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Abstract: The Ames/quantitative structure–activity relationship (QSAR) International Challenge
Projects, held during 2014–2017 and 2020–2022, evaluated the performance of various predictive
models. Despite the significant insights gained, the rules allowing participants to select predic-
tion targets introduced ambiguity in model performance evaluation. This reanalysis identified the
highest-performing prediction model, assuming a 100% coverage rate (COV) for all prediction target
compounds and an estimated performance variation due to changes in COV. All models from both
projects were evaluated using balance accuracy (BA), the Matthews correlation coefficient (MCC),
the F1 score (F1), and the first principal component (PC1). After normalizing the COV, a correlation
analysis with these indicators was conducted, and the evaluation index for all prediction models in
terms of the COV was estimated. In total, using 109 models, the model with the highest estimated
BA (76.9) at 100% COV was MMI-VOTE1, as reported by Meiji Pharmaceutical University (MPU).
The best models for MCC, F1, and PC1 were all MMI-STK1, also reported by MPU. All the models
reported by MPU ranked in the top four. MMI-STK1 was estimated to have F1 scores of 59.2, 61.5,
and 63.1 at COV levels of 90%, 60%, and 30%, respectively. These findings highlight the current state
and potential of the Ames prediction technology.

Keywords: Ames test; quantitative structure–activity relationship; applicability domain; in silico
study; machine learning; predictive performance

1. Introduction

The Ames test, a biological assay that utilizes bacterial strains such as Salmonella
typhimurium, is a widely used method for assessing chemical mutagenicity by monitoring
reverse mutations [1]. This test serves as a preliminary screening tool to evaluate the
carcinogenic potential of chemicals [2]. Recently, the focus has shifted toward developing
new methods for the initial assessment of impurities in pharmaceuticals. The interna-
tional conference on harmonization (ICH) M7 guideline promotes the use of quantitative
structure–activity relationship (QSAR) models as an alternative to traditional toxicological
studies [3], making the accuracy of QSAR models in identifying mutagenic chemicals
increasingly important.

The Division of Genetics and Mutagenesis at the National Institutes of Health Sciences
in Japan (DGM/NIHS) has developed an Ames mutagenicity database, which includes
chemicals not previously incorporated in QSAR model development. The Ames/QSAR
International Challenge Project [4], conducted between 2014 and 2017, involved twelve
QSAR vendors from seven countries and tested seventeen QSAR tools across three distinct
phases (i.e., Phases I–III). Phases I, II, and III were performed between 2014 and 2015, 2015
and 2016, and 2016 and 2017 with a total of 3902, 3829, and 4409 compounds, respectively.
A total of 12,140 compounds were used as an external validation set, with the Ames test
data for these chemicals sourced from unpublished data registered under Japan’s Industrial
Safety and Health Act (ANEI-HOU) at the Ministry of Health, Labour and Welfare [5].
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However, due to confidentiality concerns, the ANEI-HOU data are not publicly accessible.
The compounds were divided into three phases, each with unique implementation periods.
Rigorous external validation was conducted using these compounds, and the predictive
performance of each QSAR tool was assessed using various metrics. The external vali-
dation set compounds and correct answers from the previous phase were disclosed to
the participants, leading to a significant improvement in the predictive abilities of almost
all QSAR tools, particularly in Phase II, compared with Phase I. In a continued effort to
enhance QSAR model development, the DGM/NIHS orchestrated the second Ames/QSAR
International Challenge Project from 2020 to 2022 [6]. This iteration utilized unpublished
Ames test results of 1589 novel chemical substances, based on ANEI-HOU, as the test
dataset. The rules were akin to those of the inaugural project. Furthermore, participants
were supplied with Ames test data for the 12,134 compounds, curated post the first round,
along with corresponding SMILES notations in SDF files, to serve as a training set. The
teams had the liberty to utilize this training data and all known data for model construction.
The challenge witnessed the participation of 21 teams, encompassing academic institutions
from 11 countries. Each team employed a variety of Ames/QSAR models to predict the
mutagenicity of test chemicals. Performance comparisons were made with the first project,
revealing that the results from the second round were generally not as robust. However,
teams that participated in both rounds demonstrated commendable average results. In
both projects, the rules allowed models to select target compounds for prediction arbitrarily,
which introduced ambiguity into the performance evaluation. Furthermore, neither project
report examined the impact of coverage ratio (COV) variation on prediction performance.
It is well-established that defining the predicted chemical space based on an appropriate
applicability domain significantly influences the generalization performance of QSAR
models [7–10]. Therefore, the methodology for determining COV, a factor distinct from
the model’s inherent performance, becomes critical. Given the flexibility in setting the
COV, it is conceivable that models with lower COVs demonstrated superior predictive
performance. To accurately evaluate the current state of Ames test QSAR analysis, it is
crucial to distinguish between the model construction technology and the appropriate COV
setting. As a result, this paper first reanalyzes all models from the first and second projects
to ascertain the impact of COV on prediction performance. Subsequently, I aim to identify
the highest-performing prediction model at a standard 100% COV, taking into account
COV effects. Additionally, I estimate how the generalization performance of the optimal
model fluctuates with standard COV shifts determined from all models.

2. Results
2.1. Data for the Analysis

This study evaluated a total of 109 models, which included 58 models from the first
project and 51 models from the second project. These models were derived from previously
reported papers [4,6], inclusive of those detailed in the supplementary data. The projects
saw participation from 27 teams, with some teams participating in both projects. Each
team developed between one and fourteen types of models (Table S1). It is important to
note that even if a model name was repeated across different phases of each project, it was
considered an independent model. To distinguish these models, they were assigned unique
serial numbers.

2.2. Evaluation Index

We examined the distribution of evaluation indicators for the prediction models, BA
(%), MCC, F1 (%), and COV (%), using normal quantile plots. All the indicators except
COV fell within the 95% confidence interval. In contrast, COV displayed a highly skewed
distribution, as depicted in Figure 1.
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Figure 1. Shape of the performance evaluation index and coverage rate distribution for predictive
models. The terms BA (%), MCC, COV (%), Johnson Sb[COV (%)], and Johnson Sb[COV (%)] without
COV 100% represent various evaluation metrics for the prediction models. Specifically, BA (%) refers
to the balanced accuracy, MCC stands for Matthews correlation coefficient, and COV (%) denotes
the coverage rate for all predicted target compounds. Johnson Sb[COV (%)] represents the Johnson
normalized coverage rate, while Johnson Sb[COV (%)] without COV 100% signifies the Johnson
normalized coverage rate, excluding the prediction models with a 100% coverage rate. Prediction
models that had 100% coverage are highlighted in dark. Out of the 109 types of prediction models
evaluated in this study, 33 models had a coverage rate of 100%. These normal quantile plots are
shown as dots and red lines.

As depicted in Figure 2, we observed strong correlations between the BA, MCC, and
F1 Score. The correlation coefficients were 0.859 between BA and MCC, 0.943 between MCC
and F1, and 0.922 between F1 and BA. To derive a more integrated index from BA, MCC,
and F1, we conducted a principal component analysis. The first principal component (PC1),
which accounted for 93.9% of the variance, was selected as a comprehensive evaluation
index (Figure 3). Therefore, PC1, along with BA, MCC, and F1, was used for subsequent
analyses. However, it is important to note that the COV is determined by factors distinct
from the model’s intrinsic performance. Therefore, COV was analyzed separately in
correlation studies.

2.3. Evaluating the Impact of Coverage on Predictive Performance

A correlation analysis was conducted to assess the impact of the COV on BA, MCC, F1,
and the PC1. Due to the skewed distribution of COV, Johnson normalization was applied
to enable a normal quantitative correlation analysis [11,12].

Johnson Sb[COV] = ln[(COV − 4.9)/(100.063 − COV)] × 0.111 − 0.655

When models with 100% COV were excluded and the normal quantile plot was
assessed, the Johnson Sb[COV] (normalized COV) demonstrated a normal distribution
(Figure 1). A Pearson’s correlation analysis was conducted between this normalized COV
(excluding 100% COV models) and BA, MCC, F1, and PC1. This analysis revealed sig-
nificant negative linear correlations (Figure 2). The correlation coefficients for BA, MCC,
F1, and PC1 were −0.288, −0.374, −0.374, and −0.354, respectively. The corresponding
p-values were 0.0117, 0.0009, 0.0009, and 0.0017 (Figure 4). Regression diagnostics con-
firmed the normality of these least squares lines. These findings indicate that a lower
coverage rate is associated with improved predictive performance.
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Figure 2. Correlation between the performance evaluation indicators for the predictive models. The
analysis incorporated a total of 109 predictive models. Models with 100% coverage are represented in
gray, while the other models are depicted in black. The terms BA (%) and MCC refer to balanced
accuracy and Matthews correlation coefficient, respectively.
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Figure 3. Principal component analysis of the performance evaluation indicators for the predictive
models. The analysis incorporated a total of 109 predictive models. The figure displays a superim-
posed biplot of the score plot and loading vector. The terms BA (%), MCC, PC1, and PC2 refer to
balanced accuracy, Matthews correlation coefficient, first principal component, and second principal
component, respectively.
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Figure 4. Correlation between the coverage rate and the performance evaluation index for predictive
models. The terms BA (%), MCC, PC1, and Johnson Sb[COV (%)] represent the balanced accuracy,
Matthews correlation coefficient, the first principal component, and Johnson normalized coverage,
respectively. In the figure, prediction models with 100% coverage (33 species) are depicted in gray,
while the other models (76 species) are shown in black. The analysis only includes prediction models
with less than 100% coverage. The red line in the figure represents the least squares regression line,
providing a visual representation of the correlation.

2.4. Performance of All Models at 100% Coverage

In this study, we neutralized the influence of the COV and reassessed model per-
formance. We used residuals from the linear relationship between normalized COV and
each evaluation index to estimate the performance of all the models at 100% COV. The
model with the highest BA of 76.9% at 100% COV was MMI-VOTE1, as reported by Meiji
Pharmaceutical University (MPU). Additionally, the best predictive models for MCC, F1,
and PC1 were all MMI-STK1, also reported by MPU. The respective values were 0.443
for MCC, 52.8% for F1, and 2.55 for PC1 (Table 1). Notably, all four top-ranking models,
based on the comprehensive PC1 index, were developed by MPU, a first-time participant
in the second challenge. Furthermore, the fifth and sixth most outstanding models were
BM_PHARMA v1.5.2.0, submitted by MultiCASE Inc. (Mayfield Heights, OH, USA), and
Derek_Nexus v.4.2.0, reported by Lhasa Limited (Leeds, UK) in the first project, respectively
(Table 1).
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Table 1. Top 20 prediction models at 100% coverage rate.

Project
No Teams QSAR Tools (Module) Estimated BA

(%)
Estimated

MCC
Estimated F1

Score (%) Estimated PC1

2 Meiji Pharmaceutical University MMI-STK1 76.9 0.44 52.8 2.55
2 Meiji Pharmaceutical University MMI-VOTE1 77.0 0.44 52.4 2.51
2 Meiji Pharmaceutical University MMI-STK2 72.0 0.43 51.6 1.82
2 Meiji Pharmaceutical University MMI-VOTE2 72.0 0.43 51.4 1.78

1 MultiCASE Inc. BM_PHARMA v1.5.2.0 (Statistical approach;
SALM/ECOLI consensus) 74.7 0.40 49.6 1.76

1 Lhasa Limited Derek_Nexus v.4.2.0 72.2 0.42 51.2 1.75
2 Lhasa Limited Derek Nexus v.6.0.1 72.1 0.42 51.0 1.72
1 Swedish Toxicology Science Research Center Swetox AZAMES_2 71.7 0.42 50.5 1.63
1 Molecular Networks GmbH and Altamira LLC ChemTunes•ToxGPS Ames (original) 71.7 0.42 50.5 1.62
1 Prous Institute Symmetry S. typhimurium (Ames)_2 73.3 0.40 49.6 1.59
2 NIBIOHN GNN(kMoL)_bestF1 69.5 0.43 50.1 1.42
1 Lhasa Limited Derek_Nexus v.4.0.5 72.5 0.39 48.9 1.42
1 Leadscope Inc. Statistical-based QSAR (rebuild I) 72.8 0.38 48.0 1.34
2 MN-AM ChemTunes.ToxGPS Ames NIHS_v2 74.8 0.37 46.4 1.33
2 Evergreen AI, Inc. Avalon 71.9 0.38 48.5 1.29
1 Leadscope Inc. Rule-based (Alerts) 71.3 0.39 48.8 1.27
1 MultiCASE Inc. GT_EXPERT v1.5.2.0 (Rule based)_2 72.2 0.35 45.5 0.88
1 Molecular Networks GmbH and Altamira LLC ChemTunes•ToxGPS Ames (enhanced)_1 72.2 0.35 45.7 0.87
2 NIBIOHN GNN(kMoL)_bestbalanced (the best model) 67.2 0.41 47.0 0.79
1 Swedish Toxicology Science Research Center SwetoxAZAMES v2 71.3 0.35 45.2 0.77

This table lists the top 20 prediction models performing best at a 100% coverage rate, as estimated by the first principal component (PC1). The terms BA (%), MCC, and PC1 refer to
balanced accuracy, Matthews correlation coefficient, and first principal component, respectively. The higher the performance in each evaluation metric, the darker the red color shown.
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2.5. Effect of Coverage on the Best Model

I estimated the performance changes in MMI-STK1, the top model in MCC, F1, and
PC1, with varying COV. This estimation was achieved using the least squares line equation
and residuals of predicted values in these models (Figure 4). For example, at COV levels
of 100%, 90%, 60%, and 30% in this model, the F1 Score was estimated to be 52.8%, 59.2%,
61.5%, and 63.1%, respectively (Figure 5).
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Figure 5. Estimation of performance evaluation index by coverage rate for the top prediction model.
This figure illustrates the estimated variation in performance due to changes in the coverage rate of
MMI-STK1 (Meiji Pharmaceutical University), which was identified as the highest-performing model
based on the first principal component (PC1) as well as Matthews correlation coefficient (MCC) and
F1 Score. The terms BA (%) and COV (%) denote the balanced accuracy and coverage rate for all
predicted target compounds, respectively.

3. Discussion
3.1. Target Prediction Model for Reassessment

The first Ames/QSAR International Challenge Project [4], which was divided into
three separate phase challenges, conducted each phase independently. Notably, the Ames
test data for compounds used in the external validation sets of a previous phase were
disclosed to participants before the start of the subsequent phase. This disclosure allowed
participants to adjust their models using the newly available data. As a result, models
that shared the same name across different phases might have been adjusted or modified.
Furthermore, it was observed that the COVs were often reconfigured for models with the
same name across various phases. Therefore, in this reanalysis, all the models used in each
phase of the first project were treated as independent entities, regardless of whether they
shared the same name.



Int. J. Mol. Sci. 2024, 25, 1373 8 of 14

On the other hand, during the second challenge [6], a rule was introduced that permit-
ted participants to select which of their multiple submitted models would be evaluated.
This rule aimed to reduce bias toward participants who submitted several models, thereby
ensuring a fairer assessment. However, this approach also carried the risk of potentially
high-performing models being excluded from the evaluation process. To mitigate this,
in the current reanalysis, all the models submitted were extracted and included in the
reassessment. As a result, the total number of models evaluated rose to 109 (Table S1).

3.2. Evaluation Index

Like many toxicity tests, the distribution of positive and negative compounds in the
Ames test results is notably skewed. In the first Ames/QSAR International Challenge
Project, the external validation set consisted of 12,140 compounds across three phases. Of
these, 1757 (14.5%) were positive and 10,383 (85.5%) were negative. In the second challenge,
the external validation set comprised 1589 compounds, with 236 (14.9%) testing positive
and 1353 (85.1%) testing negative. It is widely acknowledged that using metrics such as
sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive
value (NPV) for such imbalanced data can often lead to misleading evaluations [13,14].

Accuracy (Acc), while a frequently used evaluation metric, is notably vulnerable
to skew in datasets that are imbalanced [15,16]. Acc is computed using the formula
(TP + TN)/(TP + TN + FP + FN), where TP, TN, FP, and FN denote true positives, true
negatives, false positives, and false negatives, respectively. This metric is straightforward
and easy to comprehend. However, its reliability diminishes in scenarios like the project,
where only 14.5% of the cases were positive. If all the test compounds were predicted to be
negative, the resulting Acc would be 85.5%, which is misleadingly high. Consequently, a
model that fails to accurately predict any positive cases may appear to outperform many
others across both projects due to this metric’s susceptibility to data imbalance.

In predictive modeling, sensitivity (also known as recall) and specificity often display
a trade-off relationship. This is also observed for PPV, also known as precision, which
often has a complex relationship with sensitivity, depending on the threshold used in the
model. Similarly, NPV and specificity also display a relationship that varies with different
thresholds. To assess the robustness of a predictive model’s generalization performance,
it is crucial to achieve a balanced mix of these metrics. As a result, receiver operating
characteristic (ROC) curves and precision–recall curves are frequently utilized to examine
these relationships [17,18]. The area under these curves is an excellent measure for model
evaluation. However, these metrics are only applicable to statistical models that can
calculate predicted probability values. They were not used in the Ames/QSAR international
challenge projects due to their inability to evaluate knowledge-based models. Instead,
balanced accuracy (BA), which is the average of sensitivity and specificity, was used as a
comprehensive metric to evaluate these two parameters, replacing the ROC curve [19–22].
BA is calculated using a specific formula:

BA = (Sensitivity + Specificity)/2 = {TP/(TP + FN) + TN/(FP + TN)}/2

Indeed, the formula for BA combines sensitivity (the true positive rate) and specificity
(the true negative rate), providing a single measure that encapsulates the model’s perfor-
mance across both positive and negative cases in the dataset. BA is particularly insightful
because it reflects the model’s accuracy in identifying classes, regardless of the size of each
class in the sample. This makes BA an ideal metric for assessing the overall performance of
a model, especially in situations where data classes are imbalanced. Furthermore, the inter-
pretability of this indicator is excellent, offering a clear understanding of model accuracy in
a balanced manner.

PPV, also known as precision, represents the proportion of items predicted as positive
that are actually positive. On the other hand, sensitivity (or recall) signifies the proportion
of actual positive items that are correctly identified as such. The F1 Score, which is the
harmonic mean of PPV and sensitivity, is commonly used for a comprehensive evaluation of
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these two metrics [23,24]. It is important to note that sensitivity and PPV are also referred to
as recall and precision, respectively. The F1 Score is calculated using the following formula:

F1 = 2 × Recall × Precision)/(Recall + Precision)

= 2 × (TP2)/{2 × (TP2) + TP × FP + TP × FN}

In the second Ames/QSAR International Challenge Project [6], the F1 Score was
introduced as an additional evaluation metric, supplementing those used in the first project.
The F1 Score is particularly beneficial in achieving a balance between PPV and sensitivity.
A higher F1 Score indicates a superior model, as it represents a strong balance between
predictive precision and recall. This is particularly important in scenarios such as Ames
test predictions, where accurately detecting positives and minimizing false positives are
equally important.

The MCC is another metric that is related to the chi-square statistic in a 2 × 2 contin-
gency table. It incorporates a significant amount of information by considering the balance
ratio of the four categories in the confusion matrix: TP, TN, FP, and FN [25,26]. The MCC is
expressed as follows:

MCC = (TP × TN − FP × FN)/
√

{(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN))}

Indeed, BA, the MCC, and the F1 Score each have their own unique statistical prop-
erties. However, they all serve as valuable integrative indicators for evaluating models,
particularly when dealing with imbalanced data. In this study, a novel approach was
adopted to streamline the performance evaluation of the predictive models. This ap-
proach involved combining these diverse indices using principal component analysis. This
method offers a more consolidated and definitive evaluation metric, thereby simplifying
the otherwise complex task of model assessment.

3.3. Principal Component Analysis

The principal component analysis (PCA) conducted in this study revealed a strong
consolidation among BA, the MCC, and the F1 Score. These metrics accounted for 94% of
the variance in the same principal component direction (Figure 3). This pattern suggests a
significant collinearity among these metrics. Indeed, the correlation coefficients between
these evaluation indicators showed strong correlations, ranging between 0.859 and 0.943
(Figure 2). This finding highlights the utility of the PC1, which integrates these metrics, as
a common and definitive indicator of integrated predictive performance.

A crucial aspect of this study was the quantitative correlation analysis conducted
to assess the impact of the COV on the evaluation indicators BA, MCC, F1, and PC1.
Correlation analysis using Pearson’s correlation coefficient is generally most reliable when
the variables under consideration follow a normal distribution [27]. However, when the
variables deviate from normality, there is an increased risk of the analysis being influenced
by outliers or an overestimation of the degree of correlation. Moreover, if the assumption
of normal distribution is not met, the accuracy in determining significance levels may
be compromised. Therefore, it is crucial to verify the normality of each dataset before
performing correlation analysis. Upon checking the normal distribution of these parameters
using normal quantile plots, a distribution heavily skewed toward the COV was observed.
As a result, the Johnson normal distribution method [11,12] was employed to correct the
COV distribution to a normal form, achieving effective normalization.

3.4. Impact of COV on Metrics

The conducted correlation analysis, which was between the normal COV and the
comprehensive evaluation indicators BA, MCC, F1 Score, and PC1 unveiled statistically
significant negative correlations across all metrics. This finding implies that models with
better predictive performance are likely to have lower COV settings. Despite the fact that
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each participant uniquely determined the COV settings using various techniques, it is still
possible to estimate the standard influence of COV across all models from the slope of the
least squares line.

Following this, we used the slope of this linear relationship and the residuals from
each evaluation index to estimate the values of these indices, assuming a COV of 100%
for each model. This method effectively shifts the evaluation values of each model along
the slope of the straight line to a point where the COV equals 100% (Figure 4). As a result,
this calculation allows for a correction of all models to the evaluation indices at 100% COV,
thereby enabling a fair comparison and evaluation across all models (Figure 4, and Table 1).

3.5. Best Models

The analysis, adjusted to a 100% COV for all models (Table 1 and Table S1), unveiled
that the most efficacious predictive model, utilizing the integrated comprehensive index
PC1, was MMI-STK1. This particular model, submitted by MPU during the second project,
demonstrated superior performance. It is noteworthy that MMI-STK1’s training data
exclusively encompassed the Phase 1, 2, and 3 datasets from the NIHS. For an in-depth
understanding of the methodology contributing to its excellence, the algorithm employed
for MMI-STK1 is elucidated in the supplementary file of the report [6]: “Ninety-nine
stacking models were constructed using multiple descriptors (Dragon, MOE, Mordred)
and various machine learning algorithms (light GBM, XG-Boost, deep learning, graph
convolutional network). The ultimate prediction was determined through a majority vote
from all prediction results. The descriptors utilized were computed through Dragon, MOE,
and Mordred”.

My analysis identified MMI-VOTE1 as the second most effective model. Like MMI-
STK1, MMI-VOTE1 was submitted by MPU during the second project and exclusively
trained on NIHS-provided Phase 1, 2, and 3 data. The algorithmic approach for MMI-
VOTE1 is extensively detailed in the supplementary file of the report [6]. This supplemen-
tary information provides a comprehensive insight into the methodologies and principles
that underscore the success of MMI-VOTE1: “Nine stacking models were developed utiliz-
ing a combination of descriptors (Dragon, MOE, Mordred) and diverse machine learning
algorithms (light GBM, XG-boost, deep learning, graph convolutional network). The fi-
nal prediction was determined through a majority vote based on all prediction results.
Descriptors were computed using Dragon, MOE, and Mordred”.

The third most effective predictive model identified in this study is MMI-STK2, sub-
mitted by MPU during the second project. In contrast to previous models, the training data
for MMI-STK2 included not only the Phase 1, 2, and 3 data provided by the NIHS but also
Hansen’s data. The detailed algorithmic approach for MMI-STK2 is expounded upon in
the supplementary file of the report [6]. “MMI-STK2 is a stacking model constructed using
Light GBM, deep learning, and graph convolutional network algorithms, with descriptors
calculated using Dragon and MOE”.

The fourth best-performing model identified in the analysis was MMI-VOTE2, another
model submitted by MPU during the second project. Similar to MMI-STK2, the training
data for MMI-VOTE2 not only included the Phase 1, 2, and 3 data from the NIHS, but
also incorporated Hansen’s data. More detailed information about the algorithm used for
MMI-VOTE2, including its approach to integrating these diverse datasets, is available in
the supplementary file [6]: “MMI-VOTE2 is a majority voting model constructed using
Light GBM, Deep Learning, Random Forest, and graph convolutional network algorithms.
The descriptors used were calculated using Dragon, MOE, and DNA docking simulations”.

In this project, MPU registered the four types of models previously mentioned. Im-
pressively, all these models ranked as the top performers among the 109 models evaluated
in this study. These models did not undergo adjustments to their coverage rate by altering
their applicability domain. Given that setting a model’s applicability domain is a highly
technical process and varies significantly from model to model, it is reasonable to infer that
the estimated values of the metrics used for evaluating prediction models at COV levels
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other than 100% might contain considerable errors. Despite this, the results mentioned
above demonstrate the current technical capabilities of Ames prediction, underlining both
the advances and potential limitations in this field.

3.6. Effect of Coverage on the Best Model

For MMI-STK1, which was identified as the top-performing model in terms of MCC,
F1, and the integrated index PC1, we estimated how BA, MCC, F1, and PC1 would change
with alterations in the COV (refer to Figure 5). For example, while the F1 Score was at 52.8%
with a COV of 100%, it was projected to increase to 59.2%, 61.5%, and 63.1% when the COV
was adjusted to 90%, 60%, and 30%, respectively. This trend indicates that the predictive
performance of the model can significantly improve even with a 90% COV, which involves
excluding only 10% of the compounds from the prediction. This observation implies that
the external validation set included a small proportion of compounds that this model found
particularly challenging to predict accurately.

These results lead to an important conclusion: when applying the Ames prediction
model in real-world scenarios, it is crucial to consider the applicability domain while setting
the COV [7–10]. Although the estimated values presented here might contain substantial
errors, the performance of the model could be further improved if the COV settings are
based on appropriately defined applicability domains.

3.7. Evaluation of Adaptive Domain Setting Technology and Future Prospects

This study represents the first instance in the Ames/QSAR Challenge Projects where
it has been explicitly shown that the performance of predictive models can be improved by
adjusting COV settings. Notably, it also pinpointed the model with the highest predictive
performance by taking into account COV. This significant discovery, achieved in a highly
competitive environment, highlights the current limitations of QSAR technology in pre-
dicting Ames test outcomes. However, the enhanced prediction performance attributed
to COV settings depends on the accurate definition of the models’ applicability domain.
The performance evaluation at 100% COV presented in this study is essentially a projection
based on standard COV settings. With careful consideration of the applicability domain
settings, there is potential to exceed these standard performance levels.

While the technology for setting applicability domains—evaluated based on com-
pound similarities and predicted probabilities derived from the models—is advanced, the
research on optimal methodologies for setting applicability domains is still in its early
stages [7–10]. This reanalysis had limited capacity to assess this specific aspect of model
performance. However, as technologies for systematically determining suitable applicabil-
ity domains for each model advance, a combination of diverse models, like those presented
in this project, could lead to improved prediction accuracy. Although this project was
primarily a competition evaluating the standalone performance of various models, future
enhancements in prediction rates are expected, especially with the application of ensem-
ble and consensus methods based on advanced techniques for estimating applicability
domains [28].

4. Methods
4.1. Analysis Strategy

The overarching strategy for this reanalysis is outlined in the following steps:
a. Model and value extraction: retrieve all prediction models and their corresponding

evaluation values from the Ames/QSAR 1st and 2nd Challenges.
b-1. PCA: perform PCA using balanced accuracy (BA), Matthews correlation coefficient

(MCC), and F1 Score to calculate the first principal component (PC1) as a comprehensive
evaluation index.

b-2. Normalization of COV distribution: normalize the distribution shape of the
compound sample COV.
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c. Correlation analysis: conduct a thorough correlation analysis between BA, MCC, F1,
and PC1 against COV, and derive the least squares regression line.

d. Estimation at 100% COV: estimate the predictive performance of all models at a
COV of 100% using the least squares regression line and considering the residuals of each
evaluation index.

e. Identifying the best model at 100% COV: evaluate and determine the best predictive
model at a COV of 100%.

f. Performance estimation with varying COV: estimate the predictive performance of
the best model across various COV settings.

4.2. Data for the Analysis

The analysis encompassed all prediction models and their associated evaluation
metrics as documented in both the main texts and supplementary materials of the 1st and
2nd Ames/QSAR International Challenge Projects papers [4,6]. In the context of the first
challenge, any prediction models sharing the same name but employed in different phases
were treated as distinct models for evaluation purposes. This approach acknowledges the
potential modifications and adjustments made to the models across various phases. In the
second project, the analysis considered all prediction models listed in the supplementary file
of the project paper. This comprehensive approach ensured that all the models submitted
for the challenge were taken into account in the analysis.

4.3. Evaluation Index

In the Ames/QSAR International Challenge Projects, compounds underwent catego-
rization into three classes based on the Ames test results [4,6]:

Class A (strong positive): compounds inducing over 1000 revertant colonies per
milligram in at least one Ames test strain, with or without metabolic activation.

Class B (positive): these compounds caused a minimum 2-fold increase in revertant
colonies compared with the negative control, but less than those induced by Class A
compounds, in at least one Ames strain with or without metabolic activation.

Class C (negative): defined as compounds indicating less than a 2-fold increase in
revertant colonies (non-mutagenic).

Challenge participants were tasked with submitting results identifying positive com-
pounds (Classes A and B) and negative compounds (Class C) through either existing or
newly developed predictive models. The organizers then computed various metrics, in-
cluding sensitivity for Class A, sensitivity, specificity, accuracy, BA, MCC, and F1 Score,
based on these predictions. As mentioned above, since sensitivity and specificity are in a
trade-off relationship, observing only one evaluation index might lead to incorrect inter-
pretations [17–22]. In addition, accuracy is reportedly an inappropriate imbalanced data
evaluation indicator [15,16]. Therefore, in this study, BA, MCC, and F1 were chosen as
comprehensive evaluation metrics for generalization performance and used for analysis.
It is important to note that the F1 Score was not used as an evaluation metric in the first
challenge. To ensure consistency, the F1 Scores for all models in the first project were retro-
spectively calculated from the PPV (precision) and sensitivity (recall), following the method
used in the second project (Table S1). The normality of the comprehensive evaluation
indicators (BA, MCC, F1) and the coverage ratio (COV) was assessed using normal quantile
plots and their respective 95% confidence intervals. Subsequently, the evaluation indicators
(BA, MCC, F1) underwent PCA to calculate the PC1. In addition to these measures, this
study also focused on evaluating the impact of COV fluctuations on model performance.

4.4. Evaluating the Impact of Coverage on Predictive Performance

The COV was initially normalized using the Johnson normalization method [11,12].
Following this, a correlation analysis was performed between the normalized COV and the
comprehensive evaluation indicators: BA, MCC, F1 Score, and the PC1. This analysis did
not include models that were already reported to have a 100% COV. Based on the results
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of this correlation analysis, especially the residuals from the least squares regression line,
this study estimated the evaluation indices of all predictive models at a COV of 100%. In
addition, this study explored estimating the predictive performance of the model identified
as the best under different COV conditions. Specifically, the evaluation index for each
model at 100% COV was calculated from the equation of the least squares line between the
normally distributed COV and BA, MCC, F1, or PC1, and the residuals of each model from
those lines.

4.5. Statistical Test

The normality of each evaluation index was confirmed by examining the 95% confi-
dence intervals illustrated in normal quantile plots. This step ensured that the data adhered
to the assumptions necessary for subsequent statistical analyses. Pearson’s correlation
coefficient was utilized to assess the relationship between various evaluation indices. A
significance level of 0.05 was established to determine the statistical significance of the
correlations, following standard practices in statistical testing. PCA was carried out using a
correlation coefficient matrix. All statistical analyses were conducted using JMP Pro version
16.2, software developed by SAS Institute Inc., Cary, NC, USA.

5. Conclusions

This study is the first in the Ames/QSAR Challenge Projects to demonstrate that the
performance of predictive models can be improved by adjusting the COV. It emphasizes
a model with exceptional predictive performance when considering COV, thereby show-
casing the highest current QSAR technology level in predicting Ames test outcomes. This
study suggests that with accurate settings of the applicability domain, model performance
could see improvements. While the existing technology for setting applicability domains is
sophisticated, research in this field is still in its early stages. This study could point out the
potential for enhanced prediction accuracy through the integration of diverse models and
anticipates future advancements with the application of ensemble and consensus methods,
particularly in the estimation of applicability domains.
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