Comprehensive Phytochemical Profiling of Ulva lactuca from the Adriatic Sea
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Headspace Composition Obtained by HS-SPME/GC-MS
Volatiles Obtained by Hydrodistillation (HD)
2.2. Fatty Acid Composition and Nutritional Indices of Ulva lactuca
2.3. Pigment Content of Ulva lactuca
2.4. Amino Acids in U. lactuca
2.5. Non-Volatile Compounds in Ethanol Extract
3. Materials and Methods
3.1. Macroalga Sampling and Extraction
3.2. The Headspace Analysis
3.3. Gas Chromatography Flame-Ionization Detection Analysis of Fatty Acids
3.4. Determination of Protein Content and Determination of Amino Acids Using HPLC-FLD Method
3.5. Determination of Pigments Using High-Performance Liquid Chromatography (HPLC-DAD) Method
3.6. Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry (UHPLC-ESI-HRMS) of Ethanol Extract
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem. 2011, 128, 895–901. [Google Scholar] [CrossRef]
- Metwaly, H.R. Chemical and biochemical properties of marine algae Ulva lactuca and Nannocholoropsis oculata. Egypt J. Aquat. Biol. Fish. 2023, 27, 19–34. [Google Scholar] [CrossRef]
- Choudhary, B.; Chauhan, O.P.; Mishra, A. Edible Seaweeds: A potential novel source of bioactive metabolites and nutraceuticals with human health benefits. Front. Mar. Sci. 2021, 8, 740054. [Google Scholar] [CrossRef]
- Guidara, M.; Yaich, H.; Amor, I.B.; Fakhfakh, J.; Gargouri, J.; Lassoued, S.; Blecker, C.; Richel, A.; Attia, H.; Garna, H. Effect of extraction procedures on the chemical structure, antitumor and anticoagulant properties of ulvan from Ulva lactuca of Tunisia coast. Carbohydr. Polym. 2021, 253, 117283. [Google Scholar] [CrossRef]
- Tanna, B.; Mishra, A. Nutraceutical potential of seaweed polysaccharides: Structure, Bioactivity, safety, and toxicity. Compr. Rev. Food Sci. Food Saf. 2019, 18, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Sharmila, G.; Kumar, D.; Pugazhendi, A.; Bajhaiya, A.K.; Gugulothu, P.; Banu, J.R. Biofuel production from macroalgae: Present scenario and future scope. Bioengineered 2021, 12, 9216–9238. [Google Scholar] [CrossRef]
- Ortiz, J.; Romero, N.; Robert, P.; Araya, J.; Lopez-Hernández, J.; Bozzo, C.; Navarrete, E.; Osorio, A.; Rios, A. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem. 2006, 99, 98–104. [Google Scholar] [CrossRef]
- Valério Filho, A.; Santana, L.R.; Motta, N.G.; Passos, L.F.; Wolke, S.; Mansilla, A.; Astorga-España, M.S.; Becker, E.M.; de Pereira, C.M.P.; Carreno, N.L.V. Extraction of fatty acids and cellulose from the biomass of algae Durvillaea antarctica and Ulva lactuca: An alternative for biorefineries. Algal Res. 2023, 71, 103084. [Google Scholar] [CrossRef]
- Gnayem, N.; Unis, R.; Gnaim, R.; Chemodanov, A.; Israel, Á.; Gnaim, J.; Golberg, A. Seasonal and culture period variations in the lipid and fatty acid content of Ulva lactuca cultivated in Mikhmoret Onshore (Israel). Bot. Mar. 2024, 67, 101–114. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov. Food Sci. Emerg. Technol. 2011, 12, 600–609. [Google Scholar] [CrossRef]
- López-Pérez, O.; Picon, A.; Nuñez, M. Volatile compounds and odour characteristics of seven species of dehydrated edible seaweeds. Food Res. Int. 2017, 99, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Awad, N.E. Biologically active steroid from the green alga Ulva lactuca. Phytother. Res. 2000, 14, 641–643. [Google Scholar] [CrossRef] [PubMed]
- El Gamal, A.A. Biological importance of marine algae. Saudi Pharm. J. 2010, 18, 1–25. [Google Scholar] [CrossRef]
- Messyasz, B.; Rybak, A. Abiotic factors affecting the development of Ulva Sp. (Ulvophyceae; Chlorophyta) in freshwater ecosystems. Aquat. Ecol. 2011, 45, 75–87. [Google Scholar] [CrossRef]
- Wang, P.; Chen, J.; Chen, L.; Shi, L.; Liu, H. Characteristic Volatile composition of seven seaweeds from the Yellow sea of China. Mar. Drugs 2021, 19, 192. [Google Scholar] [CrossRef]
- Akakabe, Y.; Iwamoto, S.; Miyamura, S.; Kajiwara, T. Induction of (z)-8-heptadecene in marine green alga Bryopsis maxima by mechanical wounding. Fish. Sci. 2007, 73, 1057–1060. [Google Scholar] [CrossRef]
- Jung, V.; Pohnert, G. Rapid wound-activated transformation of the green algal defensive metabolite caulerpenyne. Tetrahedron 2001, 57, 7169–7172. [Google Scholar] [CrossRef]
- Pohnert, S.; Boland, W. The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat. Prod. Rep. 2002, 19, 108–122. [Google Scholar] [CrossRef]
- Zhang, M.; Li, R.X.; Hu, C.M.; Yang, L.E.; Tang, J.; Lu, Q.Q.; Zhang, T.; Shen, Z.G.; Shen, S.D.; Xu, P. The metabolism of 8-heptadecene in Pyropia (Bangiaceae, Rhodophyta). J. Appl. Phycol. 2014, 26, 1181–1187. [Google Scholar] [CrossRef]
- Milani, N.; Della Vedova, G.; Nazzi, F. (Z)-8-Heptadecene reduces the reproduction of Varroa destructor in brood cells. Apidologie 2004, 35, 265–273. [Google Scholar] [CrossRef]
- Le Pape, M.A.; Grua-Priol, J.; Prost, C.; Demaimay, M. Optimization of dynamic headspace extraction of the edible red algae Palmaria palmata and identification of the volatile components. J. Agric. Food Chem. 2004, 52, 550–556. [Google Scholar] [CrossRef]
- Jerković, I.; Marijanović, Z.; Roje, M.; Kuś, P.M.; Jokić, S.; Čož-Rakovac, R. Phytochemical Study of the headspace volatile organic compounds of fresh algae and seagrass from the Adriatic sea (single point collection). PLoS ONE 2018, 13, e0196462. [Google Scholar] [CrossRef] [PubMed]
- Enoiu, M.; Wellman, M.; Leroy, P.; Ziegler, J.-M.; Mitrea, N.; Siest, G. Gas and Liquid chromatography-mass spectrometry of aldehydic products from lipid peroxidation. Analysis 2000, 28, 285–290. [Google Scholar] [CrossRef]
- Radman, S.; Čagalj, M.; Šimat, V.; Jerković, I. Seasonal monitoring of volatiles and antioxidant activity of brown alga Cladostephus spongiosus. Mar. Drugs 2023, 21, 415. [Google Scholar] [CrossRef] [PubMed]
- Boatright, J.; Negre, F.; Chen, X.; Kish, C.M.; Wood, B.; Peel, G.; Orlova, I.; Gang, D.; Rhodes, D.; Dudareva, N. Understanding in vivo benzenoid metabolism in Petunia petal tissue. Plant Physiol. 2004, 135, 1993–2011. [Google Scholar] [CrossRef]
- Hook, I.L.; Ryan, S.; Sheridan, H. Biotransformation of aromatic aldehydes by five species of marine microalgae. Phytochemistry 1999, 51, 621–627. [Google Scholar] [CrossRef]
- Mirzayeva, A.; Castro, R.; Barroso, C.G.; Durán-Guerrero, E. Characterization and differentiation of seaweeds on the basis of their volatile composition. Food Chem. 2021, 336, 127725. [Google Scholar] [CrossRef]
- Narain, N. Volatile components in seaweeds. Exam. Mar. Biol. Oceanogr. 2018, 2, 000535. [Google Scholar] [CrossRef]
- Akakabe, Y.; Washizu, K.; Matsui, K.; Kajiwara, T. Concise synthesis of (8 z, 11 z, 14 z)-8,11,14-heptadecatrienal, (7 z, 10 z, 13 z)-7,10,13-hexadecatrienal, and (8 z, 11 z)-8,11-heptadecadienal, components of the essential oil of marine green alga Ulva pertusa. Biosci. Biotechnol. Biochem. 2005, 69, 1348–1352. [Google Scholar] [CrossRef]
- Fujimura, T.; Kawai, T.; Shiga, M.; Kajiwara, T.; Hatanaka, A. Long-chain aldehyde production in Thalli culture of the marine green alga Ulva pertusa. Phytochemistry 1990, 29, 745–747. [Google Scholar] [CrossRef]
- Kajiwara, T.; Yoshikawa, H.; Saruwatari, T.; Hatanaka, A.; Kawai, T.; Ishihara, M.; Tsuneya, T. Enzymatic formation of unsaturated long chain fatty aldehydes in Ulva pertusa. Phytochemistry 1988, 27, 1643–1645. [Google Scholar] [CrossRef]
- Rautela, I.; Parveen, A.; Singh, P.; Sharma, M.D. GC-MS analyses of ethanolic leaf extract of medicinal plant Solanum nigrum. World J. Pharm Res. 2019, 8, 2299–2307. [Google Scholar]
- Mohy El-Din, S.M. Temporal variation in chemical composition of Ulva lactuca and Corallina mediterranea. Int. J. Environ. Sci. Technol. 2019, 16, 5783–5796. [Google Scholar] [CrossRef]
- Peñalver, R.; Lorenzo, J.M.; Nieto, G. Bioaccessibility, digestibility and nutritional properties of algae and cyanophyceae as basis of their potential as functional food ingredients. Appl. Food Res. 2024, 4, 100404. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Radman, S.; Cikoš, A.M.; Flanjak, I.; Babić, S.; Čižmek, L.; Šubarić, D.; Čož-Rakovac, R.; Jokić, S.; Jerković, I. Less polar compounds and targeted antioxidant potential (in vitro and in vivo) of Codium adhaerens c. Agardh 1822. Pharmaceuticals 2021, 14, 944. [Google Scholar] [CrossRef]
- Tabarsa, M.; Rezaei, M.; Ramezanpour, Z.; Waaland, J.R. Chemical Compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. J. Sci. Food Agric. 2012, 92, 2500–2506. [Google Scholar] [CrossRef]
- Eismann, A.I.; Perpetuo Reis, R.; Concha Obando, J.M.; Cunha dos Santos, T.; Negrão Cavalcanti, D. Carotenoid content in Ulva lactuca cultivated under aquaculture conditions and collected from intertidal beds in southeastern Brazil: Biotechnological implications for biomass use and storage. Cienc. Mar. 2024, 50, 3461. [Google Scholar] [CrossRef]
- Abd El-Baky, H.; El-Baz, F.; Baroty, G. Evaluation of marine alga Ulva lactuca L. as a source of natural preservative ingredient. Am. Eurasian J. Agric. Environ. Sci. 2008, 3, 434–444. [Google Scholar]
- Aryee, A.N.; Agyei, D.; Akanbi, T.O. Recovery and utilization of seaweed pigments in food processing. Curr. Opin. Food Sci. 2018, 19, 113–119. [Google Scholar] [CrossRef]
- Cikoš, A.M.; Šubarić, D.; Roje, M.; Babić, J.; Jerković, I.; Jokić, S. Recent advances on macroalgal pigments and their biological activities (2016–2021). Algal Res. 2022, 65, 102748. [Google Scholar] [CrossRef]
- Eismann, A.I.; Perpetuo Reis, R.; Ferreira da Silva, A.; Negrão Cavalcanti, D. Ulva Spp. carotenoids: Responses to environmental conditions. Algal Res. 2020, 48, 101916. [Google Scholar] [CrossRef]
- Lordan, S.; Ross, R.P.; Stanton, C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar. Drugs 2011, 9, 1056–1100. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zeng, W.; Gan, J.; Li, Y.; Pan, Y.; Li, J.; Chen, H. Physicochemical Properties and anti-oxidation activities of ulvan from Ulva pertusa Kjellm. Algal Res. 2021, 55, 102269. [Google Scholar] [CrossRef]
- Lorenzo, Y.; Azqueta, A.; Luna, L.; Bonilla, F.; Dominguez, G.; Collins, A.R. The Carotenoid-cryptoxanthin stimulates the repair of DNA oxidation damage in addition to acting as an antioxidant in human cells. Carcinogenesis 2008, 30, 308–314. [Google Scholar] [CrossRef]
- Debbarma, J.; Madhusudana Rao, B.; Murthy, L.N.; Mathew, S.; Venkateshwarlu, G.; Ravishankar, C.N. Nutritional profiling of the edible seaweeds Gracilaria edulis, Ulva lactuca and Sargassum Sp. Indian J. Fish. 2016, 63, 81–87. [Google Scholar] [CrossRef]
- Ummat, V.; Garcia-Vaquero, M.; Poojary, M.M.; Lund, M.N.; O’Donnell, C.; Zhang, Z.; Tiwari, B.K. Green extraction of proteins, umami and other free amino acids from brown macroalgae Ascophyllum nodosum and Fucus vesiculosus. J. Appl. Phycol. 2021, 33, 4083–4091. [Google Scholar] [CrossRef]
- Quinville, B.M.; Deschenes, N.M.; Ryckman, A.E.; Walia, J.S. A comprehensive review: Sphingolipid metabolism and implications of disruption in sphingolipid homeostasis. Int. J. Mol. Sci. 2021, 22, 5793. [Google Scholar] [CrossRef]
- Aoki, M.; Aoki, H.; Ramanathan, R.; Hait, N.C.; Takabe, K. Sphingosine-1-phosphate signaling in immune cells and inflammation: Roles and therapeutic potential. Mediat. Inflamm. 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Fischer, C.L.; Drake, D.R.; Dawson, D.V.; Blanchette, D.R.; Brogden, K.A.; Wertz, P.W. Antibacterial activity of sphingoid bases and fatty acids against gram-positive and gram-negative bacteria. Antimicrob. Agents Chemother. 2012, 56, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Garg, H.S.; Sharma, M.; Bhakuni, D.S.; Pramanik, B.N.; Bose, A.K. An antiviral sphingosine derivative from the green alga Ulva fasciata. Tetrahedron Lett. 1992, 33, 1641–1644. [Google Scholar] [CrossRef]
- Sharma, M.; Garg, H.S.; Chandra, K. Erythro-sphinga-4,8-dienine-n-palmitate: An antiviral agent from the green alga Ulva fasciata. Bot. Mar. 1996, 39, 213–215. [Google Scholar] [CrossRef]
- Garg, H.S.; Agrawal, S. A novel sphingosine derivative from the sponge Spirastrella inconstans. J. Nat. Prod. 1995, 58, 442–445. [Google Scholar] [CrossRef]
- Radman, S.; Čižmek, L.; Babić, S.; Cikoš, A.M.; Čož-Rakovac, R.; Jokić, S.; Jerković, I. Bioprospecting of less-polar fractions of Ericaria crinita and Ericaria amentacea: Developmental toxicity and antioxidant activity. Mar. Drugs 2022, 20, 57. [Google Scholar] [CrossRef]
- Fitton, A.; Goa, K.L. Azelaic acid. Drugs 1991, 41, 780–798. [Google Scholar] [CrossRef]
- Thukral, M.; Allen, A.E.; Petras, D. Progress and challenges in exploring aquatic microbial communities using non-targeted metabolomics. ISME J. 2023, 17, 2147–2159. [Google Scholar] [CrossRef]
- Kalasariya, H.S.; Patel, N.B.; Gacem, A.; Alsufyani, T.; Reece, L.M.; Yadav, V.K.; Awwad, N.S.; Ibrahium, H.A.; Ahn, Y.; Yadav, K.K. Marine alga Ulva fasciata-derived molecules for the potential treatment of SARS-CoV-2: An in silico approach. Mar. Drugs 2022, 20, 586. [Google Scholar] [CrossRef]
- Ezhilmathi, K.; Singh, V.P.; Arora, A.; Sairam, R.K. Effect of 5-sulfosalicylic acid on antioxidant activity in relation to vase life of gladiolus cut flowers. Plant Growth Regul. 2007, 51, 99–108. [Google Scholar] [CrossRef]
- Özsoy, M.; Atiroğlu, V.; Guney Eskiler, G.; Atiroğlu, A.; Deveci Ozkan, A.; Özacar, M. A protein-sulfosalicylic acid/boswellic acids @metal–organic framework nanocomposite as anticancer drug delivery system. Colloids Surf. B Biointerfaces 2021, 204, 111788. [Google Scholar] [CrossRef]
- Kurth, C.; Welling, M.; Pohnert, G. Sulfated phenolic acids from Dasycladales siphonous green algae. Phytochemistry 2015, 117, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Welling, M.; Pohnert, G.; Küpper, F.C.; Ross, C. Rapid biopolymerisation during wound plug formation in green algae. J. Adhes. 2009, 85, 825–838. [Google Scholar] [CrossRef]
- El-Bilawy, E.H.; Al-Mansori, A.N.A.; Alotibi, F.O.; Al-Askar, A.A.; Arishi, A.A.; Teiba, I.I.; Sabry, A.E.N.; Elsharkawy, M.M.; Heflish, A.A.; Behiry, S.I. Antiviral and antifungal of Ulva fasciata extract: HPLC analysis of polyphenolic compounds. Sustainability 2022, 14, 12799. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Chao, P.Y.; Hu, S.P.; Yang, C.M. The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food Nutr. Sci. 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Hiqashi-Okaj, K.; Otani, S.; Okai, Y. Potent suppressive effect of a Japanese edible seaweed, Enteromorpha prolifera (Sujiao-Nori) on initiation and promotion phases of chemically induced mouse skin tumorigenesis. Cancer Lett. 1999, 140, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Lee, H.S.; Kang, I.J.; Won, M.H.; You, S. Antioxidant properties of extract and fractions from Enteromorpha Prolifera, a type of green seaweed. Food Chem 2011, 127, 999–1006. [Google Scholar] [CrossRef]
- Jokić, S.; Jerković, I.; Pavić, V.; Aladić, K.; Molnar, M.; Kovač, M.J.; Vladimir-Knežević, S. Terpenes and cannabinoids in supercritical CO2 extracts of industrial hemp inflorescences: Optimization of extraction, antiradical and antibacterial activity. Pharmaceuticals 2022, 15, 1117. [Google Scholar] [CrossRef]
- Radman, S.; Zekić, M.; Flanjak, I.; Cikoš, A.M.; Jokić, S.; Jerković, I. Contribution to the chemodiversity of ex Cystoseira Sp.—Gongolaria barbata and Ericaria crinita from the Adriatic sea: Volatiles, fatty acids and major pigments. Algal Res. 2022, 63, 102653. [Google Scholar] [CrossRef]
No. | Compound | Rt | RI | PDMS/DVB | DVB/CAR/PDMS | HD |
---|---|---|---|---|---|---|
1. | Dimethyl sulfide | 1.565 | <900 | 4.46 | 5.81 | - |
2. | (E)-But-2-enal | 1.837 | <900 | 0.05 | 3.48 | - |
3. | Pent-1-en-3-ol | 1.943 | <900 | 2.10 | 3.48 | - |
4. | Pentanal | 2.001 | <900 | 0.86 | 0.97 | - |
5. | 3-Methylbut-2-enal | 2.364 | <900 | 0.71 | 1.54 | - |
6. | Hexanal | 2.734 | <900 | 2.05 | 2.04 | - |
7. | (E)-Hex-2-enal | 3.387 | <900 | 0.49 | 0.31 | - |
8. | Hexan-1-ol | 3.549 | <900 | 1.40 | 1.11 | - |
9. | Heptanal | 4.150 | 904 | 20.17 | 16.35 | 0.33 |
10. | (E)-Hept-2-enal | 5.343 | 961 | 0.84 | 1.23 | - |
11. | Benzaldehyde | 5.527 | 968 | 2.61 | 2.61 | 0.44 |
12. | 2-Pentylfuran | 6.197 | 992 | - | - | 0.24 |
13. | (E,Z)-Hepta-2,4-dienal | 6.410 | 999 | 0.11 | 0.35 | 1.45 |
14. | Octanal | 6.552 | 1004 | 1.86 | 1.11 | - |
15. | 2-(2-Ethoxyethoxy)- ethanol (Carbitol) | 6.621 | 1007 | - | 0.70 | - |
16. | (E,E)-Hepta-2,4-dienal | 6.817 | 1014 | 3.73 | 1.89 | 0.50 |
17. | Benzyl Alcohol | 7.663 | 1043 | 8.53 | 9.71 | - |
18. | (E)-Oct-2-enal | 8.291 | 1062 | 2.98 | 5.56 | - |
19. | Heptanoic acid | 9.215 | 1087 | 0.05 | 0.74 | - |
20. | (E,E)-Octa-3,5-dien-2-one | 9.560 | 1095 | 0.11 | 0.66 | - |
21. | Nonanal | 9.914 | 1105 | 10.57 | 6.62 | - |
22. | 2,6-Dimethylcyclohexanol | 10.119 | 1111 | 1.58 | 0.76 | 0.18 |
23. | (E,Z)-Nona-2,6-dienal | 11.821 | 1157 | 0.22 | 0.80 | - |
24. | (E)-Non-2-enal | 12.046 | 1163 | 1.69 | 1.80 | - |
25. | Decanal | 13.900 | 1206 | 2.12 | 1.13 | - |
26. | (E)-Dec-2-enal | 16.225 | 1265 | 0.05 | 0.54 | - |
27. | (E,Z)-Deca-2,4-dienal | 17.578 | 1294 | - | - | 0.29 |
28. | (E,E)-Deca-2,4-dienal | 18.529 | 1318 | - | - | 3.15 |
29. | α-Ionone | 23.091 | 1429 | - | - | 0.20 |
30. | (E)-6,10-Dimethylundeca-5,9-dien-2-one | 24.118 | 1455 | - | - | 0.15 |
31. | Dodecan-1-ol | 25.100 | 1478 | - | - | 1.01 |
32. | trans-β-Ionone | 25.438 | 1486 | - | - | 3.04 |
33. | Pentadec-1-ene | 25.688 | 1492 | 0.11 | 0.56 | - |
34. | Pentadecane | 26.003 | 1500 | 2.69 | 4.24 | - |
35. | Tridecanal | 26.428 | 1511 | - | - | 0.28 |
36. | Tridecan-1-ol | 29.068 | 1580 | - | - | 0.23 |
37. | Tetradecanal | 30.352 | 1613 | - | - | 0.99 |
38. | Heptadec-8-ene | 32.764 | 1679 | 21.80 | 12.46 | 4.39 |
39. | (Z)-Pentadec-11-enal | 33.333 | 1693 | - | - | 1.66 |
40. | Heptadecane | 33.562 | 1700 | - | 0.49 | - |
41. | Pentadecanal | 34.098 | 1715 | - | - | 10.61 |
42. | Tetradecanoic acid | 36.186 | 1775 | - | - | 3.93 |
43. | (Z)-Hexadec-11-enal | 36.938 | 1795 | - | - | 0.39 |
44. | Hexahydrofarnesyl acetone | 38.637 | 1846 | - | - | 0.79 |
45. | Hexadecan-1-ol | 38.839 | 1852 | - | - | 2.29 |
46. | (Z,Z,Z)-Hexadeca-7,10,13-trienal | 39.097 | 1863 | - | - | 1.61 |
47. | (Z)-Hexadec-9-en-1-ol | 39.208 | 1863 | - | - | 1.12 |
48. | Methyl hexadeca-4,7,10,13-tetraenoate | 39.757 | 1879 | - | - | 7.50 |
49. | Hexadecan-1-ol | 39.913 | 1884 | - | - | 1.34 |
50. | (Z,Z,Z)-Hexadeca-7,10,13-trienal | 40.237 | 1893 | - | - | 22.67 |
51. | Dibutyl phthalate | 42.483 | 1963 | - | - | 1.13 |
52. | Hexadecanoic acid | 42.982 | 1978 | - | - | 13.18 |
53. | Sulfur, mol. (S8) | 44.098 | 2012 | 1.16 | 3.45 | - |
54. | Phytol | 47.439 | 2114 | - | - | 4.15 |
No. | Fatty Acid | Av ± SD (%) |
---|---|---|
1. | Dodecanoic acid (lauric acid) (C12:0) | 4.43 ± 0.19 |
2. | Tetradecanoic acid (myristic acid) (C14:0) | 2.76 ± 0.58 |
3. | Hexadecanoic acid (palmitic acid) (C16:0) | 45.16 ± 1.82 |
4. | Octadecanoic acid (stearic acid) (C18:0) | 5.40 ± 0.55 |
5. | Eicosanoic acid (arachidic acid) (C20:0) | 14.57 ± 0.84 |
6. | Docosanoic acid (behenic acid) (C22:0) | 1.03 ± 0.08 |
Total saturated fatty acids (SFAs) | 73.35 | |
7. | Palmitoleic acid (C16:1) | 2.37 ± 0.17 |
8. | Cis-oleic acid+trans-oleic acid (C18:1n9c+t) | 13.59 ± 1.47 |
Total monounsaturated fatty acids (MUFAs) | 15.96 | |
9. | Cis-linoleic acid (C18:2n6c) | 4.69 ± 0.62 |
10. | α-linolenic acid (C18:3n3) | 5.82 ± 0.51 |
11. | Docosadienoic acid (C22:2n6) | 1.06 ± 0.11 |
Total polyunsaturated fatty acids (PUFAs) | 11.57 | |
Total n-3 fatty acids (n-3 PUFAs) | 5.82 | |
Total n-6 fatty acids (n-6 PUFAs) | 5.75 | |
Nutritional indices | ||
PUFA/SFA | 0.16 | |
Index of atherogenicity (IA) | 2.20 | |
Index of thrombogenicity (IT) | 1.82 | |
Hypocholesterolemic/hypercholesterolemic ratio (HH) | 0.48 | |
Unsaturation index (UI) | 44.92 |
Carotenoid | Content (µg/100 g) |
---|---|
β-carotene | 1926.62 ± 0.36 |
lutein | 1389.30 ± 0.60 |
α-carotene | 131.81 ± 0.11 |
β-cryptoxanthin | 12.05 ± 0.11 |
Amino Acid | Av ± SD (mg/100 g Protein) |
---|---|
Aspartic acid | 123.77 ± 0.92 |
Glutamic acid | 97.15 ± 1.70 |
Serine | 32.73 ± 0.15 |
Histidine | 3.19 ± 0.02 |
Glycine | 182.15 ± 1.59 |
Threonine | 135.11 ± 1.68 |
Arginine | 50.76 ± 4.03 |
Alanine | 53.80 ± 0.73 |
Tyrosine | 9.60 ± 0.09 |
Cystine | 56.98 ± 1.44 |
Valine | 14.73 ± 0.25 |
Methionine | 16.04 ± 0.12 |
Tryptophane | 15.41 ± 0.63 |
Phenylalanine | 21.86 ± 0.93 |
Isoleucine | 12.73 ± 0.21 |
Leucine | 9.85 ± 0.35 |
Lysine | 38.04 ± 1.99 |
Proline | 50.23 ± 3.47 |
No. | Name | Mass | [M-H]− or [M+H]+ | Molecular Formula | tR (min) | Mass Difference (ppm) | Peak Area (Arbitrary Units) |
---|---|---|---|---|---|---|---|
Phenolic acids | |||||||
3 | 4-Hydroxybenzaldehyde | 122.037 | 121.02950 | C7H6O2 | 1.55 | 0.0 | 1.42 × 104 |
7 | 4-Hydroxybenzoic acid | 138.032 | 137.02442 | C7H6O3 | 5.668 | 7.2 | 2.89 × 105 |
35 | 3-Hydroxyphenylacetic acid | 152.047 | 151.04007 | C1H1O3 | 16.554 | 0.0 | 2.46 × 103 |
18 | Hydroxytyrosol | 154.063 | 153.05572 | C1H10O3 | 11.821 | 1.7 | 4.15 × 104 |
48 | 5-(3,4-Dihydroxyphenyl)pentanoic acid | 210.089 | 209.08193 | C11H14O4 | 20.117 | 7.2 | 3.35 × 104 |
13 | 4-Hydroxybenzoic acid-4-O-sulphate | 217.989 | 216.98123 | C7H6O6S | 8.601 | 6.6 | 7.30 × 105 |
8 | 5-Sulfosalicylic acid | 217.989 | 216.98123 | C7H6O6S | 5.684 | 6.8 | 3.35 × 106 |
4 | Vanillic acid 4-sulfate | 247.999 | 246.99180 | C1H1O7S | 3.194 | 7.2 | 4.21 × 105 |
2 | Caffeic acid 4-O-sulfate | 259.999 | 258.99180 | C9H1O7S | 1.414 | 3.3 | 2.30 × 104 |
5 | 4-(β-D-Glucosyloxy)benzoic acid | 300.085 | 299.07724 | C13H16O1 | 3.804 | 0.7 | 2.17 × 103 |
10 | Caffeic acid 4-O-glucuronide | 356.074 | 355.06707 | C15H16O10 | 7.091 | 9.8 | 6.86 × 103 |
Flavonoids | |||||||
1 | Sativanone | 300.1 | 299.09250 | C17H16O5 | 0.872 | 9.7 | 1.02 × 105 |
6 | 3-Hydroxyterphenyllin | 354.11 | 353.10306 | C20H18O6 | 4.193 | 6.2 | 8.76 × 104 |
15 | 3,3′′-Dihydroxyterphenyllin | 370.105 | 369.09798 | C20H18O7 | 10.872 | 1.6 | 5.07 × 104 |
Fatty acid derivatives | |||||||
16 | Ethyl 3-oxohexanoate | 158.094 | 157.08702 | C8H14O3 | 10.872 | 4.3 | 3.28 × 106 |
17 | Ethyl 2-ethylacetoacetate | 158.094 | 157.08702 | C8H14O3 | 11.177 | 3.5 | 1.43 × 106 |
24 | Azelaic acid | 188.105 | 187.09758 | C9H16O4 | 14.296 | 5.4 | 4.09 × 106 |
9 | Loliolide | 196.11 | 197.11722 | C11H16O3 | 6.227 | 2.3 | 3.32 × 106 |
19 | Tetradecanamide | 227.225 | 228.23219 | C14H29NO | 12.492 | 11.6 | 7.57 × 104 |
12 | Palmitoleamide | 253.241 | 254.24784 | C16H31NO | 8.157 | 0.7 | 5.25 × 104 |
21 | Palmitamide | 255.256 | 256.26349 | C16H33NO | 13.688 | 2.5 | 5.27 × 105 |
11 | Hexadecasphinganine | 273.267 | 274.27406 | C16H35NO2 | 7.903 | 0.4 | 1.53 × 108 |
20 | Linoleamide | 279.256 | 280.26349 | C18H33NO | 13.415 | 2.2 | 6.35 × 105 |
23 | 9-Octadecenamide | 281.272 | 282.27914 | C18H35NO | 14.081 | 0.4 | 1.11 × 106 |
26 | Octadecanamide | 283.288 | 284.29479 | C18H37NO | 14.781 | 6.1 | 2.63 × 105 |
14 | Palmitoylethanolamide | 299.282 | 300.28971 | C18H37NO2 | 10.76 | 0.0 | 1.40 × 104 |
28 | 11-Eicosenamide | 309.303 | 310.31044 | C20H39NO | 15.054 | 4.6 | 2.16 × 105 |
33 | Erucamide | 337.334 | 338.34174 | C22H43NO | 15.961 | 0.3 | 3.01 × 106 |
22 | Glycerol palmitate | 330.277 | 331.28429 | C19H38O4 | 13.979 | 6.8 | 8.23 × 104 |
27 | Glycerol monostearate | 358.308 | 359.31559 | C21H42O4 | 15.02 | 4.1 | 1.95 × 105 |
34 | 1-(9Z-octadecenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphocholine | 729.531 | 730.53813 | C40H76NO8P | 16.388 | 7.6 | 9.24 × 103 |
36 | 1-(9Z-octadecenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine | 743.547 | 744.55378 | C41H78NO8P | 16.627 | 7.8 | 7.72 × 103 |
42 | 1-(9Z-octadecenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphocholine | 799.609 | 800.61638 | C45H86NO8P | 18.425 | 3.3 | 5.21 × 103 |
41 | 1-(11Z,14Z-eicosadienoyl)-2-heptadecanoyl-glycero-3-phosphoserine | 801.552 | 802.55926 | C43H80NO10P | 18.066 | 6.0 | 3.33 × 104 |
43 | 1-(11Z,14Z-eicosadienoyl)-2-nonadecanoyl-glycero-3-phosphoserine | 829.583 | 830.59056 | C45H84NO10P | 19.161 | 1.3 | 6.87 × 103 |
37 | 3-{[6-O-(α-D-Galactopyranosyl)-β-D-galactopyranosyl]oxy}-2-[(9Z)-9-hexadecenoyloxy]propyl (9Z,12Z,15Z)-9,12,15-octadecatrienoate | 912.581 | 913.58830 | C49H84O15 | 16.953 | 0.0 | 3.69 × 102 |
38 | 1-hexadecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-3-O-(α-D-galactosyl-1-6-β-D-galactosyl)-sn-glycerol | 914.597 | 915.60395 | C49H86O15 | 17.021 | 5.0 | 5.67 × 103 |
Pigments and derivatives | |||||||
31 | (2E)-3-[21-(Methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-9,14-divinyl-3,4-didehydro-3-24,25-dihydrophorbinyl]acrylic acid | 586.222 | 587.22890 | C35H30N4O5 | 15.499 | 1.4 | 3.87 × 103 |
30 | 3-[(21R)-21-(Methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-9,14-divinyl-3,4-didehydro-3--24,25-dihydrophorbinyl]propanoic acid | 588.237 | 589.24455 | C35H32N4O5 | 15.465 | 2.9 | 7.37 × 103 |
29 | Pheophorbide a | 592.269 | 593.27585 | C35H36N4O5 | 15.362 | 2.5 | 2.95 × 104 |
25 | Fucoxanthin | 658.423 | 659.43062 | C42H58O6 | 14.747 | 4.5 | 6.10 × 103 |
44 | Divinyl pheophytin a | 868.55 | 869.55755 | C55H72N4O5 | 19.949 | 0.0 | 1.21 × 103 |
47 | Pheophytin a | 870.566 | 871.57320 | C55H74N4O5 | 20.103 | 1.0 | 2.87 × 105 |
45 | 3-Phorbinepropanoic acid, 9-acetyl-14-ethylidene-13,14-dihydro-21-(methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-, 3,7,11,15-tetramethyl-2-hexadecen-1-yl ester | 886.561 | 887.56811 | C55H74N4O6 | 19.949 | 5.1 | 7.19 × 104 |
46 | Methyl (3R,10Z,14Z,20Z,22S,23S)-12-ethyl-3-hydroxy-13,18,22,27-tetramethyl-5-oxo-23-(3-oxo-3-{[(2E,7R,11R)-3,7,11,15-tetramethyl-2-hexadecen-1-yl]oxy}propyl)-17-vinyl-4-oxa-8,24,25,26-tetraazahexacycl;o[19.2.1.16,9.111,14.116,19.02,7]heptacosa-1(24),2(7),6(27),8,10,12,14,16,18,20-decaene-3-carboxylate | 902.556 | 903.56303 | C55H74N4O7 | 19.966 | 4.2 | 2.11 × 104 |
Steroids and derivatives | |||||||
40 | (3β,20R,22E,24S)-Stigmasta-5,22-dien-3-ol | 394.36 | 395.36723 | C29H46 | 17.518 | 6.6 | 5.99 × 104 |
32 | 7-Dehydrocholesteryl acetate | 426.35 | 427.35706 | C29H46O2 | 15.739 | 3.8 | 5.66 × 104 |
39 | (3β)-3-Hydroxystigmast-5-en-7-one | 428.365 | 429.37271 | C29H48O2 | 17.381 | 2.0 | 9.12 × 103 |
ESI+ | ESI− | ||||
---|---|---|---|---|---|
Time (min) | A (%) | B (%) | Time (min) | A (%) | B (%) |
0.0 | 98 | 2 | 0.0 | 100 | 0 |
0.6 | 98 | 2 | 2.0 | 95 | 5 |
18.5 | 0 | 100 | 25.0 | 55 | 45 |
25.0 | 0 | 100 | 30.0 | 0 | 100 |
35.0 | 0 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutavski, Z.; Jerković, I.; Nikolić, N.Ć.; Radman, S.; Flanjak, I.; Aladić, K.; Šubarić, D.; Vulić, J.; Jokić, S. Comprehensive Phytochemical Profiling of Ulva lactuca from the Adriatic Sea. Int. J. Mol. Sci. 2024, 25, 11711. https://doi.org/10.3390/ijms252111711
Mutavski Z, Jerković I, Nikolić NĆ, Radman S, Flanjak I, Aladić K, Šubarić D, Vulić J, Jokić S. Comprehensive Phytochemical Profiling of Ulva lactuca from the Adriatic Sea. International Journal of Molecular Sciences. 2024; 25(21):11711. https://doi.org/10.3390/ijms252111711
Chicago/Turabian StyleMutavski, Zorana, Igor Jerković, Nada Ćujić Nikolić, Sanja Radman, Ivana Flanjak, Krunoslav Aladić, Drago Šubarić, Jelena Vulić, and Stela Jokić. 2024. "Comprehensive Phytochemical Profiling of Ulva lactuca from the Adriatic Sea" International Journal of Molecular Sciences 25, no. 21: 11711. https://doi.org/10.3390/ijms252111711
APA StyleMutavski, Z., Jerković, I., Nikolić, N. Ć., Radman, S., Flanjak, I., Aladić, K., Šubarić, D., Vulić, J., & Jokić, S. (2024). Comprehensive Phytochemical Profiling of Ulva lactuca from the Adriatic Sea. International Journal of Molecular Sciences, 25(21), 11711. https://doi.org/10.3390/ijms252111711