Effects of Glutamine, Curcumin and Fish Bioactive Peptides Alone or in Combination on Intestinal Permeability in a Chronic-Restraint Stress Model
Abstract
:1. Introduction
2. Results
2.1. Response to Stress
2.1.1. Acute-Restraint Stress Model
2.1.2. Chronic-Restraint Stress Model
2.2. Evaluation of Plasma Corticosterone and Intestinal Permeability in Treated and Stressed Mice
2.3. Evaluation of Inflammation-Related Gene Expression in the Colonic Mucosa of Treated Stressed Mice
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Chronic-Restraint Stress (CRS)
4.3. Treatments
4.4. Euthanasia and Sampling
4.5. Colonic Permeability in Ussing Chambers
4.6. RT-qPCR
4.7. Corticosterone Assay
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Canavan, C.; West, J.; Card, T. The Epidemiology of Irritable Bowel Syndrome. Clin. Epidemiol. 2014, 6, 71–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Pluart, D.; Sabaté, J.-M.; Bouchoucha, M.; Hercberg, S.; Benamouzig, R.; Julia, C. Functional Gastrointestinal Disorders in 35,447 Adults and Their Association with Body Mass Index. Aliment. Pharmacol. Ther. 2015, 41, 758–767. [Google Scholar] [CrossRef]
- Kopczyńska, M.; Mokros, Ł.; Pietras, T.; Małecka-Panas, E. Quality of Life and Depression in Patients with Irritable Bowel Syndrome. Przeglad Gastroenterol. 2018, 13, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Talley, N.J.; Zinsmeister, A.R.; Melton, L.J. Irritable Bowel Syndrome in a Community: Symptom Subgroups, Risk Factors, and Health Care Utilization. Am. J. Epidemiol. 1995, 142, 76–83. [Google Scholar] [CrossRef]
- Longstreth, G.F. Irritable Bowel Syndrome: A Multibillion-Dollar Problem. Gastroenterology 1995, 109, 2029–2031. [Google Scholar] [CrossRef]
- Spiller, R.C.; Jenkins, D.; Thornley, J.P.; Hebden, J.M.; Wright, T.; Skinner, M.; Neal, K.R. Increased Rectal Mucosal Enteroendocrine Cells, T Lymphocytes, and Increased Gut Permeability Following Acute Campylobacter Enteritis and in Post-Dysenteric Irritable Bowel Syndrome. Gut 2000, 47, 804–811. [Google Scholar] [CrossRef]
- Coëffier, M.; Gloro, R.; Boukhettala, N.; Aziz, M.; Lecleire, S.; Vandaele, N.; Antonietti, M.; Savoye, G.; Bôle-Feysot, C.; Déchelotte, P.; et al. Increased Proteasome-Mediated Degradation of Occludin in Irritable Bowel Syndrome. Am. J. Gastroenterol. 2010, 105, 1181–1188. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, B.; Verne, G.N. Intestinal Membrane Permeability and Hypersensitivity in the Irritable Bowel Syndrome. Pain 2009, 146, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Bertiaux-Vandaële, N.; Youmba, S.B.; Belmonte, L.; Lecleire, S.; Antonietti, M.; Gourcerol, G.; Leroi, A.-M.; Déchelotte, P.; Ménard, J.-F.; Ducrotté, P.; et al. The Expression and the Cellular Distribution of the Tight Junction Proteins Are Altered in Irritable Bowel Syndrome Patients with Differences According to the Disease Subtype. Am. J. Gastroenterol. 2011, 106, 2165–2173. [Google Scholar] [CrossRef]
- Collins, S.M.; Denou, E.; Verdu, E.F.; Bercik, P. The Putative Role of the Intestinal Microbiota in the Irritable Bowel Syndrome. Dig. Liver Dis. 2009, 41, 850–853. [Google Scholar] [CrossRef]
- De Palma, G.; Lynch, M.D.J.; Lu, J.; Dang, V.T.; Deng, Y.; Jury, J.; Umeh, G.; Miranda, P.M.; Pigrau Pastor, M.; Sidani, S.; et al. Transplantation of Fecal Microbiota from Patients with Irritable Bowel Syndrome Alters Gut Function and Behavior in Recipient Mice. Sci. Transl. Med. 2017, 9, eaaf6397. [Google Scholar] [CrossRef]
- Walter, S.A.; Aardal-Eriksson, E.; Thorell, L.H.; Bodemar, G.; Hallböök, O. Pre-Experimental Stress in Patients with Irritable Bowel Syndrome: High Cortisol Values Already before Symptom Provocation with Rectal Distensions. Neurogastroenterol. Motil. 2006, 18, 1069–1077. [Google Scholar] [CrossRef]
- Vanuytsel, T.; van Wanrooy, S.; Vanheel, H.; Vanormelingen, C.; Verschueren, S.; Houben, E.; Salim Rasoel, S.; Tόth, J.; Holvoet, L.; Farré, R.; et al. Psychological Stress and Corticotropin-Releasing Hormone Increase Intestinal Permeability in Humans by a Mast Cell-Dependent Mechanism. Gut 2014, 63, 1293–1299. [Google Scholar] [CrossRef]
- Ghouzali, I.; Lemaitre, C.; Bahlouli, W.; Azhar, S.; Bôle-Feysot, C.; Meleine, M.; Ducrotté, P.; Déchelotte, P.; Coëffier, M. Targeting Immunoproteasome and Glutamine Supplementation Prevent Intestinal Hyperpermeability. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 3278–3288. [Google Scholar] [CrossRef]
- Barreau, F.; Cartier, C.; Leveque, M.; Ferrier, L.; Moriez, R.; Laroute, V.; Rosztoczy, A.; Fioramonti, J.; Bueno, L. Pathways Involved in Gut Mucosal Barrier Dysfunction Induced in Adult Rats by Maternal Deprivation: Corticotrophin-Releasing Factor and Nerve Growth Factor Interplay. J. Physiol. 2007, 580, 347–356. [Google Scholar] [CrossRef]
- L’Huillier, C.; Jarbeau, M.; Achamrah, N.; Belmonte, L.; Amamou, A.; Nobis, S.; Goichon, A.; Salameh, E.; Bahlouli, W.; do Rego, J.-L.; et al. Glutamine, but Not Branched-Chain Amino Acids, Restores Intestinal Barrier Function during Activity-Based Anorexia. Nutrients 2019, 11, 1348. [Google Scholar] [CrossRef] [Green Version]
- Achamrah, N.; Déchelotte, P.; Coëffier, M. Glutamine and the Regulation of Intestinal Permeability: From Bench to Bedside. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 86–91. [Google Scholar] [CrossRef]
- Zhou, Q.; Costinean, S.; Croce, C.M.; Brasier, A.R.; Merwat, S.; Larson, S.A.; Basra, S.; Verne, G.N. MicroRNA 29 Targets Nuclear Factor-ΚB–Repressing Factor and Claudin 1 to Increase Intestinal Permeability. Gastroenterology 2015, 148, 158–169.e8. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Verne, M.L.; Fields, J.Z.; Lefante, J.J.; Basra, S.; Salameh, H.; Verne, G.N. Randomised Placebo-Controlled Trial of Dietary Glutamine Supplements for Postinfectious Irritable Bowel Syndrome. Gut 2019, 68, 996–1002. [Google Scholar] [CrossRef]
- Lubbad, A.; Oriowo, M.A.; Khan, I. Curcumin Attenuates Inflammation through Inhibition of TLR-4 Receptor in Experimental Colitis. Mol. Cell. Biochem. 2009, 322, 127–135. [Google Scholar] [CrossRef]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Venkatanarayanan, N.; Lim, D.Y.; Yeo, W.-S. A Meta-Analysis of the Clinical Use of Curcumin for Irritable Bowel Syndrome (IBS). J. Clin. Med. 2018, 7, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freret, T.; Largilliere, S.; Nee, G.; Coolzaet, M.; Corvaisier, S.; Boulouard, M. Fast Anxiolytic-Like Effect Observed in the Rat Conditioned Defensive Burying Test, after a Single Oral Dose of Natural Protein Extract Products. Nutrients 2021, 13, 2445. [Google Scholar] [CrossRef] [PubMed]
- Bernet, F.; Montel, V.; Noël, B.; Dupouy, J.P. Diazepam-like Effects of a Fish Protein Hydrolysate (Gabolysat PC60) on Stress Responsiveness of the Rat Pituitary-Adrenal System and Sympathoadrenal Activity. Psychopharmacology 2000, 149, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Oddoux, S.; Violette, P.; Cornet, J.; Akkoyun-Farinez, J.; Besnier, M.; Noël, A.; Rouillon, F. Effect of a Dietary Supplement Combining Bioactive Peptides and Magnesium on Adjustment Disorder with Anxiety: A Clinical Trial in General Practice. Nutrients 2022, 14, 2425. [Google Scholar] [CrossRef] [PubMed]
- Colomier, E.; Algera, J.; Melchior, C. Pharmacological Therapies and Their Clinical Targets in Irritable Bowel Syndrome with Diarrhea. Front. Pharmacol. 2020, 11, 629026. [Google Scholar] [CrossRef] [PubMed]
- Asfaha, S.; Dubeykovskiy, A.N.; Tomita, H.; Yang, X.; Stokes, S.; Shibata, W.; Friedman, A.N.; Ariyama, H.; Dubeykovskaya, Z.A.; Muthupalani, S.; et al. Mice that express human interleukin-8 have increased mobilization of immature myeloid cells, which exacerbates inflammation and accelerates colon carcinogenesis. Gastroenterology 2013, 144, 155–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hol, J.; Wilhelmsen, L.; Haraldsen, G. The murine IL-8 homologues KC, MIP-2, and LIX are found in endothelial cytoplasmic granules but not in Weibel-Palade bodies. J. Leukoc. Biol. 2010, 87, 501–508. [Google Scholar] [CrossRef]
- Larauche, M.; Moussaoui, N.; Biraud, M.; Bae, W.K.; Duboc, H.; Million, M.; Taché, Y. Brain Corticotropin-Releasing Factor Signaling: Involvement in Acute Stress-Induced Visceral Analgesia in Male Rats. Neurogastroenterol. Motil. 2019, 31, e13489. [Google Scholar] [CrossRef]
- Greenwood-Van Meerveld, B.; Johnson, A.C. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Front. Syst. Neurosci. 2017, 11, 86. [Google Scholar] [CrossRef] [Green Version]
- Saw, C.L.L.; Huang, Y.; Kong, A.-N. Synergistic Anti-Inflammatory Effects of Low Doses of Curcumin in Combination with Polyunsaturated Fatty Acids: Docosahexaenoic Acid or Eicosapentaenoic Acid. Biochem. Pharmacol. 2010, 79, 421–430. [Google Scholar] [CrossRef]
- Rastgoo, S.; Ebrahimi-Daryani, N.; Agah, S.; Karimi, S.; Taher, M.; Rashidkhani, B.; Hejazi, E.; Mohseni, F.; Ahmadzadeh, M.; Sadeghi, A.; et al. Glutamine Supplementation Enhances the Effects of a Low FODMAP Diet in Irritable Bowel Syndrome Management. Front. Nutr. 2021, 8, 1079. [Google Scholar] [CrossRef]
- Cao, W.; Wang, C.; Chin, Y.; Chen, X.; Gao, Y.; Yuan, S.; Xue, C.; Wang, Y.; Tang, Q. DHA-Phospholipids (DHA-PL) and EPA-Phospholipids (EPA-PL) Prevent Intestinal Dysfunction Induced by Chronic Stress. Food Funct. 2019, 10, 277–288. [Google Scholar] [CrossRef]
- Lobo de Sá, F.D.; Backert, S.; Nattramilarasu, P.K.; Mousavi, S.; Sandle, G.I.; Bereswill, S.; Heimesaat, M.M.; Schulzke, J.-D.; Bücker, R. Vitamin D Reverses Disruption of Gut Epithelial Barrier Function Caused by Campylobacter Jejuni. Int. J. Mol. Sci. 2021, 22, 8872. [Google Scholar] [CrossRef]
- Thomson, A.; Smart, K.; Somerville, M.S.; Lauder, S.N.; Appanna, G.; Horwood, J.; Sunder Raj, L.; Srivastava, B.; Durai, D.; Scurr, M.J.; et al. The Ussing Chamber System for Measuring Intestinal Permeability in Health and Disease. BMC Gastroenterol. 2019, 19, 98. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, A.J.; Rai, P.S.; Marchbank, T.; Taylor, G.W.; Ghosh, S.; Ritz, B.W.; Playford, R.J. Reparative Properties of a Commercial Fish Protein Hydrolysate Preparation. Gut 2005, 54, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Maity, C. Efficacy and Safety of Bacillus Coagulans LBSC in Irritable Bowel Syndrome: A Prospective, Interventional, Randomized, Double-Blind, Placebo-Controlled Clinical Study [CONSORT Compliant]. Medicine 2021, 100, e23641. [Google Scholar] [CrossRef]
- Sadrin, S.; Sennoune, S.; Gout, B.; Marque, S.; Moreau, J.; Zinoune, K.; Grillasca, J.-P.; Pons, O.; Maixent, J.-M. A 2-Strain Mixture of Lactobacillus Acidophilus in the Treatment of Irritable Bowel Syndrome: A Placebo-Controlled Randomized Clinical Trial. Dig. Liver Dis. 2020, 52, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Park, Y.J.; Lee, H.J.; Park, M.Y.; Kwon, O. Effect of Lactobacillus Gasseri BNR17 on Irritable Bowel Syndrome: A Randomized, Double-Blind, Placebo-Controlled, Dose-Finding Trial. Food Sci. Biotechnol. 2018, 27, 853–857. [Google Scholar] [CrossRef]
- Ait-Belgnaoui, A.; Payard, I.; Rolland, C.; Harkat, C.; Braniste, V.; Théodorou, V.; Tompkins, T.A. Bifidobacterium Longum and Lactobacillus Helveticus Synergistically Suppress Stress-Related Visceral Hypersensitivity through Hypothalamic-Pituitary-Adrenal Axis Modulation. J. Neurogastroenterol. Motil. 2018, 24, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Ligaarden, S.C.; Axelsson, L.; Naterstad, K.; Lydersen, S.; Farup, P.G. A Candidate Probiotic with Unfavourable Effects in Subjects with Irritable Bowel Syndrome: A Randomised Controlled Trial. BMC Gastroenterol. 2010, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; He, H.; Fan, L.; Ma, C.; Xu, Z.; Xue, Y.; Wang, Y.; Zhang, C.; Zhou, G. Blockade of CXCR2 Suppresses Proinflammatory Activities of Neutrophils in Ulcerative Colitis. Am. J. Transl. Res. 2020, 12, 5237–5251. [Google Scholar]
- Faucher, P.; Dries, A.; Mousset, P.Y.; Leboyer, M.; Dore, J.; Beracochea, D. Synergistic Effects of Lacticaseibacillus Rhamnosus GG, Glutamine, and Curcumin on Chronic Unpredictable Mild Stress-Induced Depression in a Mouse Model. Benef. Microbes 2022, 13, 253–264. [Google Scholar] [CrossRef]
- Moreno-Martínez, S.; Tendilla-Beltrán, H.; Sandoval, V.; Flores, G.; Terrón, J.A. Chronic Restraint Stress Induces Anxiety-like Behavior and Remodeling of Dendritic Spines in the Central Nucleus of the Amygdala. Behav. Brain Res. 2022, 416, 113523. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Parsons, N.; Kadyszewski, E.; Festing, M.F.W.; Cuthill, I.C.; Fry, D.; Hutton, J.; Altman, D.G. Survey of the Quality of Experimental Design, Statistical Analysis and Reporting of Research Using Animals. PLoS ONE 2009, 4, e7824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, L.; Zeng, K.; Shao, W.; Yang, B.B.; Fantus, I.G.; Weng, J.; Jin, T. Short-Term Curcumin Gavage Sensitizes Insulin Signaling in Dexamethasone-Treated C57BL/6 Mice. J. Nutr. 2015, 145, 2300–2307. [Google Scholar] [CrossRef] [Green Version]
- Nair, A.B.; Jacob, S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Coëffier, M.; Claeyssens, S.; Hecketsweiler, B.; Lavoinne, A.; Ducrotté, P.; Déchelotte, P. Enteral Glutamine Stimulates Protein Synthesis and Decreases Ubiquitin MRNA Level in Human Gut Mucosa. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 285, G266–G273. [Google Scholar] [CrossRef] [Green Version]
Gene | Forward or Reverse | Primer Sequence | Primer Length | Amplicon Length | GenBank Accession Nb |
---|---|---|---|---|---|
Claudin-1 | F | CTGGGTTTCATCCTGGCTTC | 20 | 443 | NM_016674 |
Claudin-1 | R | TTGATGGGGGTCAAGGGGTC | 20 | ||
Occludin | F | AGACTACACGACAGGTGGGG | 20 | 124 | NM_008756 |
Occludin | R | CTGCAGACCTGCATCAAAAT | 20 | ||
ZO-1 | F | GCAGACTTCTGGAGGTTTCG | 20 | 194 | NM_009386 |
ZO-1 | R | CTTGCCAACTTTTCTCTGGC | 20 | ||
TNFα | F | TGTCTACTCCTCAGAGCCCC | 20 | 166 | NM_013693 |
TNFα | R | TGAGTCCTTGATGGTGGTGC | 20 | ||
IL1β | F | CCCAAAAGATGAAGGGCTGC | 20 | 169 | NM_008361 |
IL1β | R | AAGGTCCACGGGAAAGACAC | 20 | ||
CXCL1 | F | ACTCAAGAATGGTCGCGAGG | 20 | 84 | NM_008176 |
CXCL1 | R | GGGACACCTTTTAGCATCTTTTGG | 24 | ||
IL10 | F | ACCTGGTAGAAGTGATGCCC | 20 | 153 | NM_010548 |
IL10 | R | GCTCCACTGCCTTGCTCTTAT | 21 | ||
GAPDH | F | CATCACTGCCACCCAGAAGA | 20 | 318 | NM_001289726 |
GAPDH | R | AAGTCGCAGGAGACAACCT | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langlois, L.D.; Oddoux, S.; Aublé, K.; Violette, P.; Déchelotte, P.; Noël, A.; Coëffier, M. Effects of Glutamine, Curcumin and Fish Bioactive Peptides Alone or in Combination on Intestinal Permeability in a Chronic-Restraint Stress Model. Int. J. Mol. Sci. 2023, 24, 7220. https://doi.org/10.3390/ijms24087220
Langlois LD, Oddoux S, Aublé K, Violette P, Déchelotte P, Noël A, Coëffier M. Effects of Glutamine, Curcumin and Fish Bioactive Peptides Alone or in Combination on Intestinal Permeability in a Chronic-Restraint Stress Model. International Journal of Molecular Sciences. 2023; 24(8):7220. https://doi.org/10.3390/ijms24087220
Chicago/Turabian StyleLanglois, Ludovic D., Sarah Oddoux, Kanhia Aublé, Paul Violette, Pierre Déchelotte, Antoine Noël, and Moïse Coëffier. 2023. "Effects of Glutamine, Curcumin and Fish Bioactive Peptides Alone or in Combination on Intestinal Permeability in a Chronic-Restraint Stress Model" International Journal of Molecular Sciences 24, no. 8: 7220. https://doi.org/10.3390/ijms24087220