Multiple Aspects of Irritable Bowel Syndrome and the Role of the Immune System: An Overview of Systematic Reviews with a Focus on Polyphenols
Abstract
1. Introduction
1.1. Irritable Bowel Syndrome: An Overview
1.2. IBS and the Immune System: An Overview
1.3. IBS Therapy and the Pharmaceutical Approach: Role of Polyphenols
2. Materials and Methods
2.1. Search Strategy
Eligibility Criteria
- -
- Study on IBS but not on the correlation between IBS and the immune system;
- -
- Study on other gastrointestinal syndromes without the inclusion of IBS;
- -
- Nonpharmacological interventions for patients with IBS except for the use of polyphenols as adjuvants;
- -
- Animal studies;
- -
- Cellular studies.
2.2. Study Outcomes
3. Results
3.1. Data Collection
3.2. Overview of Systematic Reviews on the Link Between Irritable Bowel Syndrome and the Immune System
4. Discussion and Conclusions
Limitations of This Study
Author Contributions
Funding
Conflicts of Interest
References
- Grayson, M. Irritable bowel syndrome. Nature 2016, 533, S101. [Google Scholar] [CrossRef] [PubMed]
- Fond, G.; Loundou, A.; Hamdani, N.; Boukouaci, W.; Dargel, A.; Oliveira, J.; Roger, M.; Tamouza, R.; Leboyer, M.; Boyer, L. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): A systematic review and meta-analysis. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Card, T.; Canavan, C.; West, J. The epidemiology of irritable bowel syndrome. CLEP 2014, 6, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Alvisi, S.; Ceccarani, C.; Foschi, C.; Baldassarre, M.; Lami, A.; Severgnini, M.; Camboni, T.; Consolandi, C.; Seracchioli, R.; Meriggiola, M.C. Effect of ospemifene on vaginal microbiome in postmenopausal women with vulvovaginal atrophy. Menopause 2023, 30, 361–369. [Google Scholar] [CrossRef]
- Namazi, M.; Moghadam, Z.B.; Zareiyan, A.; Jafarabadi, M. Exploring the impact of endometriosis on women’s lives: A qualitative study in Iran. Nurs. 2020, 8, 1275–1282. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, N. Sex-Gender Differences in Irritable Bowel Syndrome. J. Neurogastroenterol. Motil. 2018, 24, 544–558. [Google Scholar] [CrossRef]
- Sun, Q.H.; Liu, Z.J.; Zhang, L.; Wei, H.; Song, L.J.; Zhu, S.W.; He, M.B.; Duan, L.P. Sex-based differences in fecal short-chain fatty acid and gut microbiota in irritable bowel syndrome patients. J. Dig. Dis. 2021, 22, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Bisping, G.; Lügering, N.; Lütke-Brintrup, S.; Pauels, H.G.; Schürmann, G.; Domschke, W.; Kucharzik, T. Patients with inflammatory bowel disease (IBD) reveal increased induction capacity of intracellular interferon-gamma (IFN-gamma) in peripheral CD8+ lymphocytes co-cultured with intestinal epithelial cells. Clin. Exp. Immunol. 2001, 123, 15–22. [Google Scholar] [CrossRef]
- Liebregts, T.; Adam, B.; Bredack, C.; Gururatsakul, M.; Pilkington, K.R.; Brierley, S.M.; Blackshaw, A.L.; Gerken, G.; Talley, N.J.; Holtmann, G. Small Bowel Homing T Cells Are Associated With Symptoms and Delayed Gastric Emptying in Functional Dyspepsia. Am. J. Gastroenterol. 2011, 106, 1089–1098. [Google Scholar] [CrossRef]
- Motzer, S.A.; Jarrett, M.; Heitkemper, M.M.; Tsuji, J. Natural Killer Cell Function and Psychological Distress in Women with and without Irritable Bowel Syndrome. Biol. Res. For. Nurs. 2002, 4, 31–42. [Google Scholar] [CrossRef]
- Cristiani, C.M.; Garofalo, C.; Passacatini, L.C.; Carbone, E. New avenues for melanoma immunotherapy: Natural Killer cells? Scand. J. Immunol. 2020, 91, e12861. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, Z.A.; Dalal, R.; Sadhu, S.; Kumar, Y.; Kumar, S.; Gupta, S.K.; Tripathy, M.R.; Rathore, D.K.; Awasthi, A. High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity. Sci. Adv. 2021, 7, eabg5016. [Google Scholar] [CrossRef] [PubMed]
- Balmus, I.; Ciobica, A.; Trifan, A.; Stanciu, C. The implications of oxidative stress and antioxidant therapies in Inflammatory Bowel Disease: Clinical aspects and animal models. Saudi J. Gastroenterol. 2016, 22, 3. [Google Scholar]
- Vannucchi, M.; Evangelista, S. Experimental Models of Irritable Bowel Syndrome and the Role of the Enteric Neurotransmission. JCM 2018, 7, 4. [Google Scholar] [CrossRef]
- Burns, G.; Carroll, G.; Mathe, A.; Horvat, J.; Foster, P.; Walker, M.M.; Talley, N.J.; Keely, S. Evidence for Local and Systemic Immune Activation in Functional Dyspepsia and the Irritable Bowel Syndrome: A Systematic Review. Am. J. Gastroenterol. 2019, 114, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Schaper, S.J.; Stengel, A. Emotional stress responsivity of patients with IBS–a systematic review. J. Psychosom. Res. 2022, 153, 110694. [Google Scholar] [CrossRef]
- Wong, K.M.; Yuen, S.S.; Mak, A.D. Neurocognitive Characteristics of Individuals with Irritable Bowel Syndrome. East. Asian Arch. Psychiatry 2019, 29, 48–56. [Google Scholar] [CrossRef]
- Garofalo, C.; Cristiani, C.M.; Ilari, S.; Passacatini, L.C.; Malafoglia, V.; Viglietto, G.; Maiuolo, J.; Oppedisano, F.; Palma, E.; Tomino, C.; et al. Fibromyalgia and Irritable Bowel Syndrome Interaction: A Possible Role for Gut Microbiota and Gut-Brain Axis. Biomedicines 2023, 11, 1701. [Google Scholar] [CrossRef]
- Elsenbruch, S.; Lovallo, W.R.; Orr, W.C. Psychological and Physiological Responses to Postprandial Mental Stress in Women With the Irritable Bowel Syndrome. Psychosom. Med. 2001, 63, 805–813. [Google Scholar] [CrossRef]
- Barrio, C.; Arias-Sánchez, S.; Martín-Monzón, I. The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: A systematic review. Psychoneuroendocrinology 2022, 137, 105640. [Google Scholar] [CrossRef]
- Morais, L.H.; Schreiber IV, H.L.; Mazmanian, S.K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 2021, 19, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Gliozzi, M.; Musolino, V.; Carresi, C.; Scarano, F.; Nucera, S.; Scicchitano, M.; Oppedisano, F.; Bosco, F.; Ruga, S.; et al. The Contribution of Gut Microbiota–Brain Axis in the Development of Brain Disorders. Front. Neurosci. 2021, 15, 616883. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Musolino, V.; Gliozzi, M.; Carresi, C.; Scarano, F.; Nucera, S.; Scicchitano, M.; Oppedisano, F.; Bosco, F.; Macri, R.; et al. Involvement of the Intestinal Microbiota in the Appearance of Multiple Sclerosis: Aloe vera and Citrus bergamia as Potential Candidates for Intestinal Health. Nutrients 2022, 14, 2711. [Google Scholar] [CrossRef]
- Kleisiaris, C.F.; Sfakianakis, C.; Papathanasiou, I.V. Health care practices in ancient Greece: The Hippocratic ideal. J. Med. Ethics Hist. Med. 2014, 7, 6. [Google Scholar]
- Dunn, A.J.; Berridge, C.W. Physiological and behavioral responses to corticotropin-releasing factor administration: Is CRF a mediator of anxiety or stress responses? Brain Res. Brain Res. Rev. 1990, 15, 71–100. [Google Scholar] [CrossRef]
- Dong, T.S.; Mayer, E. Advances in Brain-Gut-Microbiome Interactions: A Comprehensive Update on Signaling Mechanisms, Disorders, and Therapeutic Implications. Cell Mol. Gastroenterol. Hepatol. 2024, 18, 1–13. [Google Scholar] [CrossRef]
- Zhong, B.; Liu, Q. Medical Insights from Posts About Irritable Bowel Syndrome by Adolescent Patients and Their Parents: Topic Modeling and Social Network Analysis. J. Med. Internet Res. 2021, 23, e26867. [Google Scholar] [CrossRef] [PubMed]
- Kazunori, K.; Yasumasa, I.; Makoto, D. Hypothalamic Regulation of Corticotropin-Releasing Factor under Stress and Stress Resilience. Int. J. Mol. Sci. 2021, 22, 12242. [Google Scholar] [CrossRef]
- Stengel, A.; Taché, Y. CRF and urocortin peptides as modulators of energy balance and feeding behavior during stress. Front. Neurosci. 2014, 8, 52. [Google Scholar] [CrossRef]
- Pimentel, M.; Lembo, A. Microbiome and Its Role in Irritable Bowel Syndrome. Dig. Dis. Sci. 2020, 65, 829–839. [Google Scholar] [CrossRef]
- Bennet, S.M.P.; Palsson, O.; Whitehead, W.E.; Barrow, D.A.; Törnblom, H.; Öhman, L.; Simrén, M.; van Tilburg, M.A.L. Systemic cytokines are elevated in a subset of patients with irritable bowel syndrome but largely unrelated to symptom characteristics. Neurogastroenterol. Motil. 2018, 30, e13378. [Google Scholar] [CrossRef] [PubMed]
- Choghakhori, R.; Abbasnezhad, A.; Hasanvand, A.; Amani, R. Inflammatory cytokines and oxidative stress biomarkers in irritable bowel syndrome: Association with digestive symptoms and quality of life. Cytokine 2017, 93, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Liebregts, T.; Adam, B.; Bredack, C.; Röth, A.; Heinzel, S.; Lester, S.; Downie-Doyle, S.; Smith, E.; Drew, P.; Talley, N.J. Immune activation in patients with irritable bowel syndrome. Gastroenterology 2007, 132, 913–920. [Google Scholar] [CrossRef]
- Hillion, S.; Arleevskaya, M.I.; Blanco, P.; Bordron, A.; Brooks, W.H.; Cesbron, J.Y.; Kaveri, S.; Vivier, E.; Renaudineau, Y. The Innate Part of the Adaptive Immune System. Clinic Rev. Allerg. Immunol. 2020, 58, 151–154. [Google Scholar] [CrossRef]
- Chaplin, D.D. Overview of the immune response. J. Allergy Clin. Immunol. 2010, 125, S3–S23. [Google Scholar] [CrossRef]
- Remoortel, S.V.; Hussein, H.; Boeckxstaens, G. Mast cell modulation: A novel therapeutic strategy for abdominal pain in irritable bowel syndrome. Cell Rep. Med. 2024, 5, 101780. [Google Scholar] [CrossRef]
- Ilari, S.; Passacatini, L.C.; Malafoglia, V.; Oppedisano, F.; Maiuolo, J.; Gliozzi, M.; Palma, E.; Tomino, C.; Fini, M.; Raffaeli, W.; et al. Tantali fibromyalgic supplicium: Is there any relief with the antidepressant employment? A systematic review. Pharmacol. Res. 2022, 186, 106547. [Google Scholar] [CrossRef]
- Roudsari, N.M.; Lashgari, N.-A.; Momtaz, S.; Farzaei, M.H.; Marques, A.M.; Abdolghaffari, A.H. Natural polyphenols for the prevention of irritable bowel syndrome: Molecular mechanisms and targets; a comprehensive review. DARU J. Pharm. Sci. 2019, 27, 755–780. [Google Scholar] [CrossRef] [PubMed]
- Plamada, D.; Vodnar, D.C. Polyphenols—Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients 2021, 14, 137. [Google Scholar] [CrossRef]
- Lauro, F.; Ilari, S.; Giancotti, L.A.; Ventura, C.A.; Morabito, C.; Gliozzi, M.; Malafoglia, V.; Palma, E.; Paolino, D.; Mollace, V.; et al. Pharmacological effect of a new idebenone formulation in a model of carrageenan-induced inflammatory pain. Pharmacol. Res. 2016, 111, 767–773. [Google Scholar] [CrossRef]
- Lauro, F.; Giancotti, L.A.; Ilari, S.; Dagostino, C.; Gliozzi, M.; Morabito, C.; Malafoglia, V.; Raffaeli, W.; Muraca, M.; Goffredo, B.M.; et al. Inhibition of Spinal Oxidative Stress by Bergamot Polyphenolic Fraction Attenuates the Development of Morphine Induced Tolerance and Hyperalgesia in Mice. PLoS ONE 2016, 11, e0156039. [Google Scholar] [CrossRef] [PubMed]
- Muscoli, C.; Lauro, F.; Dagostino, C.; Ilari, S.; Giancotti, L.A.; Gliozzi, M.; Costa, N.; Carresi, C.; Musolino, V.; Casale, F.; et al. Olea Europea-derived phenolic products attenuate antinociceptive morphine tolerance: An innovative strategic approach to treat cancer pain. J. Biol. Regul. Homeost. Agents 2014, 28, 105–116. [Google Scholar] [PubMed]
- Ilari, S.; Lauro, F.; Giancotti, L.A.; Malafoglia, V.; Dagostino, C.; Gliozzi, M.; Condemi, A.; Maiuolo, J.; Oppedisano, F.; Palma, E.; et al. The Protective Effect of Bergamot Polyphenolic Fraction (BPF) on Chemotherapy-Induced Neuropathic Pain. Pharmaceuticals 2021, 14, 975. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef] [PubMed]
- Agnieszka, M.; Jurek, J.; Owczarek, M.; Guerrera, I.; Torrisi, S.A.; Castellano, S.; Grosso, G.; Alshatwi, A.; Godos, J. Polyphenol-Rich Beverages and Mental Health Outcomes. Antioxidants 2023, 12, 272. [Google Scholar] [CrossRef]
- Lin, K.; Li, Y.; Toit, E.D.; Wendt, L.; Sun, J. Effects of Polyphenol Supplementations on Improving Depression, Anxiety, and Quality of Life in Patients With Depression. Front. Psychiatry 2021, 12, 76548. [Google Scholar] [CrossRef]
- Igwe, E.O.; Charlton, K.E.; Probst, Y.C.; Kent, K.; Netzel, M.E. A systematic literature review of the effect of anthocyanins on gut microbiota populations. J. Human. Nutr. Diet. 2019, 32, 53–62. [Google Scholar] [CrossRef]
- Maiuolo, J.; Gliozzi, M.; Carresi, C.; Musolino, V.; Oppedisano, F.; Scarano, F.; Nucera, S.; Scicchitano, M.; Bosco, F.; Macri, R.; et al. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021, 13, 3834. [Google Scholar] [CrossRef]
- Laurindo, L.F.; Santos, A.R.D.O.D.; Carvalho, A.C.A.D.; Bechara, M.D.; Guiguer, E.L.; Goulart, R.D.A.; Vargas Sinatora, R.; Araújo, A.C.; Barbalho, S.M. Phytochemicals and Regulation of NF-kB in Inflammatory Bowel Diseases: An Overview of In Vitro and In Vivo Effects. Metabolites 2023, 13, 96. [Google Scholar] [CrossRef]
- Chiu, H.F.; Venkatakrishnan, K.; Golovinskaia, O.; Wang, C.K. Gastroprotective Effects of Polyphenols against Various Gastro-Intestinal Disorders: A Mini-Review with Special Focus on Clinical Evidence. Molecules 2021, 26, 2090. [Google Scholar] [CrossRef]
- Xu, Y.; Cui, S.Y.; Ma, Q.; Shi, J.; Yu, Y.; Li, J.X.; Zheng, L.; Zhang, Y.; Si, J.M.; Yu, Y.C. trans-Resveratrol Ameliorates Stress-Induced Irritable Bowel Syndrome-Like Behaviors by Regulation of Brain-Gut Axis. Front. Pharmacol. 2018, 9, 631. [Google Scholar] [CrossRef] [PubMed]
- Zorzi, M.; Gai, F.; Medana, C.; Aigotti, R.; Morello, S.; Peiretti, P.G. Bioactive Compounds and Antioxidant Capacity of Small Berries. Foods 2020, 9, 623. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, J.; Jiang, B.; Miao, M. Resveratrol and inflammatory bowel disease. Ann. N. Y. Acad. Sci. 2017, 1403, 38–47. [Google Scholar] [CrossRef]
- Størsrud, S.; Pontén, I.; Simrén, M. A Pilot Study of the Effect of Aloe barbadensis Mill. Extract (AVH200®) in Patients with Irritable Bowel Syndrome: A Randomized, Double-Blind, Placebo-Controlled Study. J. Gastrointestin Liver Dis. 2015, 24, 275–280. [Google Scholar] [CrossRef]
- Chiarioni, G.; Popa, S.L.; Ismaiel, A.; Pop, C.; Dumitrascu, D.I.; Brata, V.D.; Duse, T.A.; Incze, V.; Surdea-Blaga, T. The Effect of Polyphenols, Minerals, Fibers, and Fruits on Irritable Bowel Syndrome: A Systematic Review. Nutrients 2023, 15, 4070. [Google Scholar] [CrossRef]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Venkatanarayanan, N.; Lim, D.Y.; Yeo, W.S. A Meta-Analysis of the Clinical Use of Curcumin for Irritable Bowel Syndrome (IBS). J. Clin. Med. 2018, 7, 298. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Navajas-Porras, B.; López-Maldonado, A.; Hinojosa-Nogueira, D.; Pastoriza, S.; Rufián-Henares, J.Á. Green Tea and Its Relation to Human Gut Microbiome. Molecules 2021, 26, 3907. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.; Safer, A.M.; Menon, M. Green tea polyphenols and their potential role in health and disease. Inflammopharmacology 2015, 23, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.Y.; Zang, K.H.; Zuo, X.; Wu, X.A.; Bian, Z.X. Quercetin Attenuates Visceral Hypersensitivity and 5-Hydroxytryptamine Availability in Postinflammatory Irritable Bowel Syndrome Rats: Role of Enterochromaffin Cells in the Colon. J. Med. Food. 2019, 22, 663–671. [Google Scholar] [CrossRef]
- Sergent, T.; Piront, N.; Meurice, J.; Toussaint, O.; Schneider, Y.-J. Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chem. Biol. Interact. 2010, 188, 659–667. [Google Scholar] [CrossRef]
- Qin, H.-Y. Impact of psychological stress on irritable bowel syndrome. WJG 2014, 20, 14126. [Google Scholar] [CrossRef] [PubMed]
- Sodagari, H.R.; Farzaei, M.H.; Bahramsoltani, R.; Abdolghaffari, A.H.; Mahmoudi, M.; Rezaei, N. Dietary anthocyanins as a complementary medicinal approach for management of inflammatory bowel disease. Expert. Rev. Gastroenterol. Hepatol. 2015, 9, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-Y.; Zhang, Y.; Zhang, Y.; Jiang, Z.-P.; Cui, Y.-L.; Wang, Q.-S. ROS-responsive thioketal-linked alginate/chitosan carriers for irritable bowel syndrome with diarrhea therapy. Int. J. Biol. Macromol. 2022, 209, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Tjong, Y.-W.; Ip, S.-P.; Lao, L.; Wu, J.; Fong, H.H.S.; Sung, J.J.Y.; Berman, B.; Che, C.-T. Role of neuronal nitric oxide synthase in colonic distension-induced hyperalgesia in distal colon of neonatal maternal separated male rats: Elevated nNOS expression from distal colon of NMS rats. Neurogastroenterol. Motil. 2011, 23, 666-e278. [Google Scholar] [CrossRef]
- Rath, E.; Moschetta, A.; Haller, D. Mitochondrial function—gatekeeper of intestinal epithelial cell homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 497–516. [Google Scholar] [CrossRef]
- Colomier, E.; Algera, J.; Melchior, C. Pharmacological Therapies and Their Clinical Targets in Irritable Bowel Syndrome With Diarrhea. Front. Pharmacol. 2021, 11, 629026. [Google Scholar] [CrossRef]
- Qin, D.; Yue, L.; Xue, B.; Chen, M.; Tang, T.-C.; Zheng, H. Pharmacological treatments for patients with irritable bowel syndrome: An umbrella review of systematic reviews and meta-analyses. Medicine 2019, 98, e15920. [Google Scholar] [CrossRef]
- De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016, 65, 1812–1821. [Google Scholar] [CrossRef] [PubMed]
- Wouters, M.M.; Van Wanrooy, S.; Nguyen, A.; Dooley, J.; Aguilera-Lizarraga, J.; Van Brabant, W.; Garcia-Perez, J.E.; Van Oudenhove, L.; Van Ranst, M.; Verhaegen, J.; et al. Psychological comorbidity increases the risk for postinfectious IBS partly by enhanced susceptibility to develop infectious gastroenteritis. Gut 2016, 65, 1279–1288. [Google Scholar] [CrossRef]
- Lee, K.J.; Kim, J.H.; Cho, S.W. Gabapentin reduces rectal mechanosensitivity and increases rectal compliance in patients with diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 2005, 22, 981–988. [Google Scholar] [CrossRef]
- Krammer, L.; Sowa, A.S.; Lorentz, A. Mast Cells in Irritable Bowel Syndrome: A Systematic Review. JGLD 2019, 28, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, R.; Nikfar, S.; Rezaie, A.; Abdollahi, M. Efficacy of tricyclic antidepressants in irritable bowel syndrome: A meta-analysis. WJG 2009, 15, 1548. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Tang, Y.; Wang, Y.; Yu, T.; Wang, Y.; Jiang, L.; Lin, L. Efficacy and Safety of Antidepressants for the Treatment of Irritable Bowel Syndrome: A Meta-Analysis. PLoS ONE 2015, 10, e0127815. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M.; Mckinzie, S.; Busciglio, I.; Low, P.; Sweetser, S.; Burton, D.; Baxter, K.; Ryks, M.; Zinsmeister, A. Prospective Study of Motor, Sensory, Psychologic, and Autonomic Functions in Patients With Irritable Bowel Syndrome. Clin. Gastroenterol. Hepatol. 2008, 6, 772–781.e5. [Google Scholar] [CrossRef]
- Rodiño-Janeiro, B.K.; Pardo-Camacho, C.; Santos, J.; Martínez, C. Mucosal RNA and protein expression as the next frontier in IBS: Abnormal function despite morphologically intact small intestinal mucosa. Am. J. Physiol. -Gastrointest. Liver Physiol. 2019, 316, G701–G719. [Google Scholar] [CrossRef]
- Vanheel, H.; Vicario, M.; Vanuytsel, T.; Van Oudenhove, L.; Martinez, C.; Keita, Å.V.; Pardon, N.; Santos, J.; Söderholm, J.D.; Tack, J.; et al. Impaired duodenal mucosal integrity and low-grade inflammation in functional dyspepsia. Gut 2014, 63, 262–271. [Google Scholar] [CrossRef]
- Cirillo, C.; Bessissow, T.; Desmet, A.S.; Vanheel, H.; Tack, J.; Vanden Berghe, P. Evidence for neuronal and structural changes in submucous ganglia of patients with functional dyspepsia. Am. J. Gastroenterol. 2015, 110, 1205–1215. [Google Scholar] [CrossRef]
- Ducrotté, P. Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome. WJG 2012, 18, 4012. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhou, H.; Gu, W.; Wang, X.; Yang, J. Clinical efficacy and safety of ketotifen in treating irritable bowel syndrome with diarrhea. Eur. J. Gastroenterol. Hepatol. 2020, 32, 706–712. [Google Scholar] [CrossRef]
- Robles, A.; Perez Ingles, D.; Myneedu, K.; Deoker, A.; Sarosiek, I.; Zuckerman, M.J.; Schmulson, M.J.; Bashashati, M. Mast cells are increased in the small intestinal mucosa of patients with irritable bowel syndrome: A systematic review and meta-analysis. Neurogastroenterol. Motil. 2019, 31, e13718. [Google Scholar] [CrossRef]
- Coppens, D.; Kips, M.; Stiévenard, T.; Mertens, C.; De Schepper, H. Efficacy of mast cell directed therapies in irritable bowel syndrome: A systematic review. AGEB 2024, 87, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Yau, C.E.; Yaow, C.Y.L.; Chong, R.I.H.; Chong, N.Z.-Y.; Teoh, S.E.; Lim, Y.L.; Soh, A.Y.S.; Ng, W.K.; Thumboo, J. What Has Longitudinal ‘Omics’ Studies Taught Us about Irritable Bowel Syndrome? A Systematic Review. Metabolites 2023, 13, 484. [Google Scholar] [CrossRef] [PubMed]
- Kiss, Z.; Tél, B.; Farkas, N.; Garami, A.; Vincze, Á.; Bajor, J.; Sarlós, P.; Márta, K.; Erős, A.; Mikó, A.; et al. Eosinophil Counts in the Small Intestine and Colon of Children Without Apparent Gastrointestinal Disease: A Meta-analysis. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Corinaldesi, R.; Stanghellini, V.; Cremon, C.; Gargano, L.; Cogliandro, R.F.; De Giorgio, R.; Bartesaghi, G.; Canovi, B.; Barbara, G. Effect of mesalazine on mucosal immune biomarkers in irritable bowel syndrome: A randomized controlled proof-of-concept study. Aliment. Pharmacol. Ther. 2009, 30, 245–252. [Google Scholar] [CrossRef]
- Barbara, G.; Grover, M.; Bercik, P.; Corsetti, M.; Ghoshal, U.C.; Ohman, L.; Rajilić-Stojanović, M. Rome Foundation Working Team Report on Post-Infection Irritable Bowel Syndrome. Gastroenterology 2019, 156, 46–58.e7. [Google Scholar] [CrossRef]
- Halliwell, B.; Rafter, J.; Jenner, A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: Direct or indirect effects? Antioxidant or not? Am. J. Clin. Nutr. 2005, 81, 268S–276S. [Google Scholar] [CrossRef]
Polyphenols | Source | Effect on IBS | References |
---|---|---|---|
Oleuropein | Olive oil (Olea europaea L.) | Metabolic and vascular protective effects, amelioration of gut microbiota dysbiosis, and immunomodulatory properties | [50] |
Resveratrol | Grapes, strawberry, raspberry, blueberry, cocoa | Reducing of depression- and anxiety-like behaviors and intestinal dysfunction in mice | [51,52,53] |
Aloe barbadensis Mill Extract(AVH200®) | Aloe barbadensis Mill | Higher reduction in symptom severity in treatment group | [54] |
Curcumin | Rhizome of turmeric (Curcuma longa) | Reduction in abdominal pain and bloating in patients with IBS | [55,56] |
Flavonoids (Catechins) | Green tea leaves (Camellia sinensis) | Improved host health status via modulating signaling transduction, regulation of the gut–brain axis, and maintaining mucus/intestinal barrier integrity in the gut | [57,58] |
Quercetin | Black berry, apple, onion | Attenuation of visceral hypersensitivity and 5-hydroxytryptamine availability in post inflammatory irritable bowel syndrome in rats: visceral pain threshold of PI-IBS rats was markedly decreased | [59] |
Drugs | Class of Drugs | Effect | Side Effect | References |
---|---|---|---|---|
Dicyclomine and hyoscamine | Antispasmodic drugs | relaxing the gut smooth muscle | Constipation | [66] |
Rifaximin | Antibiotic | Improving bloating and diarrhea | Abdominal pain, nausea, vomiting, headache | [49,60] |
Gabapentin and pregabalin | Anticonvulsants | Abdominal pain, urgency, and bloating | Dizziness and drowsiness | [36,61] |
Tricyclic antidepressants (TCAs) | Antidepressant | Improve global symptoms of IBS, and reduce pain perception and discomfort | Hypotension, drowsiness, and constipation | [67] |
Dextofisopam, benzodiazepines | Antidepressants | Antinociceptive benefits | Abdominal pain, influenza, and nausea | [63,64] |
Clonidine | Alpha-2 adrenergic agonist | Attenuating fast colonic tone, reducing postprandial gastric volume, alleviating abdominal pain sensation, and enhancing colonic compliance | Drowsiness, dry mouth, and sleep problems | [65,66,67] |
Syndrome | Analyzed Cases | Immune System | Immune Alteration Site | References |
---|---|---|---|---|
IBS with increased colonic motility | 37 | Increase in circulating leukocytes, mast cells, T cells, macrophages: IBS < HC | Rectum, colon | [16] |
IBS | 13 | Increased immune activation | \ | [17] |
IBS | 36 | Increased immune activation | Lamina propria, colon | [78] |
Diarrhea-predominant IBS and constipation-predominant IBS | 12 | Increased number of mast cells | Duodenum, jejunum, and ileum | [72] |
IBS | 11 | Increased number of mast cells and proinflammatory and immunoregulatory cytokines (e.g., IL-1,IL-3, IL-4, IL-5, IL-6, IL-10, IL-13, IL-16, tumor necrosis factor-α and transforming growth factor-β as well as chemokines (e.g., monocyte chemoattractant protein) | Colon along the small intestine from the jejunum to the ileo-cecal region | [73] |
IBS and abdominal pain | 52 | Increased number of tissue eosinophils | Duodenum, terminal ileum | [74] |
IBS | 51 | Increased T cells, IgG, IL-6, TNF-α, IL-8 | Lamina propria cell circulation | [15] |
Patients with IBS after treatment with ketotifen | 19 | Decreased number of mast cells in the terminal ileum and decreased percentages of degranulated mast cells in the sigmoid colon, ascending colon, and terminal ileum after treatment compared with before treatment | Sigmoid colon, ascending colon, and terminal ileum | [75] |
Patients with IBS | 16 | Alterations in host mucosal immune response to microbial pathogens compared to healthy controls, patients with IBS had significantly increased expression of DKFZP564O0823 (an uncharacterized gene); immune- and inflammation-related pathways were enriched among patients with IBS-D and IBS-C compared to healthy subjects; increased purine breakdown by gut microbiota in patients with IBS; Halobiforma nitratireducens, an Archaea, was consistently elevated in flare samples from patients with IBS-D and IBS-C | Colon biopsy samples, mucosal biopsy and stool samples | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passacatini, L.C.; Ilari, S.; Nucera, S.; Scarano, F.; Macrì, R.; Caminiti, R.; Serra, M.; Oppedisano, F.; Maiuolo, J.; Palma, E.; et al. Multiple Aspects of Irritable Bowel Syndrome and the Role of the Immune System: An Overview of Systematic Reviews with a Focus on Polyphenols. Int. J. Mol. Sci. 2024, 25, 11993. https://doi.org/10.3390/ijms252211993
Passacatini LC, Ilari S, Nucera S, Scarano F, Macrì R, Caminiti R, Serra M, Oppedisano F, Maiuolo J, Palma E, et al. Multiple Aspects of Irritable Bowel Syndrome and the Role of the Immune System: An Overview of Systematic Reviews with a Focus on Polyphenols. International Journal of Molecular Sciences. 2024; 25(22):11993. https://doi.org/10.3390/ijms252211993
Chicago/Turabian StylePassacatini, Lucia Carmela, Sara Ilari, Saverio Nucera, Federica Scarano, Roberta Macrì, Rosamaria Caminiti, Maria Serra, Francesca Oppedisano, Jessica Maiuolo, Ernesto Palma, and et al. 2024. "Multiple Aspects of Irritable Bowel Syndrome and the Role of the Immune System: An Overview of Systematic Reviews with a Focus on Polyphenols" International Journal of Molecular Sciences 25, no. 22: 11993. https://doi.org/10.3390/ijms252211993
APA StylePassacatini, L. C., Ilari, S., Nucera, S., Scarano, F., Macrì, R., Caminiti, R., Serra, M., Oppedisano, F., Maiuolo, J., Palma, E., Malafoglia, V., Tomino, C., Fini, M., Mollace, V., & Muscoli, C. (2024). Multiple Aspects of Irritable Bowel Syndrome and the Role of the Immune System: An Overview of Systematic Reviews with a Focus on Polyphenols. International Journal of Molecular Sciences, 25(22), 11993. https://doi.org/10.3390/ijms252211993