Progress in Predicting Ames Test Outcomes from Chemical Structures: An In-Depth Re-Evaluation of Models from the 1st and 2nd Ames/QSAR International Challenge Projects
Abstract
:1. Introduction
2. Results
2.1. Data for the Analysis
2.2. Evaluation Index
2.3. Evaluating the Impact of Coverage on Predictive Performance
2.4. Performance of All Models at 100% Coverage
2.5. Effect of Coverage on the Best Model
3. Discussion
3.1. Target Prediction Model for Reassessment
3.2. Evaluation Index
3.3. Principal Component Analysis
3.4. Impact of COV on Metrics
3.5. Best Models
3.6. Effect of Coverage on the Best Model
3.7. Evaluation of Adaptive Domain Setting Technology and Future Prospects
4. Methods
4.1. Analysis Strategy
4.2. Data for the Analysis
4.3. Evaluation Index
4.4. Evaluating the Impact of Coverage on Predictive Performance
4.5. Statistical Test
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. 2000, 455, 29–60. [Google Scholar] [CrossRef] [PubMed]
- Honma, M. An assessment of mutagenicity of chemical substances by (quantitative) structure-activity relationship. Genes Environ. 2020, 42, 23. [Google Scholar] [CrossRef] [PubMed]
- Mishima, M.; Hashizume, T.; Haranosono, Y.; Nagato, Y.; Takeshita, K.; Fukuchi, J.; Homma, M. Meeting report, ich m7 relevant workshop meeting report, ICH M7 relevant workshop: Use of (Q)SAR systems and expert judgment. Genes Environ. 2018, 40, 19. [Google Scholar] [CrossRef]
- Honma, M.; Kitazawa, A.; Cayley, A.; Williams, R.V.; Barber, C.; Hanser, T.; Saiakhov, R.; Chakravarti, S.; Myatt, G.J.; Cross, K.P.; et al. Improvement of Quantitative Structure-Activity Relationship (QSAR) Tools for Predicting Ames Mutagenicity: Outcomes of the Ames/QSAR International Challenge Project. Mutagenesis 2019, 34, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Japan Chemical Industry Ecology-Toxicology & Information Center (JETOC). Mutagenicity Test Data of Existing Chemical Substances Based on the Toxicity Investigation System of the Industrial Safety and Health Law, Supplement; JETOC: Tokyo, Japan, 1997; 337p. [Google Scholar]
- Furuhama, A.; Kitazawa, A.; Yao, J.; Matos Dos Santos, C.E.; Rathman, J.; Yang, C.; Ribeiro, J.V.; Cross, K.; Myatt, G.; Raitano, G.; et al. Evaluation of QSAR models for predicting mutagenicity: Outcome of the second Ames/QSAR International Challenge Project. SAR QSAR Environ. Res. 2023, 34, 983–1001. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Basak, S.C. Exploring intrinsic dimensionality of chemical spaces for robust QSAR model development: A comparison of several statistical approaches. Curr. Comput. Aid. Drug Des. 2016, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Sahigara, F.; Mansouri, K.; Ballabio, D.; Mauri, A.; Consonni, V.; Todeschini, R. Comparison of different approaches to define the applicability domain of QSAR models. Molecules 2012, 17, 4791–4810. [Google Scholar] [CrossRef]
- Jaworska, J.; Nikolova-Jeliazkova, N.; Aldenberg, T. QSAR applicability domain estimation by projection of the training set in descriptor space: A review. Altern. Lab. Anim. 2005, 33, 445–459. [Google Scholar] [CrossRef]
- Roy, K.; Ambure, P.; Aher, R.B. How important is to detect systematic error in predictions and understand statistical applicability domain of QSAR models? Chemom. Intell. Lab. Syst. 2017, 162, 44–54. [Google Scholar] [CrossRef]
- Johnson, N.L. Systems of frequency curves generated by methods of translation. Biometrika 1949, 36, 149–176. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Sabour, S.S. Reliability and validity analysis in the field of tumor; common mistakes. J. Tumor 2014, 2, 4. [Google Scholar]
- Baeyens, J.P.; Serrien, B.; Goossens, M.; Clijsen, R. Questioning the “SPIN and SNOUT” rule in clinical testing. Arch. Physiother. 2019, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, T.; Provost, F. adaptive fraud detection. Data Min. Knowl. Discov. 1997, 1, 291–316. [Google Scholar] [CrossRef]
- Japkowicz, N.; Stephen, S. The class imbalance problem: A systematic study. Intell. Data Anal. 2002, 6, 429–449. [Google Scholar] [CrossRef]
- Ingleby, J.D. Signal detection theory and psychophysics: By D. M. Green and J. A. Swets. New York: John Wiley & Sons Ltd, 1966. Cloth. 104s. Cloth. J. Sound Vib. 1967, 5, 519–521. [Google Scholar] [CrossRef]
- Davis, J.; Goadrich, M. The Relationship between Precision-Recall and ROC Curves. In Proceedings of the 23rd International Conference on Machine Learning (ICML ’06), Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240. [Google Scholar] [CrossRef]
- Mallett, S.; Halligan, S.; Thompson, M.; Collins, G.S.; Altman, D.G. Interpreting diagnostic accuracy studies for patient care. BMJ 2012, 345, e3999. [Google Scholar] [CrossRef]
- Ahad, M.A.R.; Antar, A.D.; Ahmed, M. Performance Evaluation in Activity Classification: Factors to Consider. In IoT Sensor-Based Activity Recognition: Human Activity Recognition; Springer: Cham, Switzerland, 2021; pp. 133–147. [Google Scholar] [CrossRef]
- Shao, G.; Zhang, H.; Shao, J.; Woeste, K.; Tang, L. Strengthening machine learning reproducibility for image classification. Adv. Artif. Intell. Mach. Learn. 2022, 2, 471–476. [Google Scholar] [CrossRef]
- García, V.; Mollineda, R.A.; Sánchez, J.S. Index of Balanced Accuracy: A Performance Measure for Skewed Class Distributions. In Proceedings of the Iberian Conference on Pattern Recognition and Image Analysis, Póvoa de Varzim, Portugal, 10–12 June 2009; Springer: Berlin, Heidelberg, 2009; Volume 5524, pp. 441–448. [Google Scholar] [CrossRef]
- Blair, D.C. Information Retrieval, 2nd ed.; Van Rijsbergen, C.J., Ed.; Butterworths: London, UK, 1979; p. 208. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamamoto, K.; Kuchiba, A.; Koyama, T. Confidence interval for micro-averaged F1 and macro-averaged F1 Scores. Appl. Intell. 2022, 52, 4961–4972. [Google Scholar] [CrossRef]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Boughorbel, S.; Jarray, F.; El-Anbari, M. Optimal classifier for imbalanced data using Matthews correlation coefficient metric. PLoS ONE 2017, 12, e0177678. [Google Scholar] [CrossRef]
- Havlicek, L.L.; Peterson, N.L. Effect of the violation of assumptions upon significance levels of the Pearson r. Psychol. Bull. 1976, 83, 373–377. [Google Scholar] [CrossRef]
- Murphy, M.K.; Black, N.A.; Lamping, D.L.; McKee, C.M.; Sanderson, C.F.; Askham, J.; Marteau, T. Consensus development methods, and their use in clinical guideline development. Health Technol. Assess. 1998, 2, 1–88. Available online: https://researchonline.lshtm.ac.uk/id/eprint/4653454/1/consensus-development-methods.pdf (accessed on 16 January 2024). [CrossRef]
Project No | Teams | QSAR Tools (Module) | Estimated BA (%) | Estimated MCC | Estimated F1 Score (%) | Estimated PC1 |
---|---|---|---|---|---|---|
2 | Meiji Pharmaceutical University | MMI-STK1 | 76.9 | 0.44 | 52.8 | 2.55 |
2 | Meiji Pharmaceutical University | MMI-VOTE1 | 77.0 | 0.44 | 52.4 | 2.51 |
2 | Meiji Pharmaceutical University | MMI-STK2 | 72.0 | 0.43 | 51.6 | 1.82 |
2 | Meiji Pharmaceutical University | MMI-VOTE2 | 72.0 | 0.43 | 51.4 | 1.78 |
1 | MultiCASE Inc. | BM_PHARMA v1.5.2.0 (Statistical approach; SALM/ECOLI consensus) | 74.7 | 0.40 | 49.6 | 1.76 |
1 | Lhasa Limited | Derek_Nexus v.4.2.0 | 72.2 | 0.42 | 51.2 | 1.75 |
2 | Lhasa Limited | Derek Nexus v.6.0.1 | 72.1 | 0.42 | 51.0 | 1.72 |
1 | Swedish Toxicology Science Research Center | Swetox AZAMES_2 | 71.7 | 0.42 | 50.5 | 1.63 |
1 | Molecular Networks GmbH and Altamira LLC | ChemTunes•ToxGPS Ames (original) | 71.7 | 0.42 | 50.5 | 1.62 |
1 | Prous Institute | Symmetry S. typhimurium (Ames)_2 | 73.3 | 0.40 | 49.6 | 1.59 |
2 | NIBIOHN | GNN(kMoL)_bestF1 | 69.5 | 0.43 | 50.1 | 1.42 |
1 | Lhasa Limited | Derek_Nexus v.4.0.5 | 72.5 | 0.39 | 48.9 | 1.42 |
1 | Leadscope Inc. | Statistical-based QSAR (rebuild I) | 72.8 | 0.38 | 48.0 | 1.34 |
2 | MN-AM | ChemTunes.ToxGPS Ames NIHS_v2 | 74.8 | 0.37 | 46.4 | 1.33 |
2 | Evergreen AI, Inc. | Avalon | 71.9 | 0.38 | 48.5 | 1.29 |
1 | Leadscope Inc. | Rule-based (Alerts) | 71.3 | 0.39 | 48.8 | 1.27 |
1 | MultiCASE Inc. | GT_EXPERT v1.5.2.0 (Rule based)_2 | 72.2 | 0.35 | 45.5 | 0.88 |
1 | Molecular Networks GmbH and Altamira LLC | ChemTunes•ToxGPS Ames (enhanced)_1 | 72.2 | 0.35 | 45.7 | 0.87 |
2 | NIBIOHN | GNN(kMoL)_bestbalanced (the best model) | 67.2 | 0.41 | 47.0 | 0.79 |
1 | Swedish Toxicology Science Research Center | SwetoxAZAMES v2 | 71.3 | 0.35 | 45.2 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uesawa, Y. Progress in Predicting Ames Test Outcomes from Chemical Structures: An In-Depth Re-Evaluation of Models from the 1st and 2nd Ames/QSAR International Challenge Projects. Int. J. Mol. Sci. 2024, 25, 1373. https://doi.org/10.3390/ijms25031373
Uesawa Y. Progress in Predicting Ames Test Outcomes from Chemical Structures: An In-Depth Re-Evaluation of Models from the 1st and 2nd Ames/QSAR International Challenge Projects. International Journal of Molecular Sciences. 2024; 25(3):1373. https://doi.org/10.3390/ijms25031373
Chicago/Turabian StyleUesawa, Yoshihiro. 2024. "Progress in Predicting Ames Test Outcomes from Chemical Structures: An In-Depth Re-Evaluation of Models from the 1st and 2nd Ames/QSAR International Challenge Projects" International Journal of Molecular Sciences 25, no. 3: 1373. https://doi.org/10.3390/ijms25031373
APA StyleUesawa, Y. (2024). Progress in Predicting Ames Test Outcomes from Chemical Structures: An In-Depth Re-Evaluation of Models from the 1st and 2nd Ames/QSAR International Challenge Projects. International Journal of Molecular Sciences, 25(3), 1373. https://doi.org/10.3390/ijms25031373