep tracking of the live single-cell metabolic pathway chemometrics. Biosens. Bioelectron. 2024, 261, 116504. [Google Scholar] [CrossRef] [PubMed]
- Goutam, J.; Sharma, G.; Yadav, V.; Pathak, G.; Kharwar, R.N.; Sharma, D. A Focused Review of the Pharmacological Potentials of Terrein as an Anticancer Agent. Nat. Prod. Commun. 2023, 18, 1934578. [Google Scholar] [CrossRef]
- Tu, S.N.; Hu, F.; Zhang, J.; Cai, H.; Yang, J. Research progress on the signaling pathway mechanism of terpenoids against breast cancer. Discov. Oncol. 2025, 16, 433. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 2021, 6, 201. [Google Scholar] [CrossRef]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef]
- Imtiaz, S.; Ferdous, U.T.; Nizela, A.; Hasan, A.; Shakoor, A.; Zia, A.W.; Uddin, S. Mechanistic study of cancer drug delivery: Current techniques, limitations, and future prospects. Eur. J. Med. Chem. 2025, 290, 117535. [Google Scholar] [CrossRef]
- Doostmohammadi, A.; Jooya, H.; Ghorbanian, K.; Gohari, S.; Dadashpour, M. Potentials and future perspectives of multi-target drugs in cancer treatment: The next generation anti-cancer agents. Cell Commun. Signal. 2024, 22, 228. [Google Scholar] [CrossRef]
- Mir, M.A.; Banik, B.K. Sustainable healing: Natural compounds facilitating the future cancer treatment. World Dev. Sustain. 2025, 6, 100215. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, H.; Tan, L.; Siu, K.T.H.; Guan, X.-Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024, 9, 175. [Google Scholar] [CrossRef]
- Xu, D.; Shao, F.; Bian, X.; Meng, Y.; Liang, T.; Lu, Z. The Evolving Landscape of Noncanonical Functions of Metabolic Enzymes in Cancer and Other Pathologies. Cell Metab. 2021, 33, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Yang, B.; Chen, J.; Wang, S.; Zhang, W.; Guo, Y.; Han, Y.; Li, H.; Dang, Y.; Yuan, Y.; et al. Gallic acid induces T-helper-1-like T(reg) cells and strengthens immune checkpoint blockade efficacy. J. Immunother. Cancer 2022, 10, e004037. [Google Scholar] [CrossRef] [PubMed]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci. 2019, 22, 225. [Google Scholar]
- Zhan, Z.; Gouda, M.; Li, X. Raman-stable isotope technology for tracking single-cell plant metabolism. Trends Plant Sci. 2023, 28, 1081–1082. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Wang, W.; Ni, X.Z.; Li, C.Y.; Li, Y.F. Classifying maize kernels naturally infected by fungi using near-infrared hyperspectral imaging. Infrared Phys. Technol. 2020, 105, 103242. [Google Scholar] [CrossRef]
- Engelberts, J.P.; Robbins, S.J.; Damjanovic, K.; Webster, N.S. Integrating novel tools to elucidate the metabolic basis of microbial symbiosis in reef holobionts. Mar. Biol. 2021, 168, 175. [Google Scholar] [CrossRef]
- Sasaki, R.; Toda, S.; Sakamoto, T.; Sakuradani, E.; Shigeto, S. Simultaneous Imaging and Characterization of Polyunsaturated Fatty Acids, Carotenoids, and Microcrystalline Guanine in Single Aurantiochytrium limacinum Cells with Linear and Nonlinear Raman Microspectroscopy. J. Phys. Chem. B 2023, 127, 2708–2718. [Google Scholar] [CrossRef]
- Ferreira, G.F.; Pinto, L.F.R.; Maciel, R.; Fregolente, L.V. A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles. Renew. Sustain. Energy Rev. 2019, 109, 448–466. [Google Scholar] [CrossRef]
- Wang, X.; Ma, S.; Kong, F. Microalgae Biotechnology: Methods and Applications. Bioengineering 2024, 11, 965. [Google Scholar] [CrossRef]
- Goold, H.D.; Moseley, J.L.; Lauersen, K.J. The synthetic future of algal genomes. Cell Genom. 2024, 4, 100505. [Google Scholar] [CrossRef]
- Stavridou, E.; Karapetsi, L.; Nteve, G.M.; Tsintzou, G.; Chatzikonstantinou, M.; Tsaousi, M.; Martinez, A.; Flores, P.; Merino, M.; Dobrovic, L.; et al. Landscape of microalgae omics and metabolic engineering research for strain improvement: An overview. Aquaculture 2024, 587, 740803. [Google Scholar] [CrossRef]
- Dabbousy, R.; Rima, M.; Roufayel, R.; Rahal, M.; Legros, C.; Sabatier, J.-M.; Fajloun, Z. Plant Metabolomics: The Future of Anticancer Drug Discovery. Pharmaceuticals 2024, 17, 1307. [Google Scholar] [CrossRef] [PubMed]
- Danzi, F.; Pacchiana, R.; Mafficini, A.; Scupoli, M.T.; Scarpa, A.; Donadelli, M.; Fiore, A. To metabolomics and beyond: A technological portfolio to investigate cancer metabolism. Signal Transduct. Target. Ther. 2023, 8, 137. [Google Scholar] [CrossRef]
- Islam, M.R.; Islam, F.; Nafady, M.H.; Akter, M.; Mitra, S.; Das, R.; Urmee, H.; Shohag, S.; Akter, A.; Chidambaram, K.; et al. Natural Small Molecules in Breast Cancer Treatment: Understandings from a Therapeutic Viewpoint. Molecules 2022, 27, 2165. [Google Scholar] [CrossRef]
- Lv, J.M.; Gouda, M.; Zhu, Y.Y.; Ye, X.Q.; Chen, J.C. Ultrasound-Assisted Extraction Optimization of Proanthocyanidins from Kiwi (Actinidia chinensis) Leaves and Evaluation of Its Antioxidant Activity. Antioxidants 2021, 10, 1317. [Google Scholar] [CrossRef]
- Paul, J.K.; Azmal, M.; Haque, A.N.M.S.N.B.; Talukder, O.F.; Meem, M.; Ghosh, A. Phytochemical-mediated modulation of signaling pathways: A promising avenue for drug discovery. Adv. Redox Res. 2024, 13, 100113. [Google Scholar] [CrossRef]
- Zafar, S.; Armaghan, M.; Khan, K.; Hassan, N.; Sharifi-Rad, J.; Habtemariam, S.; Kieliszek, M.; Butnariu, M.; Bagiu, I.-C.; Bagiu, R.V.; et al. New insights into the anticancer therapeutic potential of maytansine and its derivatives. Biomed. Pharmacother. 2023, 165, 115039. [Google Scholar] [CrossRef] [PubMed]
- Bogomolovas, J.; Chen, J. Illuminating understudied kinases: A generalizable biosensor development method applied to protein kinase N. Commun. Biol. 2025, 8, 109. [Google Scholar] [CrossRef]
- Gouda, M.; Chen, K.; Li, X.; Liu, Y.; He, Y. Detection of microalgae single-cell antioxidant and electrochemical potentials by gold microelectrode and Raman micro-spectroscopy combined with chemometrics. Sens. Actuators B Chem. 2021, 329, 129229. [Google Scholar] [CrossRef]
- Ota, N.; Yonamine, Y.; Asai, T.; Yalikun, Y.; Ito, T.; Ozeki, Y.; Hoshino, Y.; Tanaka, Y. Isolating Single Euglena gracilis Cells by Glass Microfluidics for Raman Analysis of Paramylon Biogenesis. Anal. Chem. 2019, 91, 9631–9639. [Google Scholar] [CrossRef]
- Zachleder, V.; Vítová, M.; Hlavová, M.; Moudříková, Š.; Mojzeš, P.; Heumann, H.; Becher, J.R.; Bišová, K. Stable isotope compounds—Production, detection, and application. Biotechnol. Adv. 2018, 36, 784–797. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.; Muhamadali, H.; Goodacre, R. The Role of Raman Spectroscopy Within Quantitative Metabolomics. Annu. Rev. Anal. Chem. 2021, 14, 323–345. [Google Scholar] [CrossRef]
- Nuñez, J.; Renslow, R.; Cliff, J.B., III; Anderton, C.R. NanoSIMS for biological applications: Current practices and analyses. Biointerphases 2017, 13, 03b301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shin, J.; Tague, N.; Lin, H.; Zhang, M.; Ge, X.; Wong, W.; Dunlop, M.J.; Cheng, J.X. Visualization of a Limonene Synthesis Metabolon Inside Living Bacteria by Hyperspectral SRS Microscopy. Adv. Sci. 2022, 9, e2203887. [Google Scholar] [CrossRef]
- Li, X.; Dong, Y.; Chen, K.; Perumal, A.B.; Zhan, Z.; Gouda, M.; He, Y. 13C-metabolic flux analysis of lipid accumulation in the green microalgae Tetradesmus obliquus under nitrogen deficiency stress. Bioresour. Technol. 2023, 388, 129740. [Google Scholar] [CrossRef]
- Matanfack, G.A.; Taubert, M.; Guo, S.; Houhou, R.; Bocklitz, T.; Küsel, K.; Rösch, P.; Popp, J. Influence of Carbon Sources on Quantification of Deuterium Incorporation in Heterotrophic Bacteria: A Raman-Stable Isotope Labeling Approach. Anal. Chem. 2020, 92, 11429–11437. [Google Scholar] [CrossRef] [PubMed]
- Azemtsop Matanfack, G.; Pistiki, A.; Rösch, P.; Popp, J. Raman Stable Isotope Probing of Bacteria in Visible and Deep UV-Ranges. Life 2021, 11, 1003. [Google Scholar] [CrossRef]
- Yonamine, Y.; Asai, T.; Suzuki, Y.; Ito, T.; Ozeki, Y.; Hoshino, Y. Probing the Biogenesis of Polysaccharide Granules in Algal Cells at Sub-Organellar Resolution via Raman Microscopy with Stable Isotope Labeling. Anal. Chem. 2021, 93, 16796–16803. [Google Scholar] [CrossRef]
- Fu, D.; Yu, Y.; Folick, A.; Currie, E.; Farese, R.V.; Tsai, T.-H.; Xie, X.S.; Wang, M.C. In Vivo Metabolic Fingerprinting of Neutral Lipids with Hyperspectral Stimulated Raman Scattering Microscopy. J. Am. Chem. Soc. 2014, 136, 8820–8828. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, G.; Jiang, N.; Ying, G.; Li, Y.; Cai, X.; Meng, J.; Mai, L.; Guo, M.; Zhang, Y.S.; et al. Nature-inspired micropatterns. Nat. Rev. Methods Primers 2023, 3, 68. [Google Scholar] [CrossRef]
- Lippold, E.; Schlüter, S.; Mueller, C.W.; Höschen, C.; Harrington, G.; Kilian, R.; Gocke, M.I.; Lehndorff, E.; Mikutta, R.; Vetterlein, D. Correlative Imaging of the Rhizosphere—A Multimethod Workflow for Targeted Mapping of Chemical Gradients. Environ. Sci. Technol. 2023, 57, 1538–1549. [Google Scholar] [CrossRef] [PubMed]
- Schaible, G.A.; Kohtz, A.J.; Cliff, J.; Hatzenpichler, R. Correlative SIP-FISH-Raman-SEM-NanoSIMS links identity, morphology, biochemistry, and physiology of environmental microbes. ISME Commun. 2022, 2, 52. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Rivera, G.; Ballesteros-Vivas, D.; Parada-Alfonso, F.; Ibañez, E.; Cifuentes, A. Recent applications of high resolution mass spectrometry for the characterization of plant natural products. Trac-Trend Anal. Chem. 2019, 112, 87–101. [Google Scholar] [CrossRef]
- Kendall, I.P.; Evershed, R.P. Determination of Arginine δ15N Values in Plant and Animal Proteins by Gas Chromatography–Combustion–Isotope Ratio Mass Spectrometry. Anal. Chem. 2020, 92, 13246–13253. [Google Scholar] [CrossRef]
- Chahrour, O.; Cobice, D.; Malone, J. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J. Pharm. Biomed. Anal. 2015, 113, 2–20. [Google Scholar] [CrossRef]
- Butler, T.; Kapoore, R.V.; Vaidyanathan, S. Phaeodactylum tricornutum: A Diatom Cell Factory. Trends Biotechnol. 2020, 38, 606–622. [Google Scholar] [CrossRef] [PubMed]
- Sears, R.G.; Lenaghan, S.C.; Stewart, C.N. AI to enable plant cell metabolic engineering. Trends Plant Sci. 2024, 29, 126–129. [Google Scholar] [CrossRef]
- Ali, M.; Benfante, V.; Basirinia, G.; Alongi, P.; Sperandeo, A.; Quattrocchi, A.; Giannone, A.G.; Cabibi, D.; Yezzi, A.; Di Raimondo, D.; et al. Applications of Artificial Intelligence, Deep Learning, and Machine Learning to Support the Analysis of Microscopic Images of Cells and Tissues. J. Imaging 2025, 11, 59. [Google Scholar] [CrossRef]
- Huang, Z.; Gouda, M.; Ye, S.; Zhang, X.; Li, S.; Wang, T.; Zhang, J.; Song, X.; Li, X.; He, Y. Advanced deep learning algorithm for instant discriminating of tea leave stress symptoms by smartphone-based detection. Plant Physiol. Biochem. PPB 2024, 212, 108769. [Google Scholar] [CrossRef]
- Albashir, D.; Lu, H.; Gouda, M.; Acharya, D.R.; Danhassan, U.A.; Bakur, A.; Shi, Y.; Chen, Q. A novel polydiacetylene-functionalized fibrinogen paper-based biosensor for on-spot and rapid detection of Staphylococcus aureus. Food Chem. 2024, 458, 140291. [Google Scholar] [CrossRef]
- Lv, J.M.; Gouda, M.; Ye, X.Q.; Shao, Z.P.; Chen, J.C. Evaluation of Proanthocyanidins from Kiwi Leaves (Actinidia chinensis) against Caco-2 Cells Oxidative Stress through Nrf2-ARE Signaling Pathway. Antioxidants 2022, 11, 1367. [Google Scholar] [CrossRef] [PubMed]
- Seca, A.M.L.; Pinto, D. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int. J. Mol. Sci. 2018, 19, 263. [Google Scholar] [CrossRef]
- Xing, P.; Zhong, Y.; Cui, X.; Liu, Z.; Wu, X. Natural products in digestive tract tumors metabolism: Functional and application prospects. Pharmacol. Res. 2023, 191, 106766. [Google Scholar] [CrossRef]
- Kim, J.W.; Choi, J.; Park, M.N.; Kim, B. Apoptotic Effect of Gallic Acid via Regulation of p-p38 and ER Stress in PANC-1 and MIA PaCa-2 Cells Pancreatic Cancer Cells. Int. J. Mol. Sci. 2023, 24, 15236. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.M.; Cheung, P.C.K. Gene expression profile analysis of gallic acid-induced cell death process. Sci. Rep. 2021, 11, 16743. [Google Scholar] [CrossRef]
- Cho, H.; Shen, Q.; Zhang, L.H.; Okumura, M.; Kawakami, A.; Ambrose, J.; Sigoillot, F.; Miller, H.R.; Gleim, S.; Cobos-Correa, A.; et al. CYP27A1-dependent anti-melanoma activity of limonoid natural products targets mitochondrial metabolism. Cell Chem. Biol. 2021, 28, 1407–1419.e6. [Google Scholar] [CrossRef]
- Giordano, A.; Tommonaro, G. Curcumin and Cancer. Nutrients 2019, 11, 2376. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Seo, E.M.; Sharma, A.R.; Ganbold, B.; Park, J.; Sharma, G.; Kang, Y.H.; Song, D.K.; Lee, S.S.; Nam, J.S. Regulation of Wnt signaling activity for growth suppression induced by quercetin in 4T1 murine mammary cancer cells. Int. J. Oncol. 2013, 43, 1319–1325. [Google Scholar] [CrossRef]
- Kapinova, A.; Kubatka, P.; Golubnitschaja, O.; Kello, M.; Zubor, P.; Solar, P.; Pec, M. Dietary phytochemicals in breast cancer research: Anticancer effects and potential utility for effective chemoprevention. Environ. Health Prev. 2018, 23, 36. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Li, Y.; Xiao, Z.; Hu, Z.; Zhang, J. Sophocarpine and matrine inhibit the production of TNF-alpha and IL-6 in murine macrophages and prevent cachexia-related symptoms induced by colon26 adenocarcinoma in mice. Int. Immunopharmacol. 2008, 8, 1767–1772. [Google Scholar] [CrossRef]
- Malik, M.S.; Alsantali, R.I.; Jassas, R.S.; Alsimaree, A.A.; Syed, R.; Alsharif, M.A.; Kalpana, K.; Morad, M.; Althagafi, I.I.; Ahmed, S.A. Journey of anthraquinones as anticancer agents—A systematic review of recent literature. RSC Adv. 2021, 11, 35806–35827. [Google Scholar] [CrossRef]
- Wilson, D.W.; Nash, P.; Buttar, H.S.; Griffiths, K.; Singh, R.; De Meester, F.; Horiuchi, R.; Takahashi, T. The Role of Food Antioxidants, Benefits of Functional Foods, and Influence of Feeding Habits on the Health of the Older Person: An Overview. Antioxidants 2017, 6, 81. [Google Scholar] [CrossRef]
- Schneider, F.; Pan, L.; Ottenbruch, M.; List, T.; Gaich, T. The Chemistry of Nonclassical Taxane Diterpene. Acc. Chem. Res. 2021, 54, 2347–2360. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Anand, U.; Pandey, S.K.; Ashby, C.R.; Assaraf, Y.G.; Chen, Z.S.; Dey, A. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist. Update 2021, 55, 100754. [Google Scholar] [CrossRef]
- Yu, J.; Wang, X.; Du, P.; Shi, H. The therapeutic potential and application of marine alkaloids in treating breast cancer. Front. Mar. Sci. 2024, 11, 1440928. [Google Scholar] [CrossRef]
- Pandey, P.; Lakhanpal, S.; Mahmood, D.; Kang, H.N.; Kim, B.; Kang, S.; Choi, J.; Choi, M.; Pandey, S.; Bhat, M.; et al. An updated review summarizing the anticancer potential of flavonoids via targeting NF-kB pathway. Front. Pharmacol. 2025, 15, 1513422. [Google Scholar] [CrossRef]
- Smeu, A.; Marcovici, I.; Dehelean, C.A.; Dumitrel, S.-I.; Borza, C.; Lighezan, R. Flavonoids and Flavonoid-Based Nanopharmaceuticals as Promising Therapeutic Strategies for Colorectal Cancer—An Updated Literature Review. Pharmaceuticals 2025, 18, 231. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Huang, M.; Hou, S.; Yuan, J.; Chang, X.; Gao, S.; Zhang, Z.; Wu, Z.; Li, J. Therapeutic Potential of Terpenoids in Cancer Treatment: Targeting Mitochondrial Pathways. Cancer Rep. 2024, 7, e70006. [Google Scholar] [CrossRef]
- Saldarriaga, S.; Rodríguez-Salazar, C.A.; Recalde-Reyes, D.P.; Paladines Beltrán, G.M.; Cuéllar Álvarez, L.N.; Silva Ortíz, Y.L. Phenolic Composition, Antioxidant, and Anti-Proliferative Activities Against Human Colorectal Cancer Cells of Amazonian Fruits Copoazú (Theobroma grandiflorum) and Buriti (Mauritia flexuosa). Molecules 2025, 30, 1250. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, J.; Zhao, K.; Chen, B.; Sun, Z. Natural products modulating MAPK for CRC treatment: A promising strategy. Front. Pharmacol. 2025, 16, 1514486. [Google Scholar] [CrossRef]
- Kubatka, P.; Bojkova, B.; Nosalova, N.; Huniadi, M.; Samuel, S.M.; Sreenesh, B.; Hrklova, G.; Kajo, K.; Hornak, S.; Cizkova, D.; et al. Targeting the MAPK signaling pathway: Implications and prospects of flavonoids in 3P medicine as modulators of cancer cell plasticity and therapeutic resistance in breast cancer patients. EPMA J. 2025, 16, 1–27. [Google Scholar] [CrossRef]
- Kangra, K.; Kakkar, S.; Mittal, V.; Kumar, V.; Aggarwal, N.; Chopra, H.; Malik, T.; Garg, V. Incredible use of plant-derived bioactives as anticancer agents. RSC Adv. 2025, 15, 1721–1746. [Google Scholar] [CrossRef] [PubMed]
- Calaf, G.M.; Crispin, L.A.; Quisbert-Valenzuela, E.O. Noscapine and Apoptosis in Breast and Other Cancers. Int. J. Mol. Sci. 2024, 25, 3536. [Google Scholar] [CrossRef]
- Lu, S.; Zhou, S.; Xiang, X.; Zhang, B.; Xu, Z.; Pei, Q.; Xie, Z. Paclitaxel prodrug nanoparticles boost antitumor efficacy via hitchhiking of human serum albumin. J. Colloid. Interface Sci. 2025, 679, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Li, Y.; Yang, F.; Zheng, W.; Hu, M.; Wang, J.; Ma, S.; Deng, Y.; Luo, Y.; Ye, T.; Yin, W. Punica granatum (pomegranate) leaves extract induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in non-small cell lung cancer in vitro. Biomed. Pharmacother. 2016, 80, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.S.M.; Uddin, F.; Khan, F.B.; Kamal, M.A.; Hoque, M. Therapeutic and pharmacological potential of Tanshinones against lung cancer: A systematic review. Phytomedicine Plus 2022, 2, 100202. [Google Scholar] [CrossRef]
- Fu, L.; Han, B.; Zhou, Y.; Ren, J.; Cao, W.; Patel, G.; Kai, G.; Zhang, J. The Anticancer Properties of Tanshinones and the Pharmacological Effects of Their Active Ingredients. Front. Pharmacol. 2020, 11, 193. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Gu, Y.E. Tanshinone IIA induces apoptosis of ovarian cancer cells in vitro and in vivo through attenuation of PI3K/AKT/JNK signaling pathways. Oncol. Lett. 2019, 17, 1896–1902. [Google Scholar] [CrossRef]
- Bai, S.; Cui, S.; Wen, W.; Leung, E.L.-H.; Bai, J.; Lin, H.; Cui, Y.; Yang, L.; Liu, Z.; Zheng, Y.; et al. Tanshinone IIA Suppresses Non-Small Cell Lung Cancer Through Beclin-1-Mediated Autophagic Apoptosis. Engineering 2022, 19, 128–138. [Google Scholar] [CrossRef]
- Zeng, S.; Zhu, B.; Zeng, J.; Wu, W.; Jiang, C. Zeylenone represses the progress of human prostate cancer by downregulating the Wnt/β-catenin pathway. Mol. Med. Rep. 2018, 18, 5572–5578. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Mei, J.; Chen, J.; Zhang, D.; Wang, J.; Wang, X.; Yi, M.; Zhou, Z.; Zhang, Y.; Chen, M.; et al. Comparison Between Portal Vein Perfusion Chemotherapy and Neoadjuvant Hepatic Arterial Infusion Chemotherapy for Resectable Intermediate to Advanced Stage Hepatocellular Carcinoma. Ann. Surg. Oncol. 2021, 29, 2016–2029. [Google Scholar] [CrossRef]
- Chichirau, A.; Flueraru, M.; Chepelev, L.L.; Wright, J.S.; Willmore, W.G.; Durst, T.; Hussain, H.H.; Charron, M. Mechanism of cytotoxicity of catechols and a naphthalenediol in PC12-AC cells: The connection between extracellular autoxidation and molecular electronic structure. Free Radic. Biol. Med. 2005, 38, 344–355. [Google Scholar] [CrossRef]
- Fang, Z.Y.; Zhang, M.; Liu, J.-N.; Zhao, X.; Zhang, Y.-Q.; Fang, L. Tanshinone IIA: A Review of its Anticancer Effects. Front. Pharmacol. 2021, 11, 611087. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Huang, T.; Xu, S.H.; Che, B.W.; Yu, Y.; Zhang, W.J.; Tang, K.F. Molecular Mechanism of Tanshinone against Prostate Cancer. Molecules 2022, 27, 5594. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Zhong, C.; Chen, Z.; Zheng, Z.; Li, S.; Chen, B.; Wu, Q.; Yao, H. Tanshinone I: Pharmacological activities, molecular mechanisms against diseases and future perspectives. Phytomedicine 2023, 110, 154632. [Google Scholar] [CrossRef]
- Fengchao, C.; Siya, Z.; Tongtong, Y.; Hongquan, W.; Jie, L.; Qiang, W.; Danish, S.; Kun, L. The enhanced cytotoxicity on breast cancer cells by Tanshinone I-induced photodynamic effect. Sci. Rep. 2023, 13, 18107. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, W.; Wang, Y. The mechanisms of tanshinone in the treatment of tumors. Front. Pharmacol. 2023, 14, 1282203. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, X.; Tian, X.; Zhang, J.; Xue, S.; Jiang, Y.; Liu, T.; Wang, X.; Sun, Q.; Hong, Y.; et al. Tanshinone I inhibits doxorubicin-induced cardiotoxicity by regulating Nrf2 signaling pathway. Phytomedicine 2022, 106, 154439. [Google Scholar] [CrossRef]
- Salah, A.; Sleem, R.; Abd-Elaziz, A.; Khalil, H. Regulation of NF-kappaB Expression by Thymoquinone; A Role in Regulating Pro-Inflammatory Cytokines and Programmed Cell Death in Hepatic Cancer Cells. Asian Pac. J. Cancer Prev. 2023, 24, 3739–3748. [Google Scholar] [CrossRef]
- Xu, D.; Ma, Y.; Zhao, B.; Li, S.; Zhang, Y.; Pan, S.; Wu, Y.; Wang, J.; Wang, D.; Pan, H.; et al. Thymoquinone induces G2/M arrest, inactivates PI3K/Akt and nuclear factor-kappaB pathways in human cholangiocarcinomas both in vitro and in vivo. Oncol. Rep. 2014, 31, 2063–2070. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yu, J.; Zhong, B.; Lu, J.; Lu, J.J.; Li, S.; Lu, Y. Pharmacological activities of dihydrotanshinone I, a natural product from Salvia miltiorrhiza Bunge. Pharmacol. Res. 2019, 145, 104254. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Mo, L.; Wang, Z.; Peng, D.; Zhou, C.; Niu, W.; Liu, Y.; Chen, Z. Dihydrotanshinone I attenuates estrogen-deficiency bone loss through RANKL-stimulated NF-kappaB, ERK and NFATc1 signaling pathways. Int. Immunopharmacol. 2023, 123, 110572. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xiao, H.; Sun, Y.; Cao, L. Zeylenone synergizes with cisplatin in osteosarcoma by enhancing DNA damage, apoptosis, and necrosis via the Hsp90/AKT/GSK3beta and Fanconi anaemia pathway. Phytother. Res. 2021, 35, 5899–5918. [Google Scholar] [CrossRef]
- Su, R.; Cao, W.; Ma, G.; Li, W.; Li, Z.; Liu, Y.; Chen, L.; Chen, Z.; Li, X.; Cui, P.; et al. Cyclohexene oxide CA, a derivative of zeylenone, exhibits anti-cancer activity in glioblastoma by inducing G0/G1 phase arrest through interference with EZH2. Front. Pharmacol. 2023, 14, 1326245. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Q.; Zhang, H.; Wan, L.; Xin, B.; Cao, Y.; Zhang, J.; Guo, C. Cryptotanshinone prevents muscle wasting in CT26-induced cancer cachexia through inhibiting STAT3 signaling pathway. J. Ethnopharmacol. 2020, 260, 113066. [Google Scholar] [CrossRef]
- Vundavilli, H.; Datta, A.; Sima, C.; Hua, J.P.; Lopes, R.; Bittner, M. Targeting oncogenic mutations in colorectal cancer using cryptotanshinone. PLoS ONE 2021, 16, e0247190. [Google Scholar] [CrossRef]
- Won, S.H.; Lee, H.J.; Jeong, S.J.; Lu, J.X.; Kim, S.H. Activation of p53 Signaling and Inhibition of Androgen Receptor Mediate Tanshinone IIA Induced G1 Arrest in LNCaP Prostate Cancer Cells. Phytother. Res. 2012, 26, 669–674. [Google Scholar] [CrossRef]
- Liu, S.; Han, Z.; Trivett, A.L.; Lin, H.; Hannifin, S.; Yang, D.; Oppenheim, J.J. Cryptotanshinone has curative dual anti-proliferative and immunotherapeutic effects on mouse Lewis lung carcinoma. Cancer Immunol. Immunother. 2019, 68, 1059–1071. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Seidel, V.; Izabela, M.; Monserrat-Mequida, M.; Sureda, A.; Ormazabal, V.; Zuniga, F.A.; Mangalpady, S.S.; Pezzani, R.; Ydyrys, A.; et al. Phenolic compounds as Nrf2 inhibitors: Potential applications in cancer therapy. Cell Commun. Signal. 2023, 21, 89. [Google Scholar] [CrossRef]
- Wang, W.; Li, M.; Wang, L.; Chen, L.; Goh, B.C. Curcumin in cancer therapy: Exploring molecular mechanisms and overcoming clinical challenges. Cancer Lett. 2023, 570, 216332. [Google Scholar] [CrossRef]
- Li, J.; Xiang, S.; Zhang, Q.; Wu, J.; Tang, Q.; Zhou, J.; Yang, L.; Chen, Z.; Hann, S.S. Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-kappaB/p65 and MUC1-C. J. Exp. Clin. Cancer Res. 2015, 34, 46. [Google Scholar] [CrossRef]
- Russo, M.; Russo, G.L.; Daglia, M.; Kasi, P.D.; Ravi, S.; Nabavi, S.F.; Nabavi, S.M. Understanding genistein in cancer: The “good” and the “bad” effects: A review. Food Chem. 2016, 196, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular Mechanisms of Action of Genistein in Cancer: Recent Advances. Front. Pharmacol. 2019, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Guo, W.; Li, G.; Li, S.; Li, H.; Li, X.; Niu, B.; Song, M.; Zhang, Y.; Xu, Z.; et al. Protocatechuic Aldehyde Represses Proliferation and Migration of Breast Cancer Cells through Targeting C-terminal Binding Protein 1. J. Breast Cancer 2020, 23, 20–35. [Google Scholar] [CrossRef] [PubMed]
- Acquaviva, R.; Tomasello, B.; Di Giacomo, C.; Santangelo, R.; La Mantia, A.; Naletova, I.; Sarpietro, M.G.; Castelli, F.; Malfa, G.A. Protocatechuic Acid, a Simple Plant Secondary Metabolite, Induced Apoptosis by Promoting Oxidative Stress through HO-1 Downregulation and p21 Upregulation in Colon Cancer Cells. Biomolecules 2021, 11, 1485. [Google Scholar] [CrossRef]
- Dos Santos, M.; Lequesne, J.; Leconte, A.; Corbinais, S.; Parzy, A.; Guilloit, J.M.; Varatharajah, S.; Brachet, P.E.; Dorbeau, M.; Vaur, D.; et al. Perioperative treatment in resectable gastric cancer with spartalizumab in combination with fluorouracil, leucovorin, oxaliplatin and docetaxel (FLOT): A phase II study (GASPAR). BMC Cancer 2022, 22, 537. [Google Scholar] [CrossRef]
- Jiang, Y.; Pei, J.; Zheng, Y.; Miao, Y.J.; Duan, B.Z.; Huang, L.F. Gallic Acid: A Potential Anti-Cancer Agent. Chin. J. Integr. Med. 2022, 28, 661–671. [Google Scholar] [CrossRef]
- Feng, L.S.; Cheng, J.B.; Su, W.Q.; Li, H.Z.; Xiao, T.; Chen, D.A.; Zhang, Z.L. Cinnamic acid hybrids as anticancer agents: A mini-review. Arch. Pharm. 2022, 355, e2200052. [Google Scholar] [CrossRef]
- Bayat, Z.; Tarokhian, A.; Taherkhani, A. Cinnamic acids as promising bioactive compounds for cancer therapy by targeting MAPK3: A computational simulation study. J. Complement. Integr. Med. 2023, 20, 621–630. [Google Scholar] [CrossRef]
- Su, P.; Shi, Y.; Wang, J.; Shen, X.; Zhang, J. Anticancer Agents Derived from Natural Cinnamic Acids. Anti-Cancer Agents Med. Chem. 2015, 15, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Ming, T.; Tao, Q.; Tang, S.; Zhao, H.; Yang, H.; Liu, M.; Ren, S.; Xu, H. Curcumin: An epigenetic regulator and its application in cancer. Biomed. Pharmacother. 2022, 156, 113956. [Google Scholar] [CrossRef]
- Sheng, K.; Li, Y.; Wang, Z.; Hang, K.; Ye, Z. p-Coumaric acid suppresses reactive oxygen species-induced senescence in nucleus pulposus cells. Exp. Ther. Med. 2022, 23, 183. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, D.; Tan, C.; Hu, Y.; Sundararajan, B.; Zhou, Z. Profiling of Flavonoid and Antioxidant Activity of Fruit Tissues from 27 Chinese Local Citrus Cultivars. Plants 2020, 9, 196. [Google Scholar] [CrossRef]
- He, M.; Min, J.-W.; Kong, W.-L.; He, X.-H.; Li, J.-X.; Peng, B.-W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 2016, 115, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Yu, Y.C.; Hsia, S.M. Perspectives on the Role of Isoliquiritigenin in Cancer. Cancers 2021, 13, 115. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, C.; Du, B.; Che, J.; Gao, F.; Zheng, C.; Chen, J. Isoliquiritigenin: A natural compound with a promising role in inhibiting breast cancer lung metastasis. J. Tradit. Complement. Med. 2024, 10, 001. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Leung, L.K.; Wong, W.T. Licorice Extract Isoliquiritigenin Increased Cytosol Calcium and Induced Apoptosis in Colon Cancer Cells via Transient Receptor Potential Vanilloid-1. Cancer Med. 2025, 14, e70705. [Google Scholar] [CrossRef]
- Hisaka, T.; Sakai, H.; Sato, T.; Goto, Y.; Nomura, Y.; Fukutomi, S.; Fujita, F.; Mizobe, T.; Nakashima, O.; Tanigawa, M.; et al. Quercetin Suppresses Proliferation of Liver Cancer Cell Lines In Vitro. Anticancer Res. 2020, 40, 4695–4700. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Tunison, K.; Mitsche, M.A.; McDonald, J.G.; Garg, A. Insights into lipid accumulation in skeletal muscle in dysferlin-deficient mice. J. Lipid Res. 2019, 60, 2057–2073. [Google Scholar] [CrossRef]
- Maurya, A.K.; Vinayak, M. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide. PLoS ONE 2016, 11, e0160686. [Google Scholar] [CrossRef] [PubMed]
- Swapnil, P.; Meena, M.; Singh, S.K.; Dhuldhaj, U.P.; Harish; Marwal, A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Curr. Plant Biol. 2021, 26, 100203. [Google Scholar] [CrossRef]
- Bae, S.; Lim, J.W.; Kim, H. β-Carotene Inhibits Expression of Matrix Metalloproteinase-10 and Invasion in Helicobacter pylori-Infected Gastric Epithelial Cells. Molecules 2021, 26, 1567. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Chen, R.; Chen, J.; Yang, N.; Li, K.; Zhang, Z.; Zhang, R. Study of the Anti-Inflammatory Mechanism of β-Carotene Based on Network Pharmacology. Molecules 2023, 28, 7540. [Google Scholar] [CrossRef] [PubMed]
- Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem. 2018, 9, 56–72. [Google Scholar] [CrossRef]
- Soltani, N.; Firouzabadi, F.N.; Shafeinia, A.; Shirali, M.; Sadr, A.S. De Novo transcriptome assembly and differential expression analysis of catharanthus roseus in response to salicylic acid. Sci. Rep. 2022, 12, 17803. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Meng, T.; Qin, Y.; Li, T.; Fu, J.; Yin, J. Nitric oxide-donating and reactive oxygen species-responsive prochelators based on 8-hydroxyquinoline as anticancer agents. Eur. J. Med. Chem. 2021, 212, 113153. [Google Scholar] [CrossRef]
- da Silva, M.F.d.G.F.; Fernandes, J.B.; Forim, M.R.; Vieira, P.C.; de Sá, I.C.G. Alkaloids Derived from Anthranilic Acid: Quinoline, Acridone, and Quinazoline. In Natural Products; Springer: Berlin/Heidelberg, Germany, 2013; pp. 715–859. [Google Scholar] [CrossRef]
- Pollastri, S.; Baccelli, I.; Loreto, F. Isoprene: An Antioxidant Itself or a Molecule with Multiple Regulatory Functions in Plants? Antioxidants 2021, 10, 10050684. [Google Scholar] [CrossRef]
- Akhavan-Mahdavi, S.; Sadeghi, R.; Faridi Esfanjani, A.; Hedayati, S.; Shaddel, R.; Dima, C.; Malekjani, N.; Boostani, S.; Jafari, S.M. Nanodelivery systems for d-limonene; techniques and applications. Food Chem. 2022, 384, 132479. [Google Scholar] [CrossRef]
- Gentile, D.; Berliocchi, L.; Russo, R.; Bagetta, G.; Corasaniti, M.T. Effects of the autophagy modulators d-limonene and chloroquine on vimentin levels in SH-SY5Y cells. Biochem. Biophys. Res. Commun. 2020, 533, 764–769. [Google Scholar] [CrossRef]
- Vigushin, D.M.; Poon, G.K.; Boddy, A.; English, J.; Halbert, G.W.; Pagonis, C.; Jarman, M.; Coombes, R.C. Phase I and pharmacokinetic study of D-limonene in patients with advanced cancer. Cancer Research Campaign Phase I/II Clinical Trials Committee. Cancer Chemother. Pharmacol. 1998, 42, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.; Patel, P.; Verma, S.K.; Sahu, B.R.; Parija, T. Proximal discrepancy in intrinsic atomic interaction arrests G2/M phase by inhibiting Cyclin B1/CDK1 to infer molecular and cellular biocompatibility of D-limonene. Sci. Rep. 2022, 12, 18184. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, Q.; Hou, H.; Liu, Z.; Wang, L.; Rasekhmagham, R.; Kord-Varkaneh, H.; Santos, H.O.; Yao, G. The effects of pomegranate supplementation on biomarkers of inflammation and endothelial dysfunction: A meta-analysis and systematic review. Complement. Ther. Med. 2020, 49, 102358. [Google Scholar] [CrossRef]
- Yang, F.; Chen, R.; Li, W.Y.; Zhu, H.Y.; Chen, X.X.; Hou, Z.F.; Cao, R.S.; Zang, G.; Li, Y.X.; Zhang, W. D-Limonene Is a Potential Monoterpene to Inhibit PI3K/Akt/IKK-alpha/NF-kappaB p65 Signaling Pathway in Coronavirus Disease 2019 Pulmonary Fibrosis. Front. Med. 2021, 8, 591830. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Yao, Y.; Li, H.; Gao, C.; Sun, C.; Zhuang, J. Potential of cucurbitacin as an anticancer drug. Biomed. Pharmacother. 2023, 168, 115707. [Google Scholar] [CrossRef]
- Sikander, M.; Malik, S.; Khan, S.; Kumari, S.; Chauhan, N.; Khan, P.; Halaweish, F.T.; Chauhan, B.; Yallapu, M.M.; Jaggi, M.; et al. Novel Mechanistic Insight into the Anticancer Activity of Cucurbitacin D against Pancreatic Cancer (Cuc D Attenuates Pancreatic Cancer). Cells 2019, 9, 9010103. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Farooqi, A.A. Cucurbitacin mediated regulation of deregulated oncogenic signaling cascades and non-coding RNAs in different cancers: Spotlight on JAK/STAT, Wnt/β-catenin, mTOR, TRAIL-mediated pathways. Semin. Cancer Biol. 2021, 73, 302–309. [Google Scholar] [CrossRef]
- Sikander, M.; Hafeez, B.B.; Malik, S.; Alsayari, A.; Halaweish, F.T.; Yallapu, M.M.; Chauhan, S.C.; Jaggi, M. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci. Rep. 2016, 6, 36594. [Google Scholar] [CrossRef]
- Gouda, M.; Ghazzawy, H.S.; Alqahtani, N.; Li, X. The Recent Development of Acoustic Sensors as Effective Chemical Detecting Tools for Biological Cells and Their Bioactivities. Molecules 2023, 28, 4855. [Google Scholar] [CrossRef]
- Gouda, M.; Huang, Z.; Liu, Y.; He, Y.; Li, X. Physicochemical impact of bioactive terpenes on the microalgae biomass structural characteristics. Bioresour. Technol. 2021, 334, 125232. [Google Scholar] [CrossRef]
- Lehner, B. Genotype to phenotype: Lessons from model organisms for human genetics. Nat. Rev. Genet. 2013, 14, 168–178. [Google Scholar] [CrossRef]
- Kobayashi-Kirschvink, K.J.; Comiter, C.S.; Gaddam, S.; Joren, T.; Grody, E.I.; Ounadjela, J.R.; Zhang, K.; Ge, B.; Kang, J.W.; Xavier, R.J.; et al. Prediction of single-cell RNA expression profiles in live cells by Raman microscopy with Raman2RNA. Nat. Biotechnol. 2024, 42, 1726–1734. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.Z.; Liu, Y.; Xiao, Y.; Hu, X.; Jiang, L.; Zuo, W.J.; Ma, D.; Ding, J.H.; Zhu, X.Y.; Zou, J.J.; et al. Molecular subtyping and genomic profiling expand precision medicine in refractory metastatic triple-negative breast cancer: The FUTURE trial. Cell Res. 2021, 31, 178–186. [Google Scholar] [CrossRef]
- Caianiello, D.F.; Zhang, M.; Ray, J.D.; Howell, R.A.; Swartzel, J.C.; Branham, E.M.J.; Chirkin, E.; Sabbasani, V.R.; Gong, A.Z.; McDonald, D.M.; et al. Bifunctional small molecules that mediate the degradation of extracellular proteins. Nat. Chem. Biol. 2021, 17, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Yankova, E.; Blackaby, W.; Albertella, M.; Rak, J.; De Braekeleer, E.; Tsagkogeorga, G.; Pilka, E.S.; Aspris, D.; Leggate, D.; Hendrick, A.G.; et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 2021, 593, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Sigle, M.; Rohlfing, A.K.; Kenny, M.; Scheuermann, S.; Sun, N.; Graessner, U.; Haug, V.; Sudmann, J.; Seitz, C.M.; Heinzmann, D.; et al. Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution. Nat. Commun. 2023, 14, 5799. [Google Scholar] [CrossRef]
- Sun, X.; Liang, X.; Wang, Y.; Ma, P.; Xiong, W.; Qian, S.; Cui, Y.; Zhang, H.; Chen, X.; Tian, F.; et al. A tumor microenvironment-activatable nanoplatform with phycocyanin-assisted in-situ nanoagent generation for synergistic treatment of colorectal cancer. Biomaterials 2023, 301, 122263. [Google Scholar] [CrossRef]
- Mi, Y.; Li, X.; Zeng, X.; Cai, Y.; Sun, X.; Yan, Y.; Jiang, Y. Diagnosis of neuropsychiatric systemic lupus erythematosus by label-free serum microsphere-coupled SERS fingerprints with machine learning. Biosens. Bioelectron. 2024, 260, 116414. [Google Scholar] [CrossRef]
- Zhu, C.; Iwase, M.; Li, Z.; Wang, F.; Quinet, A.; Vindigni, A.; Shao, J. Profilin-1 regulates DNA replication forks in a context-dependent fashion by interacting with SNF2H and BOD1L. Nat. Commun. 2022, 13, 6531. [Google Scholar] [CrossRef]
- Kubota, H.; Sakamoto, K.; Matsui, T. A confocal Raman microscopic visualization of small penetrants in cellulose acetate using a deuterium-labeling technique. Sci. Rep. 2020, 10, 16426. [Google Scholar] [CrossRef]
- Kumar, K.; Siva, B.; Rama Rao, N.; Suresh Babu, K. Rapid identification of limonoids from Cipadessa baccifera and Xylocarpus granatum using ESI-Q-ToF-MS/MS and their structure-fragmentation study. J. Pharm. Biomed. Anal. 2018, 152, 224–233. [Google Scholar] [CrossRef] [PubMed]
- John, A.T.; Murugappan, K.; Nisbet, D.R.; Tricoli, A. An Outlook of Recent Advances in Chemiresistive Sensor-Based Electronic Nose Systems for Food Quality and Environmental Monitoring. Sensors 2021, 21, 33804960. [Google Scholar] [CrossRef] [PubMed]
- Nazir, N.U.; Abbas, S.R.; Nasir, H.; Hussain, I. Electrochemical sensing of limonene using thiol capped gold nanoparticles and its detection in the real breath sample of a cirrhotic patient. J. Electroanal. Chem. 2022, 905, 115977. [Google Scholar] [CrossRef]
- Wen, T.; Sang, M.; Wang, M.; Han, L.; Gong, Z.; Tang, X.; Long, X.; Xiong, H.; Peng, H. Rapid detection of d-limonene emanating from citrus infestation by Bactrocera dorsalis (Hendel) using a developed gas-sensing system based on QCM sensors coated with ethyl cellulose. Sens. Actuators B Chem. 2021, 328, 129048. [Google Scholar] [CrossRef]
- Baumgartner, K.; Westerhausen, C. Recent advances of surface acoustic wave-based sensors for noninvasive cell analysis. Curr. Opin. Biotech. 2023, 79, 102879. [Google Scholar] [CrossRef]
Technique | Description | Applications | Concentrations Used | Wavenumbers (cm−1) | Reference |
---|---|---|---|---|---|
Stable Isotope Probing (Sis) | It utilizes stable isotopes to track metabolic pathways in real time. | Monitoring the production of bioactive compounds and tracking nutrient use. | 13C-glucose: 1–10 mM 15N-ammonium: 1–5 mM 2H2O: 30–70% (v/v) | 1150, 1520 (detection via Raman shifts) | [31] |
Hyperspectral SRS | Combines Raman spectroscopy with hyperspectral imaging for 3D molecular maps. | Visualizing the biosynthesis of metabolites and mapping the distribution of lipids and carotenoids. | Limonene: 10–100 µM Lipids: 50–200 µM Carotenoids: 100–500 µM |
| [34] |
Integration of Sis and Raman | Combines Sis and Raman spectroscopy for real-time metabolic tracking. | Tracking Paramylon Biosynthesis and Monitoring Metabolic Activity in Microalgae | 13C-glucose: 1–10 mM 2H2O: 30–70% (v/v) |
| [30,36,38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouda, M.M.; Elsharkawy, E.R.; He, Y.; Li, X. Importance of Advanced Detection Methodologies from Plant Cells to Human Microsystems Targeting Anticancer Applications. Int. J. Mol. Sci. 2025, 26, 4691. https://doi.org/10.3390/ijms26104691
Gouda MM, Elsharkawy ER, He Y, Li X. Importance of Advanced Detection Methodologies from Plant Cells to Human Microsystems Targeting Anticancer Applications. International Journal of Molecular Sciences. 2025; 26(10):4691. https://doi.org/10.3390/ijms26104691
Chicago/Turabian StyleGouda, Mostafa M., Eman R. Elsharkawy, Yong He, and Xiaoli Li. 2025. "Importance of Advanced Detection Methodologies from Plant Cells to Human Microsystems Targeting Anticancer Applications" International Journal of Molecular Sciences 26, no. 10: 4691. https://doi.org/10.3390/ijms26104691
APA StyleGouda, M. M., Elsharkawy, E. R., He, Y., & Li, X. (2025). Importance of Advanced Detection Methodologies from Plant Cells to Human Microsystems Targeting Anticancer Applications. International Journal of Molecular Sciences, 26(10), 4691. https://doi.org/10.3390/ijms26104691