Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications
Abstract
1. Introduction
2. Colorectal Cancer Risk Factors
3. Methylation
3.1. Mechanism of Methylation Modification
3.2. The Role of Methylation in CRC
4. Histone Modification
5. Non-Coding RNAs
5.1. MicroRNAs
Diagnostic Markers | Specimens | Epigenetic Changes | Sensibility (%) | Specificity (%) | Reference |
---|---|---|---|---|---|
miR-92a-1 | serum | up-regulated miRNAs | 81.8 | 95.6 | [143] |
miR-29a + miR-92a | plasma | up-regulated miRNAs | 83 | 84.7 | [144] |
miR-92 | plasma | up-regulated miRNAs | 89 | 70 | [145] |
miR-28-3p + miR-106a-5p + miR-542-5p + let-7e-5p | plasma | up-regulated miRNAs | 99.7 | 90.9 | [146] |
miR-135b-5p | serum | up-regulated miRNAs | 93.1 | 72.7 | [147] |
miR-21 | serum | up-regulated miRNAs | 86.05 | 72.97 | [127] |
miR-21 | serum | up-regulated miRNAs | 82.8 | 90.6 | [148] |
miR-21 | saliva | up-regulated miRNAs | 97 | 91 | [149] |
miR-1246+ miR-1268b + miR-4648 | serum | up-regulated miRNAs | 50.7 | 90.2 | [150] |
miR-106a | tissue | up-regulated miRNAs | 53 | 85 | [151] |
miR-106b | serum | up-regulated miRNAs | 85.2 | 78 | [152] |
miR-429 | tissue | up-regulated miRNAs | 71.79 | 62.82 | [153] |
miR-200c + miR-18a | plasma | up-regulated miRNAs | 84.6 | 75.6 | [154] |
miR-223 + miR-92a | plasma | up-regulated miRNAs | 76.3 | 68.8 | [155] |
miR-424-5p | serum | up-regulated miRNAs | 79 | 72.6 | [156] |
miR-375 | plasma | down-regulated miRNAs | 76.92 | 64.63 | [157] |
miR-145 | tissue | down-regulated miRNAs | 90 | 88 | [158] |
miR-23b | tissue | down-regulated miRNAs | 78 | 70 | [158] |
miR-195 | tissue | down-regulated miRNAs | 72 | 68 | [158] |
miR-24 | plasma | down-regulated miRNAs | 78.38 | 83.85 | [159] |
miR-320a | plasma | down-regulated miRNAs | 92.79 | 73.08 | [159] |
miR-423-5p | plasma | down-regulated miRNAs | 91.89 | 70.77 | [159] |
mi-24 + mi-320a + mi-423-5p | plasma | down-regulated miRNAs | 92.79 | 70.77 | [159] |
miR-143-3p | serum | down-regulated miRNAs | 61.3 | 74.2 | [156] |
miR-135b-5p | stool | up-regulated miRNAs | 96.5 | 74.1 | [147] |
miR-21 | stool | up-regulated miRNAs | 86.05 | 81.08 | [127] |
miR-92a | stool | up-regulated miRNAs | 89.7 | 51.7 | [12] |
miR-144 | stool | up-regulated miRNAs | 78.6 | 66.7 | [12] |
miR-92a + miR-144 | stool | up-regulated miRNAs | 96.6 | 37.9 | [12] |
miR-223 + miR-92a | stool | up-regulated miRNAs | 73.9 | 82.2 | [155] |
miR-20a | stool | up-regulated miRNAs | 55 | 82 | [160] |
miR-221 | stool | up-regulated miRNAs | 62 | 74 | [161] |
miR-18a | stool | up-regulated miRNAs | 61 | 69 | [161] |
miR-221 + miR-18a | stool | up-regulated miRNAs | 66 | 75 | [161] |
miR-29a | stool | down-regulated miRNAs | 85 | 61 | [162] |
miR-224 | stool | down-regulated miRNAs | 75 | 63 | [162] |
Prognostic Markers | Specimen | Epigenetic Changes | CRC Staging | Reference |
---|---|---|---|---|
miR-21 | tissues | up-regulated | adenomas/carcinomas | [163] |
miR-92a | tissues | up-regulated | adenomas/carcinomas | [164] |
miR-25 | tissues | up-regulated | advanced (III-IV)/lymph node metastasis/distant metastasis | [165] |
miR-1246, miR-1268b, miR-4648 | serum | up-regulated | stage II and III/recurrence | [150] |
miR-1260b | tissues | up-regulated | lymph node metastasis and venous invasion | [166] |
miR-141 | plasma | up-regulated | advanced colon cancer | [167] |
miR-429 | tissues | up-regulated | 5-FU treatment | [153] |
miR-29a | tissues | up-regulated | stage II CRC/recurrence | [168] |
miR-29a | serum | up-regulated | liver metastatic | [169] |
miR-34a | plasma | up-regulated | adenoma | [170] |
miR-106b | serum | up-regulated | lymph node metastasis and distant metastasis | [152] |
miR-135b-5p | serum, stool | up-regulated | stage III and IV | [147] |
miR-126 | serum | down-regulated | early-stage liver-metastatic | [171] |
miR-429 | tissues | down-regulated | stage III and IV/lymphatic metastasis | [172] |
miR-24, miR-320a, and miR-423-5p | plasma | down-regulated | postoperative metastasis | [159] |
5.2. LncRNA
LncRNAs Diagnostic Role | LncRNAs Prognostic Role | References |
---|---|---|
H19, MALAT1, CCAT1, LEF1-AS1, PVT1, LINC01410, RP11-296E3.2, HIF1A-AS1, NRIR | LINC01094, MALAT1, CACS15, CRART16, CBR3-AS1, FGD5-AS1, LEF1-AS1, LINC00460, HIF1A-AS2, LINC00114, HOTAIR, LINC00261, PVT1, LINC01410, RP11-296E3.2 | [178,179,180,181,182,185,187,190,193,200,201,202,203,204,205,206] |
6. Summary and Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Blank, A.; Roberts, D.E.; Dawson, H.; Zlobec, I.; Lugli, A. Tumor heterogeneity in primary colorectal cancer and corresponding metastases. Does the apple fall far from the tree? Front. Med. 2018, 5, 234. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Przegląd Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef]
- Cao, W.; Chen, H.-D.; Yu, Y.-W.; Li, N.; Chen, W.-Q. Changing profiles of cancer burden worldwide and in china: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef]
- Li, Y. Modern epigenetics methods in biological research. Methods 2021, 187, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, Q.; Chang, C. Epigenetics in health and disease. Adv. Exp. Med. Biol. 2020, 1253, 3–55. [Google Scholar]
- Jing, C.; Ma, R.; Cao, H.; Wang, Z.; Liu, S.; Chen, D.; Wu, Y.; Zhang, J.; Wu, J. Long noncoding rna and mrna profiling in cetuximab-resistant colorectal cancer cells by rna sequencing analysis. Cancer Med. 2019, 8, 1641–1651. [Google Scholar] [CrossRef]
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef]
- Xiao, W.; Zhao, H.; Dong, W.; Li, Q.; Zhu, J.; Li, G.; Zhang, S.; Ye, M. Quantitative detection of methylated ndrg4 gene as a candidate biomarker for diagnosis of colorectal cancer. Oncol. Lett. 2015, 9, 1383–1387. [Google Scholar] [CrossRef] [PubMed]
- Laugsand, E.A.; Brenne, S.S.; Skorpen, F. DNA methylation markers detected in blood, stool, urine, and tissue in colorectal cancer: A systematic review of paired samples. Int. J. Color. Dis. 2020, 36, 239–251. [Google Scholar] [CrossRef]
- He, Q.; Chen, H.-Y.; Bai, E.-Q.; Luo, Y.-X.; Fu, R.-J.; He, Y.-S.; Jiang, J.; Wang, H.-Q. Development of a multiplex methylight assay for the detection of multigene methylation in human colorectal cancer. Cancer Genet. Cytogenet. 2010, 202, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.H.; Cho, Y.-S.; Choi, J.H.; Kim, H.-K.; Kim, S.S.; Chae, H.-S. Stool-based mir-92a and mir-144* as noninvasive biomarkers for colorectal cancer screening. Oncology 2019, 97, 173–179. [Google Scholar] [CrossRef]
- Hirukawa, A.; Singh, S.; Wang, J.; Rennhack, J.P.; Swiatnicki, M.; Sanguin-Gendreau, V.; Zuo, D.; Daldoul, K.; Lavoie, C.; Park, M.; et al. Reduction of global h3k27me3 enhances her2/erbb2 targeted therapy. Cell Rep. 2019, 29, 249–257. [Google Scholar] [CrossRef]
- Clarke, T.L.; Tang, R.; Chakraborty, D.; Van Rechem, C.; Ji, F.; Mishra, S.; Ma, A.; Kaniskan, H.Ü.; Jin, J.; Lawrence, M.S.; et al. Histone lysine methylation dynamics controlegfrdna copy-number amplification. Cancer Discov. 2020, 10, 306–325. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Wang, F.; Moyer, M.P.; Wei, Q.; Zhang, P.; Yang, Z.; Liu, W.; Zhang, H.; Chen, N.; et al. Long non-coding rna ccal regulates colorectal cancer progression by activating wnt/β-catenin signalling pathway via suppression of activator protein 2α. Gut 2016, 65, 1494–1504. [Google Scholar] [CrossRef]
- Keum, N.; Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 713–732. [Google Scholar] [CrossRef]
- Conteduca, V.; Sansonno, D.; Russi, S.; Dammacco, F. Precancerous colorectal lesions. Int. J. Oncol. 2013, 43, 973–984. [Google Scholar] [CrossRef]
- Vogelstein, B.; Fearon, E.R.; Hamilton, S.R.; Kern, S.E.; Preisinger, A.C.; Leppert, M.; Nakamura, Y.; White, R.; Smits, A.M.; Bos, J.L. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 1988, 319, 525–532. [Google Scholar] [CrossRef]
- Hossain, M.S.; Karuniawati, H.; Jairoun, A.A.; Urbi, Z.; Ooi, D.J.; John, A.; Lim, Y.C.; Kibria, K.M.K.; Mohiuddin, A.K.M.; Ming, L.C.; et al. Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers 2022, 14, 1732. [Google Scholar] [CrossRef]
- Low, E.E.; Demb, J.; Liu, L.; Earles, A.; Bustamante, R.; Williams, C.D.; Provenzale, D.; Kaltenbach, T.; Gawron, A.J.; Martinez, M.E.; et al. Risk factors for early-onset colorectal cancer. Gastroenterology 2020, 159, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Samowitz, W.S.; Albertsen, H.; Sweeney, C.; Herrick, J.; Caan, B.J.; Anderson, K.E.; Wolff, R.K.; Slattery, M.L. Association of smoking, cpg island methylator phenotype, and v600e braf mutations in colon cancer. J. Natl. Cancer Inst. 2006, 98, 1731–1738. [Google Scholar] [CrossRef]
- Leowattana, W.; Leowattana, P.; Leowattana, T. Systemic treatment for metastatic colorectal cancer. World J. Gastroenterol. 2023, 29, 1569–1588. [Google Scholar] [CrossRef]
- Kryczka, J.; Sochacka, E.; Papiewska-Pająk, I.; Boncela, J. Implications of abcc4–mediated camp efflux for crc migration. Cancers 2020, 12, 3547. [Google Scholar] [CrossRef]
- Mattiuzzi, C.; Sanchis-Gomar, F.; Lippi, G. Concise update on colorectal cancer epidemiology. Ann. Transl. Med. 2019, 7, 609. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 177–193. [Google Scholar] [CrossRef]
- Bando, H.; Ohtsu, A.; Yoshino, T. Therapeutic landscape and future direction of metastatic colorectal cancer. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 306–322. [Google Scholar] [CrossRef]
- Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib, binimetinib, and cetuximab in braf v600e–mutated colorectal cancer. N. Engl. J. Med. 2019, 381, 1632–1643. [Google Scholar] [CrossRef] [PubMed]
- Morse, M.A.; Overman, M.J.; Hartman, L.; Khoukaz, T.; Brutcher, E.; Lenz, H.-J.; Atasoy, A.; Shangguan, T.; Zhao, H.; El-Rayes, B. Safety of nivolumab plus low-dose ipilimumab in previously treated microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer. Oncologist 2019, 24, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- McQuade, R.M.; Stojanovska, V.; Bornstein, J.C.; Nurgali, K. Colorectal cancer chemotherapy: The evolution of treatment and new approaches. Curr. Med. Chem. 2017, 24, 1537–1557. [Google Scholar] [CrossRef]
- Karapetis, C.S.; Khambata-Ford, S.; Jonker, D.J.; O’Callaghan, C.J.; Tu, D.; Tebbutt, N.C.; Simes, R.J.; Chalchal, H.; Shapiro, J.D.; Robitaille, S.; et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 2008, 359, 1757–1765. [Google Scholar] [CrossRef]
- Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 2004, 351, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Amado, R.G.; Wolf, M.; Peeters, M.; Van Cutsem, E.; Siena, S.; Freeman, D.J.; Juan, T.; Sikorski, R.; Suggs, S.; Radinsky, R.; et al. Wild-type kras is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 2008, 26, 1626–1634. [Google Scholar] [CrossRef] [PubMed]
- Price, T.J.; Peeters, M.; Kim, T.W.; Li, J.; Cascinu, S.; Ruff, P.; Suresh, A.S.; Thomas, A.; Tjulandin, S.; Zhang, K.; et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type kras exon 2 metastatic colorectal cancer (aspecct): A randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol. 2014, 15, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Sartore-Bianchi, A.; Trusolino, L.; Martino, C.; Bencardino, K.; Lonardi, S.; Bergamo, F.; Zagonel, V.; Leone, F.; Depetris, I.; Martinelli, E.; et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, kras codon 12/13 wild-type, her2-positive metastatic colorectal cancer (heracles): A proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016, 17, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Borthakur, G.; Popplewell, L.; Boyiadzis, M.; Foran, J.; Platzbecker, U.; Vey, N.; Walter, R.B.; Olin, R.; Raza, A.; Giagounidis, A.; et al. Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in ras-mutant relapsed or refractory myeloid malignancies. Cancer 2016, 122, 1871–1879. [Google Scholar] [CrossRef] [PubMed]
- Boukouris, A.E.; Theochari, M.; Stefanou, D.; Papalambros, A.; Felekouras, E.; Gogas, H.; Ziogas, D.C. Latest evidence on immune checkpoint inhibitors in metastatic colorectal cancer: A 2022 update. Crit. Rev. Oncol. Hematol. 2022, 173, 103663. [Google Scholar] [CrossRef] [PubMed]
- Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.-J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (checkmate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 2017, 18, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. Pd-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in microsatellite-instability–high advanced colorectal cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Murai, J.; Pommier, Y. Brcaness, homologous recombination deficiencies, and synthetic lethality. Cancer Res. 2023, 83, 1173–1174. [Google Scholar] [CrossRef]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; Lang, I.; Marcuello, E.; Lorusso, V.; Ocvirk, J.; Shin, D.B.; Jonker, D.; Osborne, S.; Andre, N.; Waterkamp, D.; et al. Bevacizumab plus capecitabine versus capecitabine alone in elderly patients with previously untreated metastatic colorectal cancer (avex): An open-label, randomised phase 3 trial. Lancet Oncol. 2013, 14, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Tabernero, J.; Lakomy, R.; Prenen, H.; Prausová, J.; Macarulla, T.; Ruff, P.; van Hazel, G.A.; Moiseyenko, V.; Ferry, D.; et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase iii randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J. Clin. Oncol. 2012, 30, 3499–3506. [Google Scholar] [CrossRef] [PubMed]
- Grothey, A.; Cutsem, E.V.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (correct): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013, 381, 303–312. [Google Scholar] [CrossRef]
- Bernstein, B.E.; Meissner, A.; Lander, E.S. The mammalian epigenome. Cell 2007, 128, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhao, B.S.; He, C. Nucleic acid modifications in regulation of gene expression. Cell Chem. Biol. 2016, 23, 74–85. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, H.; Liu, D.; Cheng, Y.; Liu, X.; Zhang, W.; Yin, R.; Zhang, D.; Zhang, P.; Liu, J.; et al. N6-methyladenine DNA modification in drosophila. Cell 2015, 161, 893–906. [Google Scholar] [CrossRef]
- Jones, P.A.; Takai, D. The role of DNA methylation in mammalian epigenetics. Science 2001, 293, 1068–1070. [Google Scholar] [CrossRef]
- Yamagata, Y.; Asada, H.; Tamura, I.; Lee, L.; Maekawa, R.; Taniguchi, K.; Taketani, T.; Matsuoka, A.; Tamura, H.; Sugino, N. DNA methyltransferase expression in the human endometrium: Down-regulation by progesterone and estrogen. Hum. Reprod. 2009, 24, 1126–1132. [Google Scholar] [CrossRef]
- Han, L.; Liu, Y.; Duan, S.; Perry, B.; Li, W.; He, Y. DNA methylation and hypertension: Emerging evidence and challenges. Brief. Funct. Genomics 2016, 15, 460–469. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Z.; Yung, S.; Lu, Q. Epigenetic dynamics in immunity and autoimmunity. Int. J. Biochem. Cell Biol. 2015, 67, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Okugawa, Y.; Grady, W.M.; Goel, A. Epigenetic alterations in colorectal cancer: Emerging biomarkers. Gastroenterology 2015, 149, 1204–1225. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Lee, J.; Sidransky, D. DNA methylation markers in colorectal cancer. Cancer Metastasis Rev. 2010, 29, 181–206. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, H.; Higashimoto, K.; Aoki, S.; Mishima, H.; Hayashida, C.; Maeda, T.; Koga, Y.; Yatsuki, H.; Joh, K.; Noshiro, H.; et al. Comprehensive methylation analysis of imprinting-associated differentially methylated regions in colorectal cancer. Clin. Epigenetics 2018, 10, 150. [Google Scholar] [CrossRef]
- Blewitt, M.; Angeloni, A.; Bogdanovic, O. Enhancer DNA methylation: Implications for gene regulation. Essays Biochem. 2019, 63, 707–715. [Google Scholar] [CrossRef]
- Song, Y.; van den Berg, P.R.; Markoulaki, S.; Soldner, F.; Dall’Agnese, A.; Henninger, J.E.; Drotar, J.; Rosenau, N.; Cohen, M.A.; Young, R.A.; et al. Dynamic enhancer DNA methylation as basis for transcriptional and cellular heterogeneity of escs. Mol. Cell 2019, 75, 905–920. [Google Scholar] [CrossRef]
- Bell, R.E.; Golan, T.; Sheinboim, D.; Malcov, H.; Amar, D.; Salamon, A.; Liron, T.; Gelfman, S.; Gabet, Y.; Shamir, R.; et al. Enhancer methylation dynamics contribute to cancer plasticity and patient mortality. Genome Res. 2016, 26, 601–611. [Google Scholar] [CrossRef]
- Schuebel, K.E.; Chen, W.; Cope, L.; Glöckner, S.C.; Suzuki, H.; Yi, J.M.; Chan, T.A.; Van Neste, L.; Van Criekinge, W.; van den Bosch, S.; et al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet. 2007, 3, 1709–1723. [Google Scholar] [CrossRef]
- Ramesh, S.; Johnson, P.; Fadlalla, K.; Moore, A.; Huang, C.-H.; Berry, K.; Maxuitenko, Y.Y.; Chen, X.; Keeton, A.B.; Zhou, G.; et al. Novel sulindac derivatives for colorectal cancer chemoprevention that target cGMP phosphodiesterases to suppress Wnt/β-catenin transcriptional activity. Cancer Insight 2024, 3, 28. [Google Scholar]
- Liang, T.-J.; Wang, H.-X.; Zheng, Y.-Y.; Cao, Y.-Q.; Wu, X.; Zhou, X.; Dong, S.-X. APC hypermethylation for early diagnosis of colorectal cancer: A meta-analysis and literature review. Oncotarget 2017, 8, 46468–46479. [Google Scholar] [CrossRef]
- Peng, L.; Hu, J.; Li, S.; Wang, Z.; Xia, B.; Jiang, B.; Li, B.; Zhang, Y.; Wang, J.; Wang, X. Aberrant methylation of the ptch1 gene promoter region in aberrant crypt foci. Int. J. Cancer 2012, 132, e18–e25. [Google Scholar] [CrossRef] [PubMed]
- Yoshiura, K.; Kanai, Y.; Ochiai, A.; Shimoyama, Y.; Sugimura, T.; Hirohashi, S. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc. Natl. Acad. Sci. USA 1995, 92, 7416–7419. [Google Scholar] [CrossRef]
- de Vogel, S.; Weijenberg, M.P.; Herman, J.G.; Wouters, K.A.D.; de Goeij, A.F.P.M.; Brandt, P.A.v.D.; de Bruïne, A.P.; van Engeland, M. MGMT and MLH1 promoter methylation versus APC, KRAS and BRAF gene mutations in colorectal cancer: Indications for distinct pathways and sequence of events. Ann. Oncol. 2009, 20, 1216–1222. [Google Scholar] [CrossRef]
- Benard, A.; Zeestraten, E.C.M.; Goossens-Beumer, I.J.; Putter, H.; van de Velde, C.J.H.; Hoon, D.S.B.; Kuppen, P.J.K. DNA methylation of apoptosis genes in rectal cancer predicts patient survival and tumor recurrence. Apoptosis 2014, 19, 1581–1593. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, Y.; Chen, L.; Liu, L.; Gao, X. E3 ubiquitin ligase-dependent regulatory mechanism of TRIM family in carcinogenesis. Cancer Insight 2023, 2, 21. [Google Scholar] [CrossRef]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [PubMed]
- Speek, M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell Biol. 2023, 21, 1973–1985. [Google Scholar] [CrossRef]
- Jiang, A.C.; Buckingham, L.; Bishehsari, F.; Sutherland, S.; Ma, K.; Melson, J.E. Correlation of line-1 hypomethylation with size and pathologic extent of dysplasia in colorectal tubular adenomas. Clin. Transl. Gastroenterol. 2021, 12, e00369. [Google Scholar] [CrossRef]
- Boughanem, H.; Martin-Nuñez, G.M.; Torres, E.; Arranz-Salas, I.; Alcaide, J.; Morcillo, S.; Tinahones, F.J.; Crujeiras, A.B.; Macias-Gonzalez, M. Impact of tumor line-1 methylation level and neoadjuvant treatment and its association with colorectal cancer survival. J. Pers. Med. 2020, 10, 219. [Google Scholar] [CrossRef]
- Matsunoki, A.; Kawakami, K.; Kotake, M.; Kaneko, M.; Kitamura, H.; Ooi, A.; Watanabe, G.; Minamoto, T. LINE-1 methylation shows little intra-patient heterogeneity in primary and synchronous metastatic colorectal cancer. BMC Cancer 2012, 12, 574. [Google Scholar] [CrossRef]
- Luo, J.; Li, Y.-N.; Wang, F.; Zhang, W.-M.; Geng, X. S-adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int. J. Biol. Sci. 2010, 6, 784–795. [Google Scholar] [CrossRef]
- Arnold, C.N.; Goel, A.; Boland, C.R. Role of hmlh1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int. J. Cancer 2003, 106, 66–73. [Google Scholar] [CrossRef]
- Tejedor, J.R.; Peñarroya, A.; Gancedo-Verdejo, J.; Santamarina-Ojeda, P.; Pérez, R.F.; López-Tamargo, S.; Díez-Borge, A.; Alba-Linares, J.J.; González-Del-Rey, N.; Urdinguio, R.G.; et al. Crispr/dcas9-mediated DNA demethylation screen identifies functional epigenetic determinants of colorectal cancer. Clin. Epigenetics 2023, 15, 133. [Google Scholar] [CrossRef]
- Niu, F.; Wen, J.; Fu, X.; Li, C.; Zhao, R.; Wu, S.; Yu, H.; Liu, X.; Zhao, X.; Liu, S.; et al. Stool DNA test of methylated syndecan-2 for the early detection of colorectal neoplasia. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1411–1419. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, L.; Lu, C.; Huang, W.; Yang, C.; Wang, Q.; Wang, Q.; Lei, R.; Sun, R.; Wan, K.; et al. Methylation of sdc2/tfpi2 and its diagnostic value in colorectal tumorous lesions. Front. Mol. Biosci. 2021, 8, 706754. [Google Scholar] [CrossRef] [PubMed]
- Nian, J.; Sun, X.; Ming, S.; Yan, C.; Ma, Y.; Feng, Y.; Yang, L.; Yu, M.; Zhang, G.; Wang, X. Diagnostic accuracy of methylated sept9 for blood-based colorectal cancer detection: A systematic review and meta-analysis. Clin. Transl. Gastroenterol. 2017, 8, e216. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-D.; Han, Z.J.; Skoletsky, J.; Olson, J.; Sah, J.; Myeroff, L.; Platzer, P.; Lu, S.; Dawson, D.; Willis, J.; et al. Detection in fecal DNA of colon cancer–specific methylation of the nonexpressed vimentin gene. J. Natl. Cancer Inst. 2005, 97, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Herbst, A.; Rahmig, K.; Stieber, P.; Philipp, A.; Jung, A.; Ofner, A.; Crispin, A.; Neumann, J.; Lamerz, R.; Kolligs, F.T. Methylation of neurog1 in serum is a sensitive marker for the detection of early colorectal cancer. Am. J. Gastroenterol. 2011, 106, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.-H.; Ida, H.; Lau, Q.-C.; Goh, B.-C.; Chieng, W.-S.; Loh, M.; Ito, Y. Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncol. Rep. 2007, 18, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Cassinotti, E.; Melson, J.; Liggett, T.; Melnikov, A.; Yi, Q.; Replogle, C.; Mobarhan, S.; Boni, L.; Segato, S.; Levenson, V. DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps. Int. J. Cancer 2011, 131, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Hibi, K.; Goto, T.; Shirahata, A.; Saito, M.; Kigawa, G.; Nemoto, H.; Sanada, Y. Detection of tfpi2 methylation in the serum of colorectal cancer patients. Cancer Lett. 2011, 311, 96–100. [Google Scholar] [CrossRef]
- Glöckner, S.C.; Dhir, M.; Yi, J.M.; McGarvey, K.E.; Van Neste, L.; Louwagie, J.; Chan, T.A.; Kleeberger, W.; de Bruïne, A.P.; Smits, K.M.; et al. Methylation oftfpi2in stool DNA: A potential novel biomarker for the detection of colorectal cancer. Cancer Res. 2009, 69, 4691–4699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, Q.; Xu, L.; Wang, H.; Liu, X.; Li, S.; Hu, T.; Liu, Y.; Peng, Q.; Chen, Z.; et al. Sensitive detection of colorectal cancer in peripheral blood by a novel methylation assay. Clin. Epigenetics 2021, 13, 90. [Google Scholar] [CrossRef] [PubMed]
- Takane, K.; Midorikawa, Y.; Yagi, K.; Sakai, A.; Aburatani, H.; Takayama, T.; Kaneda, A. Aberrant promoter methylation of ppp1r3c and efhd1 in plasma of colorectal cancer patients. Cancer Med. 2014, 3, 1235–1245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wan, S.; Yu, Y.; Ruan, W.; Wang, H.; Xu, L.; Wang, C.; Chen, S.; Cao, T.; Peng, Q.; et al. Identifying potential DNA methylation markers in early-stage colorectal cancer. Genomics 2020, 112, 3365–3373. [Google Scholar] [CrossRef] [PubMed]
- Azuara, D.; Rodriguez-Moranta, F.; de Oca, J.; Soriano-Izquierdo, A.; Mora, J.; Guardiola, J.; Biondo, S.; Blanco, I.; Peinado, M.A.; Moreno, V.; et al. Novel methylation panel for the early detection of colorectal tumors in stool DNA. Clin. Color. Cancer 2010, 9, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Carmona, F.J.; Azuara, D.; Berenguer-Llergo, A.; Fernández, A.F.; Biondo, S.; de Oca, J.; Rodriguez-Moranta, F.; Salazar, R.; Villanueva, A.; Fraga, M.F.; et al. DNA methylation biomarkers for noninvasive diagnosis of colorectal cancer. Cancer Prev. Res. 2013, 6, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.; Kim, N.; Moon, Y.; Kim, M.S.; Hoehn, B.D.; Park, C.H.; Kim, T.S.; Kim, N.K.; Chung, H.C.; An, S. Genome-wide identification and validation of a novel methylation biomarker, sdc2, for blood-based detection of colorectal cancer. J. Mol. Diagn. 2013, 15, 498–507. [Google Scholar] [CrossRef]
- Xie, L.; Jiang, X.; Li, Q.; Sun, Z.; Quan, W.; Duan, Y.; Li, D.; Chen, T. Diagnostic value of methylated septin9 for colorectal cancer detection. Front. Oncol. 2018, 8, 247. [Google Scholar] [CrossRef]
- Church, T.R.; Wandell, M.; Lofton-Day, C.; Mongin, S.J.; Burger, M.; Payne, S.R.; Castaños-Vélez, E.; Blumenstein, B.A.; Rösch, T.; Osborn, N.; et al. Prospective evaluation of methylatedsept9in plasma for detection of asymptomatic colorectal cancer. Gut 2014, 63, 317–325. [Google Scholar] [CrossRef]
- Jin, P.; Kang, Q.; Wang, X.; Yang, L.; Yu, Y.; Li, N.; He, Y.q.; Han, X.; Hang, J.; Zhang, J.; et al. Performance of a second-generation methylated sept9 test in detecting colorectal neoplasm. J. Gastroenterol. Hepatol. 2015, 30, 830–833. [Google Scholar] [CrossRef] [PubMed]
- Melotte, V.; Lentjes, M.H.F.M.; van den Bosch, S.M.; Hellebrekers, D.M.E.I.; de Hoon, J.P.J.; Wouters, K.A.D.; Daenen, K.L.J.; Partouns-Hendriks, I.E.J.M.; Stessels, F.; Louwagie, J.; et al. N-myc downstream-regulated gene 4 (ndrg4): A candidate tumor suppressor gene and potential biomarker for colorectal cancer. J. Natl. Cancer Inst. 2009, 101, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Weitzman, J.; Kim, M.S.; Louwagie, J.; Carvalho, B.; Terhaar sive Droste, J.S.; Park, H.L.; Chae, Y.K.; Yamashita, K.; Liu, J.; Ostrow, K.L.; et al. Promoter DNA methylation of oncostatin m receptor-β as a novel diagnostic and therapeutic marker in colon cancer. PLoS ONE 2009, 4, e6555. [Google Scholar]
- Bedin, C.; Enzo, M.V.; Del Bianco, P.; Pucciarelli, S.; Nitti, D.; Agostini, M. Diagnostic and prognostic role of cell-free DNA testing for colorectal cancer patients. Int. J. Cancer 2017, 140, 1888–1898. [Google Scholar] [CrossRef]
- Bosch, L.J.W.; Oort, F.A.; Neerincx, M.; Khalid-de Bakker, C.A.J.; sive Droste, J.S.T.; Melotte, V.; Jonkers, D.M.A.E.; Masclee, A.A.M.; Mongera, S.; Grooteclaes, M.; et al. DNA methylation of phosphatase and actin regulator 3 detects colorectal cancer in stool and complements fit. Cancer Prev. Res. 2012, 5, 464–472. [Google Scholar] [CrossRef]
- Tang, D.; Liu, J.; Wang, D.-R.; Yu, H.-F.; Li, Y.-K.; Zhang, J.-Q. Diagnostic and prognostic value of the methylation status of secreted frizzled-related protein 2 in colorectal cancer. Clin. Investig. Med. 2011, 34, E88–E95. [Google Scholar] [CrossRef]
- Huang, Z.; Li, L.; Wang, J. Hypermethylation of sfrp2 as a potential marker for stool-based detection of colorectal cancer and precancerous lesions. Dig. Dis. Sci. 2007, 52, 2287–2291. [Google Scholar] [CrossRef]
- Zhang, H.; Song, Y.-C.; Dang, C.-X. Detection of hypermethylated spastic paraplegia-20 in stool samples of patients with colorectal cancer. Int. J. Med. Sci. 2013, 10, 230–234. [Google Scholar] [CrossRef]
- Leung, W.K.; To, K.-F.; Man, E.P.S.; Chan, M.W.Y.; Bai, A.H.C.; Hui, A.J.; Chan, F.K.L.; Sung, J.J.Y. Quantitative detection of promoter hypermethylation in multiple genes in the serum of patients with colorectal cancer. Am. J. Gastroenterol. 2005, 100, 2274–2279. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.H.; Li, L.H.; Yang, F.; Wang, J.F. Detection of aberrant methylation in fecal DNA as a molecular screening tool for colorectal cancer and precancerous lesions. World J. Gastroenterol. 2007, 13, 950–954. [Google Scholar] [CrossRef] [PubMed]
- Itzkowitz, S.H.; Jandorf, L.; Brand, R.; Rabeneck, L.; Schroy, P.C.; Sontag, S.; Johnson, D.; Skoletsky, J.; Durkee, K.; Markowitz, S.; et al. Improved fecal DNA test for colorectal cancer screening. Clin. Gastroenterol. Hepatol. 2007, 5, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Song, B.P.; Jain, S.; Lin, S.Y.; Chen, Q.; Block, T.M.; Song, W.; Brenner, D.E.; Su, Y.-H. Detection of hypermethylated vimentin in urine of patients with colorectal cancer. J. Mol. Diagn. 2012, 14, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.B.; Lee, E.J.; Jung, E.H.; Chun, H.-K.; Chang, D.K.; Song, S.Y.; Park, J.; Kim, D.-H. Aberrant methylation of apc, mgmt, rassf2a, and wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin. Cancer Res. 2009, 15, 6185–6191. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, T.; Tanaka, N.; Cullings, H.M.; Sun, D.-S.; Sasamoto, H.; Uchida, T.; Koi, M.; Nishida, N.; Naomoto, Y.; Boland, C.R.; et al. Analysis of fecal DNA methylation to detect gastrointestinal neoplasia. J. Natl. Cancer Inst. 2009, 101, 1244–1258. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.H.; Chang, E.; Kim, Y.J.; Kim, B.K.; Sohn, J.H.; Park, D.I. Stool methylation-specific polymerase chain reaction assay for the detection of colorectal neoplasia in korean patients. Dis. Colon. Rectum 2009, 52, 1452–1459. [Google Scholar] [CrossRef]
- Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef]
- Huang, T.; Lin, C.; Zhong, L.L.D.; Zhao, L.; Zhang, G.; Lu, A.; Wu, J.; Bian, Z. Targeting histone methylation for colorectal cancer. Ther. Adv. Gastroenterol. 2017, 10, 114–131. [Google Scholar] [CrossRef]
- Nakazawa, T.; Kondo, T.; Ma, D.; Niu, D.; Mochizuki, K.; Kawasaki, T.; Yamane, T.; Iino, H.; Fujii, H.; Katoh, R. Global histone modification of histone h3 in colorectal cancer and its precursor lesions. Hum. Pathol. 2012, 43, 834–842. [Google Scholar] [CrossRef]
- Tamagawa, H.; Oshima, T.; Numata, M.; Yamamoto, N.; Shiozawa, M.; Morinaga, S.; Nakamura, Y.; Yoshihara, M.; Sakuma, Y.; Kameda, Y.; et al. Global histone modification of h3k27 correlates with the outcomes in patients with metachronous liver metastasis of colorectal cancer. Eur. J. Surg. Oncol. 2013, 39, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, Y.; Hieda, M.; Nishioka, Y.; Matsumoto, A.; Higashi, S.; Kimura, H.; Yamamoto, H.; Mori, M.; Matsuura, S.; Matsuura, N. Cancer-associated upregulation of histone h3 lysine 9 trimethylation promotes cell motility in vitro and drives tumor formation in vivo. Cancer Sci. 2013, 104, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Tegla, C.A.; Cudrici, C.D.; Nguyen, V.; Danoff, J.; Kruszewski, A.M.; Boodhoo, D.; Mekala, A.P.; Vlaicu, S.I.; Chen, C.; Rus, V.; et al. Rgc-32 is a novel regulator of the t-lymphocyte cell cycle. Exp. Mol. Pathol. 2015, 98, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Vlaicu, S.I.; Tegla, C.A.; Cudrici, C.D.; Fosbrink, M.; Nguyen, V.; Azimzadeh, P.; Rus, V.; Chen, H.; Mircea, P.A.; Shamsuddin, A.; et al. Epigenetic modifications induced by rgc-32 in colon cancer. Exp. Mol. Pathol. 2010, 88, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.D.; Zhang, W.; Zhao, K.; Cao, B.; Yuan, H.; Wei, L.Z.; Song, M.Q.; Liu, X.S. Microrna-455 suppresses the oncogenic function of hdac2 in human colorectal cancer. Braz. J. Med. Biol. Res. 2017, 50, e6103. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-T.; Xing, W.; Zhao, R.-S.; Tan, Y.; Wu, X.-F.; Ao, L.-Q.; Li, Z.; Yao, M.-W.; Yuan, M.; Guo, W.; et al. Hdac2 inhibits emt-mediated cancer metastasis by downregulating the long noncoding rna h19 in colorectal cancer. J. Exp. Clin. Cancer Res. 2020, 39, 270. [Google Scholar] [CrossRef]
- Carew, J.S.; Medina, E.C.; Esquivel Ii, J.A.; Mahalingam, D.; Swords, R.; Kelly, K.; Zhang, H.; Huang, P.; Mita, A.C.; Mita, M.M.; et al. Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J. Cell Mol. Med. 2009, 14, 2448–2459. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Jiang, Y.; Li, C.Q.; Zhang, Y.; Dakle, P.; Kaur, H.; Deng, J.W.; Lin, R.Y.; Han, L.; Xie, J.J.; et al. Tp63, sox2, and klf5 establish a core regulatory circuitry that controls epigenetic and transcription patterns in esophageal squamous cell carcinoma cell lines. Gastroenterology 2020, 159, 1311–1327. [Google Scholar] [CrossRef]
- Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-coding rna networks in cancer. Nat. Rev. Cancer 2017, 18, 5–18. [Google Scholar] [CrossRef]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of transcription in human cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef]
- Chevillet, J.; Lee, I.; Briggs, H.; He, Y.; Wang, K. Issues and prospects of microrna-based biomarkers in blood and other body fluids. Molecules 2014, 19, 6080–6105. [Google Scholar] [CrossRef]
- Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory mechanism of microrna expression in cancer. Int. J. Mol. Sci. 2020, 21, 1723. [Google Scholar] [CrossRef] [PubMed]
- Ventura, A.; Jacks, T. MicroRNAs and cancer: Short RNAs go a long way. Cell 2009, 136, 586–591. [Google Scholar] [CrossRef]
- Almeida, M.I.; Reis, R.M.; Calin, G.A. Microrna history: Discovery, recent applications, and next frontiers. Mutat. Res. 2011, 717, 1–8. [Google Scholar] [CrossRef]
- Strubberg, A.M.; Madison, B.B. Micrornas in the etiology of colorectal cancer: Pathways and clinical implications. Dis. Model. Mech. 2017, 10, 197–214. [Google Scholar] [CrossRef]
- Chen, X.; Guo, X.; Zhang, H.; Xiang, Y.; Chen, J.; Yin, Y.; Cai, X.; Wang, K.; Wang, G.; Ba, Y.; et al. Role of mir-143 targeting kras in colorectal tumorigenesis. Oncogene 2009, 28, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Yang, Y.; Xia, Y.; Okugawa, Y.; Yang, J.; Liang, Y.; Chen, H.; Zhang, P.; Wang, F.; Han, H.; et al. Novel evidence for an oncogenic role of microRNA-21 in colitis-associated colorectal cancer. Gut 2016, 65, 1470–1481. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-Y.; Yeh, K.-Y.; Liu, B.-F.; Chang, T.-M.; Chang, C.-H.; Liao, Y.-F.; Liu, Y.-W.; Her, G.M. Microrna-21 plays multiple oncometabolic roles in colitis-associated carcinoma and colorectal cancer via the pi3k/akt, stat3, and pdcd4/tnf-α signaling pathways in zebrafish. Cancers 2021, 13, 5565. [Google Scholar] [CrossRef] [PubMed]
- Bastaminejad, S.; Taherikalani, M.; Ghanbari, R.; Akbari, A.; Shabab, N.; Saidijam, M. Investigation of microrna-21 expression levels in serum and stool as a potential non-invasive biomarker for diagnosis of colorectal cancer. Iran. Biomed. J. 2017, 21, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Fearnhead, N.S.; Britton, M.P.; Bodmer, W.F. The ABC of APC. Hum. Mol. Genet. 2001, 10, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Nagel, R.; le Sage, C.; Diosdado, B.a.; van der Waal, M.; Oude Vrielink, J.A.F.; Bolijn, A.; Meijer, G.A.; Agami, R. Regulation of the adenomatous polyposis coli gene by the mir-135 family in colorectal cancer. Cancer Res. 2008, 68, 5795–5802. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.M.; Liu, S.Q.; Sun, M.Z. Mir-429 as biomarker for diagnosis, treatment and prognosis of cancers and its potential action mechanisms: A systematic literature review. Neoplasma 2020, 67, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhao, Q.; Zhou, J.; Shi, R. Mir-429 mediates tumor growth and metastasis in colorectal cancer. Am. J. Cancer Res. 2017, 7, 218–233. [Google Scholar]
- Liu, H.; Huang, C.; Wu, L.; Wen, B. Effect of evodiamine and berberine on mir-429 as an oncogene in human colorectal cancer. OncoTargets Ther. 2016, 9, 4121–4127. [Google Scholar]
- Karaayvaz, M.; Zhai, H.; Ju, J. Mir-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis. 2013, 4, e659. [Google Scholar] [CrossRef]
- Sun, C.; Wang, F.J.; Zhang, H.G.; Xu, X.Z.; Jia, R.C.; Yao, L.; Qiao, P.F. Mir-34a mediates oxaliplatin resistance of colorectal cancer cells by inhibiting macroautophagy via transforming growth factor-β/smad4 pathway. World J. Gastroenterol. 2017, 23, 1816–1827. [Google Scholar] [CrossRef]
- Kjersem, J.B.; Ikdahl, T.; Lingjaerde, O.C.; Guren, T.; Tveit, K.M.; Kure, E.H. Plasma micrornas predicting clinical outcome in metastatic colorectal cancer patients receiving first-line oxaliplatin-based treatment. Mol. Oncol. 2014, 8, 59–67. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, X.; Liu, Z.; Tian, X.; Huo, Z. Mir-106a reduces 5-fluorouracil (5-fu) sensitivity of colorectal cancer by targeting dual-specificity phosphatases 2 (dusp2). Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 4944–4951. [Google Scholar] [CrossRef]
- Dong, W.; Li, N.; Pei, X.; Wu, X. Differential expression of dusp2 in left- and right-sided colon cancer is associated with poor prognosis in colorectal cancer. Oncol. Lett. 2018, 15, 4207–4214. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Witmer, P.D.; Casey, E.; Valle, D.; Sukumar, S. DNA methylation regulates microrna expression. Cancer Biol. Ther. 2007, 6, 1284–1288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liao, Y.; Tang, L. Microrna-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J. Exp. Clin. Cancer Res. 2019, 38, 53. [Google Scholar] [CrossRef] [PubMed]
- Lujambio, A.; Calin, G.A.; Villanueva, A.; Ropero, S.; Sánchez-Céspedes, M.; Blanco, D.; Montuenga, L.M.; Rossi, S.; Nicoloso, M.S.; Faller, W.J.; et al. A microrna DNA methylation signature for human cancer metastasis. Proc. Natl. Acad. Sci. USA 2008, 105, 13556–13561. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Levi, E.; Majumdar, A.P.; Sarkar, F.H. Expression of mir-34 is lost in colon cancer which can be re-expressed by a novel agent cdf. J. Hematol. Oncol. 2012, 5, 58. [Google Scholar] [CrossRef]
- Chen, M.; Li, D.; Gong, N.; Wu, H.; Su, C.; Xie, C.; Xiang, H.; Lin, C.; Li, X. Mir-133b down-regulates abcc1 and enhances the sensitivity of crc to anti-tumor drugs. Oncotarget 2017, 8, 52983–52994. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, Z. Serum mir-92a-1 is a novel diagnostic biomarker for colorectal cancer. J. Cell Mol. Med. 2020, 24, 8363–8367. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Huang, D.; Ni, S.; Peng, Z.; Sheng, W.; Du, X. Plasma micrornas are promising novel biomarkers for early detection of colorectal cancer. Int. J. Cancer 2010, 127, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.K.O.; Chong, W.W.S.; Jin, H.; Lam, E.K.Y.; Shin, V.Y.; Yu, J.; Poon, T.C.W.; Ng, S.S.M.; Sung, J.J.Y. Differential expression of micrornas in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut 2009, 58, 1375–1381. [Google Scholar] [CrossRef]
- Silva, C.M.S.; Barros-Filho, M.C.; Wong, D.V.T.; Mello, J.B.H.; Nobre, L.M.S.; Wanderley, C.W.S.; Lucetti, L.T.; Muniz, H.A.; Paiva, I.K.D.; Kuasne, H.; et al. Circulating let-7e-5p, mir-106a-5p, mir-28-3p, and mir-542-5p as a promising microrna signature for the detection of colorectal cancer. Cancers 2021, 13, 1493. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, A.; Cai, M.; Tong, M.; Chen, F.; Huang, L. Identification of stool mir-135b-5p as a non-invasive diaognostic biomarker in later tumor stage of colorectal cancer. Life Sci. 2020, 260, 118417. [Google Scholar] [CrossRef] [PubMed]
- Toiyama, Y.; Takahashi, M.; Hur, K.; Nagasaka, T.; Tanaka, K.; Inoue, Y.; Kusunoki, M.; Boland, C.R.; Goel, A. Serum mir-21 as a diagnostic and prognostic biomarker in colorectal cancer. J. Natl. Cancer Inst. 2013, 105, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Sazanov, A.A.; Kiselyova, E.V.; Zakharenko, A.A.; Romanov, M.N.; Zaraysky, M.I. Plasma and saliva mir-21 expression in colorectal cancer patients. J. Appl. Genet. 2017, 58, 231–237. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Fukunaga, M.; Takahashi, J.; Shimizu, D.; Masuda, T.; Mizushima, T.; Yamada, K.; Mori, M.; Eguchi, H.; Doki, Y.; et al. Identification of the minimum combination of serum micrornas to predict the recurrence of colorectal cancer cases. Ann. Surg. Oncol. 2022, 30, 233–243. [Google Scholar] [CrossRef]
- Hao, H.; Liu, L.; Zhang, D.; Wang, C.; Xia, G.; Zhong, F.; Hu, X. Diagnostic and prognostic value of mir-106a in colorectal cancer. Oncotarget 2017, 8, 5038–5047. [Google Scholar] [CrossRef]
- Zhao, Y.; Ren, Q.; Zhu, K. Serum mir-106b upregulation predicts poor prognosis in patients with colorectal cancer. Int. J. Clin. Exp. Pathol. 2018, 11, 4197–4204. [Google Scholar] [CrossRef]
- Dong, S.-j.; Cai, X.-j.; Li, S.-j. The clinical significance of mir-429 as a predictive biomarker in colorectal cancer patients receiving 5-fluorouracil treatment. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 3352–3361. [Google Scholar] [CrossRef]
- Zhang, G.-J.; Zhou, T.; Liu, Z.-L.; Tian, H.-P.; Xia, S.-S. Plasma mir-200c and mir-18a as potential biomarkers for the detection of colorectal carcinoma. Mol. Clin. Oncol. 2013, 1, 379–384. [Google Scholar] [CrossRef]
- Chang, P.Y.; Chen, C.C.; Chang, Y.S.; Tsai, W.S.; You, J.F.; Lin, G.P.; Chen, T.W.; Chen, J.S.; Chan, E.C. Microrna-223 and microrna-92a in stool and plasma samples act as complementary biomarkers to increase colorectal cancer detection. Oncotarget 2016, 7, 10663–10675. [Google Scholar] [CrossRef]
- Sahami-Fard, M.H.; Kheirandish, S.; Sheikhha, M.H. Expression levels of mir-143-3p and -424-5p in colorectal cancer and their clinical significance. Cancer Biomark. 2019, 24, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, M.; Wang, M.; Yan, D.; Feng, G.; An, G. The expression of microrna-375 in plasma and tissue is matched in human colorectal cancer. BMC Cancer 2014, 14, 714. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, R.; Li, Z.; Luo, B. Diagnostic value of combining mirnas, cea measurement and the fobt in colorectal cancer screening. Cancer Manag. Res. 2020, 12, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Tang, J.; Bai, Y.; Lin, H.; You, H.; Jin, H.; Lin, L.; You, P.; Li, J.; Dai, Z.; et al. Plasma levels of microrna-24, microrna-320a, and microrna-423-5p are potential biomarkers for colorectal carcinoma. J. Exp. Clin. Cancer Res. 2015, 34, 86. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.O.; Wu, C.W.; Tang, C.M.; Chen, Y.; Fang, J.; Dong, Y.; Liang, Q.; Ng, S.S.; Chan, F.K.; Sung, J.J.; et al. Microrna-20a in human faeces as a non-invasive biomarker for colorectal cancer. Oncotarget 2016, 7, 1559–1568. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.O.; Wu, C.W.; Dong, Y.; Tang, C.M.; Ng, S.S.; Chan, F.K.; Sung, J.J.; Yu, J. Microrna-221 and microrna-18a identification in stool as potential biomarkers for the non-invasive diagnosis of colorectal carcinoma. Br. J. Cancer 2014, 111, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, A.; Li, J.; Fu, J.; Wang, G.; Yang, Y.; Cui, L.; Sun, J. Fecal mir-29a and mir-224 as the noninvasive biomarkers for colorectal cancer. Cancer Biomark. 2016, 16, 259–264. [Google Scholar] [CrossRef]
- Schetter, A.J.; Leung, S.Y.; Sohn, J.J.; Zanetti, K.A.; Bowman, E.D.; Yanaihara, N.; Yuen, S.T.; Chan, T.L.; Kwong, D.L.W.; Au, G.K.H.; et al. Microrna expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008, 299, 425–436. [Google Scholar] [CrossRef]
- Ray, R.B.; Uratani, R.; Toiyama, Y.; Kitajima, T.; Kawamura, M.; Hiro, J.; Kobayashi, M.; Tanaka, K.; Inoue, Y.; Mohri, Y.; et al. Diagnostic potential of cell-free and exosomal micrornas in the identification of patients with high-risk colorectal adenomas. PLoS ONE 2016, 11, e0160722. [Google Scholar]
- Li, X.; Yang, C.; Wang, X.; Zhang, J.; Zhang, R.; Liu, R. The expression of mir-25 is increased in colorectal cancer and is associated with patient prognosis. Med. Oncol. 2013, 31, 781. [Google Scholar] [CrossRef]
- Liu, D.-R.; Guan, Q.-L.; Gao, M.-T.; Jiang, L.; Kang, H.-X. Mir-1260b is a potential prognostic biomarker in colorectal cancer. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 2417–2423. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Zhang, L.; Cogdell, D.E.; Zheng, H.; Schetter, A.J.; Nykter, M.; Harris, C.C.; Chen, K.; Hamilton, S.R.; Zhang, W. Circulating plasma mir-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS ONE 2011, 6, e17745. [Google Scholar] [CrossRef] [PubMed]
- Weissmann-Brenner, A.; Kushnir, M.; Lithwick Yanai, G.; Aharonov, R.; Gibori, H.; Purim, O.; Kundel, Y.; Morgenstern, S.; Halperin, M.; Niv, Y.; et al. Tumor microrna-29a expression and the risk of recurrence in stage ii colon cancer. Int. J. Oncol. 2012, 40, 2097–2103. [Google Scholar]
- Wang, L.-g.; Gu, J. Serum microrna-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol. 2012, 36, e61–e67. [Google Scholar] [CrossRef]
- Aherne, S.T.; Madden, S.F.; Hughes, D.J.; Pardini, B.; Naccarati, A.; Levy, M.; Vodicka, P.; Neary, P.; Dowling, P.; Clynes, M. Circulating mirnas mir-34a and mir-150 associated with colorectal cancer progression. BMC Cancer 2015, 15, 329. [Google Scholar] [CrossRef]
- Yin, J.; Bai, Z.; Song, J.; Yang, Y.; Wang, J.; Han, W.; Zhang, J.; Meng, H.; Ma, X.; Yang, Y.; et al. Differential expression of serum mir-126, mir-141 and mir-21 as novel biomarkers for early detection of liver metastasis in colorectal cancer. Chin. J. Cancer Res. 2014, 26, 95–103. [Google Scholar]
- Sun, Y.; Shen, S.; Tang, H.; Xiang, J.; Peng, Y.; Tang, A.; Li, N.; Zhou, W.; Wang, Z.; Zhang, D.; et al. Mir-429 identified by dynamic transcriptome analysis is a new candidate biomarker for colorectal cancer prognosis. OMICS J. Integr. Biol. 2014, 18, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding rnas. Mol. Cell 2011, 43, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.W.; Wang, Y.; Chen, L.L. Cellular functions of long noncoding rnas. Nat. Cell Biol. 2019, 21, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Wang, M.; Ma, N.; Xu, Y.; Jiang, Y.; Gao, X. Long noncoding rnas: Novel players in colorectal cancer. Cancer Lett. 2015, 361, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Huarte, M. The emerging role of lncrnas in cancer. Nat. Med. 2015, 21, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Han, Z.; Li, H.; Zhu, Y.; Sun, Z.; Zhu, A. Lncrna dleu1 contributes to colorectal cancer progression via activation of kpna3. Mol. Cancer 2018, 17, 118. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, Y.; Yu, Z.; Su, H. Upregulated long intergenic non-protein coding rna 1094 (linc01094) is linked to poor prognosis and alteration of cell function in colorectal cancer. Bioengineered 2022, 13, 8526–8537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, W.; Yuan, Y.; Li, J.; Wu, J.; Yu, J.; He, Y.; Wei, Z.; Zhang, C. Correction to: Long non-coding rna h19 promotes colorectal cancer metastasis via binding to hnrnpa2b1. J. Exp. Clin. Cancer Res. 2021, 40, 111. [Google Scholar] [CrossRef]
- Shen, W.; Yu, Q.; Pu, Y.; Xing, C. Upregulation of long noncoding rna malat1 in colorectal cancer promotes radioresistance and aggressive malignance. Int. J. Gen. Med. 2022, 15, 8365–8380. [Google Scholar] [CrossRef]
- Gao, R.; Fang, C.; Xu, J.; Tan, H.; Li, P.; Ma, L. Lncrna cacs15 contributes to oxaliplatin resistance in colorectal cancer by positively regulating abcc1 through sponging mir-145. Arch. Biochem. Biophys. 2019, 663, 183–191. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Zhang, J.; Chen, S.; Zhu, J.; Wang, X. Long noncoding rna crart16 confers 5-fu resistance in colorectal cancer cells by sponging mir-193b-5p. Cancer Cell Int. 2021, 21, 638. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, L.; Chen, S.; Zhang, J.; Ma, Y.; Hu, J.; Yue, T.; Wang, J.; Zhu, J.; Bu, D.; et al. The novel long noncoding rna crart16 confers cetuximab resistance in colorectal cancer cells by enhancing erbb3 expression via mir-371a-5p. Cancer Cell Int. 2020, 20, 68. [Google Scholar] [CrossRef]
- Liu, K.; Yao, H.; Wen, Y.; Zhao, H.; Zhou, N.; Lei, S.; Xiong, L. Functional role of a long non-coding rna lifr-as1/mir-29a/tnfaip3 axis in colorectal cancer resistance to pohotodynamic therapy. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 2871–2880. [Google Scholar] [CrossRef]
- Yang, M.; Chen, W. Long non-coding rna cbr3 antisense rna 1 is downregulated in colorectal cancer and inhibits mir-29a-mediated cell migration and invasion. Mol. Biotechnol. 2022, 64, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Zhu, Y.; Gao, J.; Fu, J.; Liu, C.; Liu, Y.; Song, C.; Zhu, S.; Leng, Y.; Wang, G.; et al. Microrna-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and e-cadherin via klf4. Br. J. Cancer 2014, 110, 450–458. [Google Scholar] [CrossRef]
- He, N.; Xiang, L.; Chen, L.; Tong, H.; Wang, K.; Zhao, J.; Song, F.; Yang, H.; Wei, X.; Jiao, Z. The role of long non-coding rna fgd5-as1 in cancer. Bioengineered 2022, 13, 11026–11041. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Jiang, X.; Zhang, X.; Cao, G.; Wang, D.; Chen, Z. Long noncoding rna fgd5-as1 promotes colorectal cancer cell proliferation, migration, and invasion through upregulating cdca7 via sponging mir-302e. In Vitro Cell Dev. Biol. Anim. 2019, 55, 577–585. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Xu, B.; Wang, B.; Wang, Z.; Liang, Y.; Zhou, J.; Hu, J.; Jiang, B. Epigenetic silencing of mir-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncol. Rep. 2013, 30, 1976–1984. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, Y.; Wu, J.; Feng, J. Linc00460 hypomethylation promotes metastasis in colorectal carcinoma. Front. Genet. 2019, 10, 880. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Zou, P.; Tang, Q.; Zheng, F.; Wu, J.; Chen, Z.; Hann, S.S. Hotair-mediated reciprocal regulation of ezh2 and dnmt1 contribute to polyphyllin i-inhibited growth of castration-resistant prostate cancer cells in vitro and in vivo. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 589–599. [Google Scholar] [CrossRef]
- Li, J.N.; Yuan, S.Y. Fecal occult blood test in colorectal cancer screening. J. Dig. Dis. 2019, 20, 62–64. [Google Scholar] [CrossRef]
- Lin, J.; Shi, Z.; Yu, Z.; He, Z. Lncrna hif1a-as2 positively affects the progression and emt formation of colorectal cancer through regulating mir-129-5p and dnmt3a. Biomed. Pharmacother. 2018, 98, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Guo, F.; Lu, S.Y.F. Nucleatum targets lncrna eno1-it1 to promote glycolysis and oncogenesis in colorectal cancer. Gut 2021, 70, 2123–2137. [Google Scholar] [CrossRef] [PubMed]
- Alvandi, E.; Wong, W.K.M.; Joglekar, M.V.; Spring, K.J.; Hardikar, A.A. Short-chain fatty acid concentrations in the incidence and risk-stratification of colorectal cancer: A systematic review and meta-analysis. BMC Med. 2022, 20, 323. [Google Scholar] [CrossRef] [PubMed]
- Mowat, C.; Dhatt, J.; Bhatti, I.; Hamie, A.; Baker, K. Short chain fatty acids prime colorectal cancer cells to activate antitumor immunity. Front. Immunol. 2023, 14, 1190810. [Google Scholar] [CrossRef]
- Hinnebusch, B.F.; Meng, S.; Wu, J.T.; Archer, S.Y.; Hodin, R.A. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J. Nutr. 2002, 132, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Hanus, M.; Parada-Venegas, D.; Landskron, G.; Wielandt, A.M.; Hurtado, C.; Alvarez, K.; Hermoso, M.A.; López-Köstner, F.; De la Fuente, M. Immune system, microbiota, and microbial metabolites: The unresolved triad in colorectal cancer microenvironment. Front. Immunol. 2021, 12, 612826. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, X.; Wang, J. Small molecules in the big picture of gut microbiome-host cross-talk. EBioMedicine 2022, 81, 104085. [Google Scholar] [CrossRef]
- Ozawa, T.; Matsuyama, T.; Toiyama, Y.; Takahashi, N.; Ishikawa, T.; Uetake, H.; Yamada, Y.; Kusunoki, M.; Calin, G.; Goel, A. Ccat1 and ccat2 long noncoding rnas, located within the 8q.24.21 ‘gene desert’, serve as important prognostic biomarkers in colorectal cancer. Ann. Oncol. 2017, 28, 1882–1888. [Google Scholar] [CrossRef]
- Shi, Q.; He, Y.; Zhang, X.; Li, J.; Cui, G.; Zhang, X.; Wang, X. Two novel long noncoding rnas—rp11-296e3.2 and lef1-as1can—Separately serve as diagnostic and prognostic bio-markers of metastasis in colorectal cancer. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 7042–7051. [Google Scholar] [CrossRef]
- Pan, X.; Cheng, R.; Zhu, X.; Cai, F.; Zheng, G.; Li, J.; Gao, C. Prognostic significance and diagnostic value of overexpressed lncrna pvt1 in colorectal cancer. Clin. Lab. 2019, 65, 2279–2288. [Google Scholar] [CrossRef]
- Xu, J.; Wang, L.; Wang, Q. High expression of long noncoding rna 01410 serves as a potential diagnostic and prognostic marker in patients with colorectal cancer. Clin Lab. 2021, 67, 1145–1153. [Google Scholar] [CrossRef]
- Gong, W.; Tian, M.; Qiu, H.; Yang, Z. Elevated serum level of lncrna-hif1a-as1 as a novel diagnostic predictor for worse prognosis in colorectal carcinoma. Cancer Biomark. 2017, 20, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Song, X.G.; Zhao, Y.J.; Dong, X.H.; Niu, L.M.; Zhang, Z.J.; Shang, X.L.; Tang, Y.Y.; Song, X.R.; Xie, L. Circulating serum exosomal long non-coding rnas foxd2-as1, nrir, and xloc_009459 as diagnostic biomarkers for colorectal cancer. Front. Oncol. 2021, 11, 618967. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cao, Q.; An, G.; Yan, B.; Lei, L. Identification of the 3-lncrna signature as a prognostic biomarker for colorectal cancer. Int. J. Mol. Sci. 2020, 21, 9359. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Stock, C.; Hoffmeister, M. Colorectal cancer screening: The time to act is now. BMC Med. 2015, 13, 262. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, R.; Engarås, B.; Lindmark, G.; Hallmans, G.; Tavelin, B.; Nilsson, O.; Hammarström, S.; Hafström, L. Prediagnostic levels of carcinoembryonic antigen and ca 242 in colorectal cancer: A matched case-control study. Dis. Colon Rectum 2003, 46, 1538–1544. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, J.S. Carcinoembryonic antigen screening: Pros and cons. Semin. Oncol. 1999, 26, 556–560. [Google Scholar] [PubMed]
- Shaukat, A.; Mongin, S.J.; Geisser, M.S.; Lederle, F.A.; Bond, J.H.; Mandel, J.S.; Church, T.R. Long-term mortality after screening for colorectal cancer. N. Engl. J. Med. 2013, 369, 1106–1114. [Google Scholar] [CrossRef]
- Larsen, M.B.; Njor, S.; Ingeholm, P.; Andersen, B. Effectiveness of colorectal cancer screening in detecting earlier-stage disease-a nationwide cohort study in Denmark. Gastroenterology 2018, 155, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.; Krause, F.; Rolny, V.; Strobl, M.; Morgenstern, D.; Datz, C.; Chen, H.; Brenner, H. Evaluation of a 5-marker blood test for colorectal cancer early detection in a colorectal cancer screening setting. Clin. Cancer Res. 2016, 22, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Ahlquist, D.A.; Sargent, D.J.; Loprinzi, C.L.; Levin, T.R.; Rex, D.K.; Ahnen, D.J.; Knigge, K.; Lance, M.P.; Burgart, L.J.; Hamilton, S.R.; et al. Stool DNA and occult blood testing for screen detection of colorectal neoplasia. Ann. Intern. Med. 2008, 149, 441–450. [Google Scholar] [CrossRef]
- Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 2014, 370, 1287–1297. [Google Scholar] [CrossRef]
- Sadri, S.; Rejali, L.; Hadizadeh, M.; Aghdaei, H.A.; Young, C.; Nazemalhosseini-Mojarad, E.; Zali, M.R.; Bonab, M.A. ANRIL as a prognostic biomarker in colon pre-cancerous lesion detection via non-invasive sampling. Genes Genet. Syst. 2022, 96, 285–292. [Google Scholar] [CrossRef] [PubMed]
Drug Name | Target Gene | Affected Colorectal Cancer Staging | Reference |
---|---|---|---|
Pertuzumab | HER2 | Metastatic | [26] |
Encorafenib | BRAF | Metastatic | [27] |
Ipilimumab | CTLA-4 | Metastatic, MSI-H/dMMR | [28] |
5-FU | DNA synthesis and repair | Metastatic | [29] |
Cetuximab | EGFR | Metastatic | [30,31] |
Panitumumab | EGFR | Metastatic | [32,33] |
Trastuzumab | HER2 | Metastatic | [26,34] |
Trametinib | MEK1, MEK2 | RAS and RAF mutation | [35] |
Dostarlimab | PD-1 | Metastatic, MSI-H/dMMR | [36] |
Nivolumab | PD-1 | Metastatic, MSI-H/dMMR | [37] |
Pembrolizumab | PD-1 | Metastatic, MSI-H/dMMR | [38,39] |
Olaparib | PARP1/2 | BRCA mutation | [40] |
Bevacizumab | VEGF-A | Metastatic | [41,42] |
Ziv-aflibercept | VEGF-A, VEGF-B, IGF-1 | Metastatic | [43] |
Regorafenib | VEGFR2, TIE2, PDGFR, FGFR, KIT, RET, BRAF, BRAFV600E | Metastatic | [44] |
Diagnostic Markers | Specimen | CRC Staging | Epigenetic Changes | Sensibility (%) | Specificity (%) | Reference |
---|---|---|---|---|---|---|
(1) | ||||||
ALX4 | serum | early-stage CRC | methylation | 46.6 (21/45) | 66.3 (11/16) | [78] |
ALX4 | plasma | early-stage CRC | methylation | 47.8 (87/182) | 93.5 (159/170) | [11] |
CDH1 | serum | early-stage CRC | hypermethylation | 18 (3/17) | 100 (10/10) | [79] |
NEUROG1 | serum | early-stage CRC | methylation | 55.5 (25/45) | 81.3 (13/16) | [78] |
P16 | serum | early-stage CRC | hypermethylation | 71 (12/17) | 100 (10/10) | [79] |
RASSF1A | serum | early-stage CRC | hypermethylation | 24 (4/17) | 100 (10/10) | [79] |
RASSF1A | plasma | early-stage CRC | methylation | 93 (28/30) | 53 (16/30) | [80] |
RUNX3 | serum | early-stage CRC | promoter hypermethylation | 65 (11/17) | 100 (10/10) | [79] |
TFPI2 | serum | early-stage CRC | methylation | 18 (39/215) | 100 (20/20) | [81] |
TFPI2 | stool | early-stage CRC | methylation | 76 (50/66) | 93 (28/30) | [82] |
TFPI2 | tissue | early-stage CRC | methylation | 99 (114/115) | 94 (45/48) | [82] |
SDC2, TFPI2 | stool | early-stage CRC | methylation | 82 (237/289) | 88.4 (192/217) | [75] |
SDC2 | tissue | early-stage CRC | methylation | 96.8 (120/124) | ns | [74] |
SDC2 | stool | early-stage CRC | methylation | 81.1 (159/196) | 93.3 (167/179) | [74] |
TMEFF2 | plasma | early-stage CRC | methylation | 70.9 (129/182) | 95.2 (162/170) | [11] |
c9orf50, twist1, kcnj12, znf132 | plasma | early-stage CRC | methylation | 80 (140/175) | 97 (54/56) | [83] |
EFHD1 | plasma | early-stage CRC | promoter methylation | 79 (19/24) | 78 (75/96) | [84] |
BMP3 | plasma | early-stage CRC | methylation | 75 (44/59) | 70 (26/37) | [10] |
BMP3 | tissue | early-stage CRC | methylation | 81 (24/30) | ns | [10] |
C9orf50 | tissue | early-stage CRC | methylation | 60 | 80.6 | [85] |
SFMBT2 | tissue | early-stage CRC | methylation | 85.7 | 87 | [85] |
ITGA4 | tissue | early-stage CRC | methylation | 85.7 | 87 | [85] |
THBD | tissue | early-stage CRC | methylation | 84.1 | 87 | [85] |
ZNF304 | tissue | early-stage CRC | methylation | 70 | 100 | [85] |
SFMBT2, ITGA4, THBD, ZNF304 | tissue | early-stage CRC | methylation | 96.1 | 87 | [85] |
RARB2, p16INK4a, MGMT, APC | tissue | early-stage CRC | promoter methylation | 77 (20/26) | 100 (20/20) | [86] |
RARB2, p16INK4a, MGMT, APC | stool | early-stage CRC | promoter methylation | 62 (16/26) | 100 (20/20) | [86] |
AGTR1, WNT2, SLIT2 | stool | early-stage CRC | methylation | 78.1 (50/64) | 89.5 (34/38) | [87] |
(2) | ||||||
SDC2 | serum | TNM I-IV | methylation | 87.0 (114/131) | 95.2 (119/125) | [88] |
SEPT9 | plasma | TNM I-IV | methylation | 61.8 (76/123) | 89.6 (112/125) | [89] |
SEPT9 | plasma | TNM I-IV | methylation | 74.7 (136/182) | 96.5 (164/170) | [11] |
SEPT9 | plasma | TNM I-IV | methylation | 50.9 (27/53) | 91.4 (1331/1457) | [90] |
SEPT9 | plasma | TNM I-IV | methylation | 74.8 (101/135) | 87.4 (298/341) | [91] |
SEPT9 | tissue | TNM I-IV | methylation | 78 (99/127) | 97 (116/120) | [11] |
NDRG4 | stool | TNM I-IV | promoter methylation | 61 (17/28) | 93.3 (42/45) | [92] |
NDRG4 | tissue | TNM I-IV | methylation | 81 (68/84) | 92 (77/84) | [9] |
NDRG4 | blood | TNM I-IV | methylation | 54.8 (46/84) | 78.1 (66/84) | [9] |
NDRG4 | urine | TNM I-IV | methylation | 72.6 (61/84) | 85 (71/84) | [9] |
NDRG4 | stool | TNM I-IV | methylation | 76.2 (64/84) | 89.1 (75/84) | [9] |
OSMR | tissue | TNM I-IV | promoter methylation | 80 (80/100) | 4 (4/100) | [93] |
OSMR | stool | TNM I-IV | promoter methylation | 38 (26/69) | 95 (77/81) | [93] |
SFRP1 | plasma | TNM I-IV | promoter methylation | 80 (20/25) | 92 (33/36) | [94] |
PHACTR3 | stool | TNM I-IV | methylation | 66 (29/44) | 100 (30/30) | [95] |
NEUROG1 | serum | UICC I-II | methylation | 61 (59/97) | 91 | [78] |
SFRP2 | serum | TNM I-IV | methylation | 66.9 (113/169) | 93.7 (59/63) | [96] |
SFRP2 | stool | TNM I-IV | hypermethylation | 94.2 (49/52) | 95.2 (23/24) | [97] |
SFRP2 | stool | TNM I-IV | methylation | 84 (142/169) | 54 (34/63) | [96] |
SFRP2 | tissue | TNM I-IV | methylation | 88.2 (149/169) | 34.9 (22/63) | [96] |
SPG20 | stool | TNM I-IV | hypermethylation | 80.2 (77/96) | 100 (30/30) | [98] |
HLTF | serum | TNM I-IV | hypermethylation | 32.7 (16/49) | 92.7 (38/41) | [99] |
hMLH1 | serum | TNM I-IV | hypermethylation | 42.9 (21/49) | 97.6 (40/41) | [99] |
MGMT | stool | TNM I-IV | methylation | 48.1 (25/52) | 100 (24/24) | [100] |
vimentin | serum | TNM I-IV | methylation | 31.1 (14/45) | 62.5 (10/16) | [78] |
vimentin | stool | TNM I-IV | methylation | 45.7 (43/94) | 90.0 (178/198) | [77] |
vimentin | stool | TNM I-IV | methylation | 72.5 (29/40) | 86.9 (106/122) | [101] |
vimentin | urine | TNM I-IV | hypermethylation | 75 (15/20) | 90 (18/20) | [102] |
APC | serum | TNM I-IV | hypermethylation | 6.1 (3/49) | 100 (41/41) | [99] |
Wif-1 | plasma | TNM I-II | methylation | 36.7 (89/243) | 90.6 (250/276) | [103] |
APC, MLH1, HLTF | serum | TNM I-IV | promoter hypermethylation | 57.1 (28/49) | 90.2 (37/41) | [99] |
APC, MGMT, RASSF2A, Wif-1 | plasma | TNM I-II | methylation | 86.5 (210/243) | 92.1 (253/276) | [103] |
RASSF1A, SFRP2 | stool | TNM I-IV | promoter methylation | 75.0 (63/84) | 89.4 (101/113) | [104] |
MGMT, MLH1, VIM | stool | TNM I-IV | promoter methylation | 75.0 (45/60) | 86.5 (32/37) | [105] |
ALX4, SEPT9, TMEFF2 | plasma | TNM I-IV | promoter methylation | 81 (147/182) | 90 (153/170) | [11] |
ALX4, SEPT9, TMEFF2 | tissue | TNM I-IV | promoter methylation | 84 (107/127) | 87 (105/120) | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Tian, Y.; Deng, Z.; Yang, F.; Chen, E. Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications. Int. J. Mol. Sci. 2024, 25, 3358. https://doi.org/10.3390/ijms25063358
Cao Q, Tian Y, Deng Z, Yang F, Chen E. Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications. International Journal of Molecular Sciences. 2024; 25(6):3358. https://doi.org/10.3390/ijms25063358
Chicago/Turabian StyleCao, Qing, Ye Tian, Zhiyi Deng, Fangfang Yang, and Erfei Chen. 2024. "Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications" International Journal of Molecular Sciences 25, no. 6: 3358. https://doi.org/10.3390/ijms25063358
APA StyleCao, Q., Tian, Y., Deng, Z., Yang, F., & Chen, E. (2024). Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications. International Journal of Molecular Sciences, 25(6), 3358. https://doi.org/10.3390/ijms25063358