Association of 25(OH)-Vitamin D3 Serum Concentrations and Vitamin D Receptor Gene Variants with the Risk of Idiopathic Spontaneous Preterm Birth in the Croatian Population
Abstract
1. Introduction
2. Results
2.1. Epidemiological Data
2.2. Genetic Association Study
2.3. Biochemical Study
2.4. Associations Between VDR SNPs and 25(OH)-Vitamin D3 Serum Concentrations
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Sample Collection
4.3. Genetic Association Study
4.4. Biochemical Analysis of Serum 25(OH)-Vitamin D3 Concentration
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vogel, J.P.; Chawanpaiboon, S.; Moller, A.B.; Watananirun, K.; Bonet, M.; Lumbiganon, P. The global epidemiology of preterm birth. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 52, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Menon, R. Spontaneous preterm birth, a clinical dilemma: Etiologic, pathophysiologic and genetic heterogeneities and racial disparity. Acta Obstet. Gynecol. Scand. 2008, 87, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Anum, E.A.; Springel, E.H.; Shriver, M.D.; Strauss, J.F. Genetic contributions to disparities in preterm birth. Pediatr. Res. 2009, 65, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Crider, K.S.; Whitehead, N.; Buus, R.M. Genetic variation associated with preterm birth: A HuGE review. Genet. Med. 2005, 7, 593–604. [Google Scholar] [CrossRef]
- Esplin, M.S. Overview of spontaneous preterm birth: A complex and multifactorial phenotype. Clin. Obstet. Gynecol. 2014, 57, 518–530. [Google Scholar] [CrossRef]
- Porter, T.F.; Fraser, A.M.; Hunter, C.Y.; Ward, R.H.; Varner, M.W. The risk of preterm birth across generations. Obstet. Gynecol. 1997, 90, 63–67. [Google Scholar] [CrossRef]
- Holick, M.F.; Chen, T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008, 87, 1080S–1086S. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Tuo, L.; Zhai, Q.; Cui, J.; Chen, D.; Xu, D. Relationship between Maternal Vitamin D Levels and Adverse Outcomes. Nutrients 2022, 14, 4230. [Google Scholar] [CrossRef]
- Shibata, M.; Suzuki, A.; Sekiya, T.; Sekiguchi, S.; Asano, S.; Udagawa, Y.; Itoh, M.J. High prevalence of hypovitaminosis D in pregnant Japanese women with threatened premature delivery. Bone Miner. Metab. 2011, 29, 615–620. [Google Scholar] [CrossRef]
- Hollis, B.W.; Wagner, C.L. Vitamin D and pregnancy: Skeletal effects, nonskeletal effects, and birth outcomes. Calcif. Tissue Int. 2013, 92, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Palacios, C.; De-Regil, L.M.; Lombardo, L.K.; Peña-Rosas, J.P. Vitamin D supplementation during pregnancy: Updated meta-analysis on maternal outcomes. J. Steroid Biochem. Mol. Biol. 2016, 164, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Amegah, A.K.; Klevor, M.K.; Wagner, C.L. Maternal vitamin D insufficiency and risk of adverse pregnancy and birth outcomes: A systematic review and meta-analysis of longitudinal studies. PLoS ONE 2017, 12, e0173605. [Google Scholar] [CrossRef] [PubMed]
- Hossein-nezhad, A.; Holick, M.F. Vitamin D for health: A global perspective. Mayo Clin. Proc. 2013, 88, 720–755. [Google Scholar] [CrossRef] [PubMed]
- Gil, Á.; Plaza-Diaz, J.; Mesa, M.D. Vitamin D: Classic and Novel Actions. Ann. Nutr. Metab. 2018, 72, 87–95. [Google Scholar] [CrossRef]
- Dawson-Hughes, B.; Heaney, R.P.; Holick, M.F.; Lips, P.; Meunier, P.J.; Vieth, R. Estimates of optimal vitamin D status. Osteoporos. Int. 2005, 16, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Kassai, M.S.; Cafeo, F.R.; Affonso-Kaufman, F.A.; Suano-Souza, F.I.; Sarni, R.O.S. Vitamin D plasma concentrations in pregnant women and their preterm newborns. BMC Pregnancy Childbirth 2018, 18, 412. [Google Scholar] [CrossRef]
- Qin, L.L.; Lu, F.G.; Yang, S.H.; Xu, H.L.; Luo, B.A. Does Maternal Vitamin D Deficiency Increase the Risk of Preterm Birth: A Meta-Analysis of Observational Studies. Nutrients 2016, 8, 301. [Google Scholar] [CrossRef]
- Zhou, S.S.; Tao, Y.H.; Huang, K.; Zhu, B.B.; Tao, F.B. Vitamin D and risk of preterm birth: Up-to-date meta-analysis of randomized controlled trials and observational studies. J. Obstet. Gynaecol. Res. 2017, 43, 247–256. [Google Scholar] [CrossRef]
- Kiely, M.; Hemmingway, A.; O’Callaghan, K.M. Vitamin D in pregnancy: Current perspectives and future directions. Ther. Adv. Musculoskelet. Dis. 2017, 9, 145–154. [Google Scholar] [CrossRef]
- Uitterlinden, A.G.; Fang, Y.; Van Meurs, J.B.; Pols, H.A.; Van Leeuwen, J.P. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004, 338, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Manzon, L.; Altarescu, G.; Tevet, A.; Schimell, M.S.; Elstain, D.; Samueloff, A.; Grisaru-Granovsky, S. Vitamin D receptor polymorphism FokI is associated with spontaneous idiopathic preterm birth in an Israeli population. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 177, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Barchitta, M.; Maugeri, A.; La Rosa, M.C. Single Nucleotide Polymorphisms in Vitamin D Receptor Gene Affect Birth Weight and the Risk of Preterm Birth: Results From the “Mamma &Bambino” Cohort and A Meta-Analysis. Nutrients 2018, 10, 1172. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Shen, X.Y.; Zhu, B.P.; Pan, S.L. Relationship between vitamin D receptor gene polymorphism and preterm birth. Nan Fang. Yi Ke Da XueXueBao 2016, 36, 1276–1280. [Google Scholar]
- Javorski, N.; Lima, C.A.D.; Silva, L.V.C.; Crovella, S.; de Azêvedo Silva, J. Vitamin D receptor (VDR) polymorphisms are associated to spontaneous preterm birth and maternal aspects. Gene 2018, 642, 58–63. [Google Scholar] [CrossRef]
- Baczyńska-Strzecha, M.; Kalinka, J. Influence of Apa1 (rs7975232), Taq1 (rs731236) and Bsm1 (rs154410) polymorphisms of vitamin D receptor on preterm birth risk in the Polish population. Ginekol. Pol. 2016, 87, 763–768. [Google Scholar] [CrossRef]
- Rosenfeld, T.; Salem, H.; Altarescu, G.; Grisaru-Granovsky, S.; Tevet, A.; Birk, R. Maternal-fetal vitamin D receptor polymorphisms significantly associated with preterm birth. Arch. Gynecol. Obstet. 2017, 296, 215–222. [Google Scholar] [CrossRef]
- Dutra, L.V.; Affonso-Kaufman, F.A.; Cafeo, F.R.; Kassai, M.S.; Barbosa, C.P.; Santos Figueiredo, F.W.; Suano-Souza, F.I.; Bianco, B. Association between vitamin D plasma concentrations and VDR gene variants and the risk of premature birth. BMC Pregnancy Childbirth 2019, 20, 3. [Google Scholar] [CrossRef]
- Salle, B.L.; Delvin, E.E.; Lapillonne, A.; Bishop, N.J.; Glorieux, F.H. Perinatal metabolism of vitamin D. Am. J. Clin. Nutr. 2000, 71, 1317S–1324S. [Google Scholar] [CrossRef]
- Liu, N.Q.; Hewison, M. Vitamin D, the placenta and pregnancy. Arch. Biochem. Biophys. 2012, 523, 37–47. [Google Scholar] [CrossRef]
- Møller, U.K.; Streym, S.; Mosekilde, L.; Heickendorff, L.; Flyvbjerg, A.; Frystyk, J.; Jensen, L.T.; Rejnmark, L. Changes in calcitropic hormones, bone markers and insulin-like growth factor I (IGF-I) during pregnancy and postpartum: A controlled cohort study. Osteoporos. Int. 2013, 24, 1307–1320. [Google Scholar] [CrossRef] [PubMed]
- Lian, R.H.; Qi, P.A.; Yuan, T.; Yan, P.J.; Qiu, W.W.; Wei, Y.; Hu, Y.G.; Yang, K.H.; Yi, B. Systematic review and meta-analysis of vitamin D deficiency in different pregnancy on preterm birth: Deficiency in middle pregnancy might be at risk. Medicine 2021, 100, e26303. [Google Scholar] [CrossRef] [PubMed]
- Murthi, P.; Yong, H.E.; Ngyuen, T.P.; Ellery, S.; Singh, H.; Rahman, R.; Dickinson, H.; Walker, D.W.; Davies-Tuck, M.; Wallace, E.M.; et al. Role of the Placental Vitamin D Receptor in Modulating Feto-Placental Growth in Fetal Growth Restriction and Preeclampsia-Affected Pregnancies. Front. Physiol. 2016, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.P.; Yong, H.E.; Chollangi, T.; Borg, A.J.; Brennecke, S.P.; Murthi, P. Placental vitamin D receptor expression is decreased in human idiopathic fetal growth restriction. J. Mol. Med. 2015, 93, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Serrano, D.; Gnagnarella, P.; Raimondi, S.; Gandini, S. Meta-analysis on vitamin D receptor and cancer risk: Focus on the role of TaqI, ApaI and Cdx2 polymorphisms. Eur. J. Cancer Prev. 2016, 25, 85–96. [Google Scholar] [CrossRef]
- Vladoiu, S.; Botezatu, A.; Anton, G.; Manda, D.; Paun, D.L.; Oros, S.; Rosca, R.; Dinu Draganescu, D. The involvement of vdr promoter methylation, cdx-2 vdr polymorphism and vitamin D levels in male infertility. Acta Endocrinol. 2017, 13, 294–301. [Google Scholar] [CrossRef]
- AbdElneam, A.I.; Al-Dhubaibi, M.S.; Bahaj, S.S.; Arshad, M.; Mohammed, G.F.; Atef, L.M. The CDX2 G allele and the FoKI F allele of the VDR gene are more prevalent and related to changes in vitamin D levels in patients with psoriasis vulgaris: A pilot study. Skin Res. Technol. 2023, 29, e13530. [Google Scholar] [CrossRef]
- Torkko, K.C.; van Bokhoven, A.; Mai, P.; Beuten, J.; Balic, I.; Byers, T.E.; Hokanson, J.E.; Norris, J.M.; Barón, A.E.; Lucia, M.S.; et al. VDR and SRD5A2 polymorphisms combine to increase risk for prostate cancer in both non-Hispanic White and Hispanic White men. Clin. Cancer Res. 2008, 14, 3223–3229. [Google Scholar] [CrossRef]
- Iqbal, M.U.; Khan, T.A.; Maqbool, S.A. Vitamin D receptor Cdx-2 polymorphism and premenopausal breast cancer risk in southern Pakistani patients. PLoS ONE 2015, 10, e0122657. [Google Scholar] [CrossRef]
- Rehman, M.; Mahboob, T.; Shahid, S.M. Possible association of Vitamin D receptor, caudal-related homeobox 2 polymorphism with the risk of cancer. Int. J. Health Sci. 2021, 15, 9–13. [Google Scholar]
- Arai, H.; Miyamoto, K.I.; Yoshida, M.; Yamamoto, H.; Taketani, Y.; Morita, K.; Kubota, M.; Yoshida, S.; Ikeda, M.; Watabe, F.; et al. The polymorphism in the caudal-related homeodomain protein Cdx-2 binding element in the human vitamin D receptor gene. J. Bone Miner. Res. 2001, 16, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Gwenzi, T.; Schrotz-King, P.; Schöttker, B.; Hoffmeister, M.; Brenner, H. Vitamin D Status, Cdx2 Genotype, and Colorectal Cancer Survival: Population-Based Patient Cohort. Nutrients 2023, 15, 2717. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, M.; Galicka, A.; Milewski, R.; Popko, J.; Badmaev, V.; Stohs, S.J. Association between Vitamin D Receptor Polymorphism and Serum Vitamin D Levels in Children with Low-Energy Fractures. J. Am. Coll. Nutr. 2017, 36, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Shi, Q.; Yang, L.; Li, X.; Liu, L.; Wang, L.; Li, Q.; Wang, G.; Li, C.Y.; Gao, T.W. The association of vitamin D receptor gene polymorphisms and serum 25-hydroxyvitamin D levels with generalized vitiligo. Br. J. Dermatol. 2012, 167, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liu, Y.; Guan, Y.; Zhan, X.; Xiao, Z.; Jiang, H.; Wei, Q. Vitamin D Receptor gene polymorphisms and plasma levels are associated with lumbar disc degeneration. Sci. Rep. 2019, 9, 7829. [Google Scholar] [CrossRef]
- Coşkun, S.; Şimşek, Ş.; Camkurt, M.A.; Çim, A.; Çelik, S.B. Association of polymorphisms in the vitamin D receptor gene and serum 25-hydroxyvitamin D levels in children with autism spectrum disorder. Gene 2016, 588, 109–114. [Google Scholar] [CrossRef]
- Hajj, A.; Chedid, R.; Chouery, E.; Megarbané, A.; Gannagé-Yared, M.H. Relationship between vitamin D receptor gene polymorphisms, cardiovascular risk factors and adiponectin in a healthy young population. Pharmacogenomics 2016, 17, 1675–1686. [Google Scholar] [CrossRef]
Women | Descriptor | ISPTB Group N = 44 | Control Group N = 44 | p-Value |
---|---|---|---|---|
Years of age | mean (range) | 31.5 (17–43) | 31.0 (20–42) | 0.694 * |
Pre-pregnancy BMI (kg/m2) | 23.9 (18.4–36.4) | 22.4 (18.4–31.9) | 0.050 * | |
Number of deliveries | median (IQR) | 2 (1–2) | 2 (1–2) | 0.531 ** |
Alcohol use | N (%) | 0 (0.0) | 0 (0.0) | - |
Tobacco use | 6 (13.6) | 11 (25.0) | 0.179 *** | |
Vitamin D supplementation | 26 (59.1) | 30 (68.2) | - | |
Previous PTB | 4 (9.1) | 0 (0.0) | - | |
PTB in family | 10 (22.7) | 0 (0.0) | - | |
Newborns | ||||
Gender Male Female | N (%) | 27 (61.4) 17 (38.6) | 16 (36.4) 28 (63.6) | 0.020 *** |
Gestational Age (Weeks) | median (IQR) | 35 (33–36) | 40 (38–40) | p < 0.001 ** |
Birth weight (Grams) | mean (range) | 2593.9 (860.0–3400.0) | 3565.2 (2750.0–4510.0) | p < 0.001 * |
Birth length (Centimetres) | median (IQR) | 46.5 (33–52) | 51.3 (47–57) | p < 0.001 ** |
VDR Genotype/Allele | Women with ISPTB N (%) | Control Women N (%) | Chi-Square; p-Value | ISPTB Newborns | Control Newborns | Chi-Square; p-Value |
---|---|---|---|---|---|---|
FokI | ||||||
CC | 17 (38.6%) | 14 (31.8%) | 2.71; 0.258 | 18 (40.9%) | 13 (29.5%) | 2.28; 0.319 |
CT | 19 (43.2%) | 26 (59.1%) | 16 (36.4%) | 23 (52.3%) | ||
TT | 8 (18.2%) | 4 (9.1%) | 10 (22.7%) | 8 (18.2%) | ||
C | 53 (60.2%) | 54 (61.4%) | 0.02; 0.877 | 52 (59.1%) | 49 (55.7%) | 0.21; 0.647 |
T | 35 (39.8%) | 34 (38.6%) | 36 (40.9%) | 39 (44.3%) | ||
ApaI | ||||||
GG | 9 (20.5%) | 2 (4.5%) | 5.09; 0.784 | 9 (20.5%) | 11 (25.0%) | 1.17; 0.558 |
TG | 26 (59.0%) | 31 (70.5%) | 21 (47.7%) | 16 (36.4%) | ||
TT | 9 (20.5%) | 11 (25.0%) | 14 (31.8%) | 17 (38.6%) | ||
G | 44 (50.0%) | 35 (39.8%) | 1.86; 0.173 | 39 (44.3%) | 38 (43.2%) | 0.02; 0.879 |
T | 44 (50.0%) | 53 (60.2%) | 49 (55.7%) | 50 (56.8%) | ||
Cdx2 | ||||||
AA | 5 (11.3%) | 8 (18.2%) | 1.36; 0.507 | 0 (0.0%) | 10 (22.7%) | 17.01; <0.001 |
AG | 12 (27.3%) | 14 (31.8%) | 19 (43.2%) | 24 (54.6%) | ||
GG | 27 (61.4%) | 22 (50.0%) | 25 (56.8%) | 10 (22.7%) | ||
A | 22 (25.0%) | 30 (34.1%) | 1.75; 0.186 | 19 (21.6%) | 44 (50.0%) | 15.45; <0.001 |
G | 66 (75.0%) | 58 (65.9%) | 69 (78.4%) | 44 (50.0%) |
ISPTB Group (Mean ± SD) | Control Group (Mean ± SD) | p-Value * | |
---|---|---|---|
Women | 90.38 ± 41.75 | 82.36 ± 43.92 | 0.383 |
Newborns | 48.31 ± 24.82 | 55.59 ± 30.32 | 0.221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gašparović Krpina, M.; Dević Pavlić, S.; Mladenić, T.; Aralica, M.; Barišić, A.; Brnčić-Fischer, A.; Ostojić, S.; Pereza, N. Association of 25(OH)-Vitamin D3 Serum Concentrations and Vitamin D Receptor Gene Variants with the Risk of Idiopathic Spontaneous Preterm Birth in the Croatian Population. Int. J. Mol. Sci. 2024, 25, 11712. https://doi.org/10.3390/ijms252111712
Gašparović Krpina M, Dević Pavlić S, Mladenić T, Aralica M, Barišić A, Brnčić-Fischer A, Ostojić S, Pereza N. Association of 25(OH)-Vitamin D3 Serum Concentrations and Vitamin D Receptor Gene Variants with the Risk of Idiopathic Spontaneous Preterm Birth in the Croatian Population. International Journal of Molecular Sciences. 2024; 25(21):11712. https://doi.org/10.3390/ijms252111712
Chicago/Turabian StyleGašparović Krpina, Milena, Sanja Dević Pavlić, Tea Mladenić, Merica Aralica, Anita Barišić, Alemka Brnčić-Fischer, Saša Ostojić, and Nina Pereza. 2024. "Association of 25(OH)-Vitamin D3 Serum Concentrations and Vitamin D Receptor Gene Variants with the Risk of Idiopathic Spontaneous Preterm Birth in the Croatian Population" International Journal of Molecular Sciences 25, no. 21: 11712. https://doi.org/10.3390/ijms252111712
APA StyleGašparović Krpina, M., Dević Pavlić, S., Mladenić, T., Aralica, M., Barišić, A., Brnčić-Fischer, A., Ostojić, S., & Pereza, N. (2024). Association of 25(OH)-Vitamin D3 Serum Concentrations and Vitamin D Receptor Gene Variants with the Risk of Idiopathic Spontaneous Preterm Birth in the Croatian Population. International Journal of Molecular Sciences, 25(21), 11712. https://doi.org/10.3390/ijms252111712