Blast-Induced Neurotrauma Results in Spatially Distinct Gray Matter Alteration Alongside Hormonal Alteration: A Preliminary Investigation
Abstract
:1. Introduction
2. Results
2.1. Saliva Markers
2.2. Whole-Brain Voxel-Based Morphometry (VBM)
2.3. Brain Volume and Thickness Analyses
2.4. Correlations between Saliva Markers and Brain Volume & Thickness Measurements
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Historical BINT Exposure Assessment
4.3. Saliva Collection and Analysis
4.4. MRI Acquisition
4.5. Whole-Brain Voxel-Based Morphometry
4.6. Exploratory Subcortical Volume and Cortical Thickness Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cernak, I. Blast-Induced Neurotrauma. In Youmans and Winn Neurological Surgery; Winn, H.R., Ed.; Elsevier: Philadelphia, PA, USA, 2022; pp. 3113–3123. [Google Scholar]
- Cernak, I.; Noble-Haeusslein, L.J. Traumatic Brain Injury: An Overview of Pathobiology with Emphasis on Military Populations. J. Cereb. Blood Flow Metab. 2010, 30, 255. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855235/ (accessed on 13 May 2022). [CrossRef] [Green Version]
- Rosenfeld, J.V.; McFarlane, A.C.; Bragge, P.; Armonda, R.A.; Grimes, J.B.; Ling, G.S. Blast-related traumatic brain injury. Lancet Neurol. 2013, 12, 882–893. Available online: https://pubmed.ncbi.nlm.nih.gov/23884075/ (accessed on 13 May 2022). [CrossRef] [PubMed]
- Martin, E.M.; Lu, W.C.; Helmick, K.; French, L.; Warden, D.L. Traumatic Brain Injuries Sustained in the Afghanistan and Iraq Wars. Am. J. Nurs. 2008, 108, 40–47. Available online: https://pubmed.ncbi.nlm.nih.gov/18367927/ (accessed on 13 May 2022). [PubMed]
- Warden, D. Military TBI during the Iraq and Afghanistan Wars. J. Head Trauma Rehabil. 2006, 21, 398–402. Available online: https://pubmed.ncbi.nlm.nih.gov/16983225/ (accessed on 13 May 2022). [CrossRef] [Green Version]
- Swanson, T.M.; Isaacson, B.M.; Cyborski, C.M.; French, L.M.; Tsao, J.W.; Pasquina, P.F. Traumatic Brain Injury Incidence, Clinical Overview, and Policies in the US Military Health System Since 2000. Public Health Rep. 2017, 132, 251–259. Available online: https://pubmed.ncbi.nlm.nih.gov/28135424/ (accessed on 13 May 2022). [CrossRef] [Green Version]
- Cernak, I.; Savic, V.J.; Lazarov, A.; Joksimovic, M.; Markovic, S. Neuroendocrine responses following graded traumatic brain injury in male adults. Brain Inj. 1999, 13, 1005–1015. Available online: https://www.tandfonline.com/doi/abs/10.1080/026990599121016 (accessed on 22 May 2022). [PubMed]
- Mac Donald, C.L.; Johnson, A.M.; Wierzechowski, L.; Kassner, E.; Stewart, T.; Nelson, E.C.; Werner, N.J.; Zonies, D.; Oh, J.; Fang, R.; et al. Prospectively Assessed Clinical Outcomes in Concussive Blast vs Nonblast Traumatic Brain Injury among Evacuated US Military Personnel. JAMA Neurol. 2014, 71, 994–1002. Available online: https://pubmed.ncbi.nlm.nih.gov/24934200/ (accessed on 13 May 2022). [CrossRef] [Green Version]
- Ling, G.; Bandak, F.; Armonda, R.; Grant, G.; Ecklund, J. Explosive Blast Neurotrauma. J. Neurotrauma 2009, 26, 815–825. Available online: https://pubmed.ncbi.nlm.nih.gov/19397423/ (accessed on 13 May 2022). [CrossRef]
- Hicks, R.R.; Fertig, S.J.; Desrocher, R.E.; Koroshetz, W.J.; Pancrazio, J.J. Neurological Effects of Blast Injury. J. Trauma 2010, 68, 1257. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2958428/ (accessed on 13 May 2022). [CrossRef] [Green Version]
- Mac Donald, C.L.; Barber, J.; Johnson, A.; Patterson, J.; Temkin, N. Global Disability Trajectories Over the First Decade Following Combat Concussion. J. Head Trauma Rehabil. 2022, 37, 63–70. Available online: https://pubmed.ncbi.nlm.nih.gov/35258037/ (accessed on 13 May 2022). [CrossRef]
- Mu, W.; Catenaccio, E.; Lipton, M.L. Neuroimaging in Blast-Related Mild Traumatic Brain Injury. J. Head Trauma Rehabil. 2017, 32, 55–69. Available online: https://journals.lww.com/headtraumarehab/Fulltext/2017/01000/Neuroimaging_in_Blast_Related_Mild_Traumatic_Brain.6.aspx (accessed on 11 May 2022). [CrossRef]
- Clark, A.L.; Merritt, V.C.; Bigler, E.D.; Bangen, K.J.; Werhane, M.; Sorg, S.F.; Bondi, M.W.; Schiehser, D.M.; Delano-Wood, L. Blast-Exposed Veterans with Mild Traumatic Brain Injury Show Greater Frontal Cortical Thinning and Poorer Executive Functioning. Front. Neurol. 2018, 9, 873. [Google Scholar] [CrossRef]
- Eierud, C.; Nathan, D.E.; Bonavia, G.H.; Ollinger, J.; Riedy, G. Cortical Thinning in Military Blast Compared to Non-Blast Persistent Mild Traumatic Brain Injuries. NeuroImage Clin. 2019, 22, 101793. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446073/ (accessed on 11 May 2022).
- Lindemer, E.R.; Salat, D.H.; Leritz, E.C.; McGlinchey, R.E.; Milberg, W.P. Reduced Cortical Thickness with Increased Lifetime Burden of PTSD in OEF/OIF Veterans and the Impact of Comorbid TBI. NeuroImage Clin. 2013, 2, 601. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777819/ (accessed on 13 May 2022). [CrossRef] [Green Version]
- Martindale, S.L.; Shura, R.D.; Rostami, R.; Taber, K.H.; Rowland, J.A. Research Letter: Blast Exposure and Brain Volume. J. Head Trauma Rehabil. 2021, 36, 424–428. Available online: https://journals.lww.com/headtraumarehab/Fulltext/2021/11000/Research_Letter__Blast_Exposure_and_Brain_Volume.4.aspx (accessed on 11 May 2022). [CrossRef]
- Tate, D.F.; York, G.E.; Reid, M.W.; Cooper, D.B.; Jones, L.; Robin, D.A.; Kennedy, J.E.; Lewis, J. Preliminary findings of cortical thickness abnormalities in blast injured service members and their relationship to clinical findings. Brain Imaging Behav. 2013, 8, 102–109. Available online: https://link.springer.com/article/10.1007/s11682-013-9257-9 (accessed on 21 May 2022). [CrossRef] [Green Version]
- Vartanian, O.; Coady, L.; Blackler, K.; Fraser, B.; Cheung, B. Neuropsychological, Neurocognitive, Vestibular, and Neuroimaging Correlates of Exposure to Repetitive Low-Level Blast Waves: Evidence from Four Nonoverlapping Samples of Canadian Breachers. Mil. Med. 2021, 186, e393–e400. Available online: https://academic.oup.com/milmed/article/186/3-4/e393/5950401 (accessed on 11 May 2022). [CrossRef]
- Yurgelun-Todd, D.A.; Bueler, C.E.; McGlade, E.C.; Churchwell, J.C.; Brenner, L.A.; Lopez-Larson, M.P. Neuroimaging Correlates of Traumatic Brain Injury and Suicidal Behavior. J. Head Trauma Rehabil. 2011, 26, 276–289. Available online: https://pubmed.ncbi.nlm.nih.gov/21734511/ (accessed on 22 May 2022). [CrossRef]
- Chandra, N.; Sundaramurthy, A. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects Acute Pathophysiology of Blast Injury—From Biomechanics to Experiments and Computations: Implications on Head and Polytrauma. 2015. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26269922 (accessed on 17 July 2020).
- Michael, A.P.; Stout, J.; Roskos, P.T.; Bolzenius, J.; Gfeller, J.; Mogul, D.; Bucholz, R. Evaluation of Cortical Thickness after Traumatic Brain Injury in Military Veterans. J. Neurotrauma 2015, 32, 1751–1758. Available online: https://www.liebertpub.com/doi/full/10.1089/neu.2015.3918 (accessed on 22 May 2022). [CrossRef] [Green Version]
- Stone, J.R.; Avants, B.B.; Tustison, N.J.; Wassermann, E.M.; Gill, J.; Polejaeva, E.; Dell, K.C.; Carr, W.; Yarnell, A.M.; Lopresti, M.L.; et al. Functional and Structural Neuroimaging Correlates of Repetitive Low-Level Blast Exposure in Career Breachers. J. Neurotrauma 2020, 37, 2468–2481. Available online: https://www.liebertpub.com/doi/full/10.1089/neu.2020.7141 (accessed on 22 May 2022). [CrossRef]
- Newsome, M.R.; Wilde, E.A.; Bigler, E.D.; Liu, Q.; Mayer, A.R.; Taylor, B.A.; Steinberg, J.L.; Tate, D.F.; Abildskov, T.J.; Scheibel, R.S.; et al. Functional brain connectivity and cortical thickness in relation to chronic pain in post-911 veterans and service members with mTBI. Brain Inj. 2018, 32, 1236–1244. [Google Scholar] [CrossRef]
- Clausen, A.N.; Clarke, E.; Phillips, R.D.; Haswell, C.; VA Mid-Atlantic MIRECC Workgroup; Morey, R.A. Combat Exposure, Posttraumatic Stress Disorder, and Head Injuries Differentially Relate to Alterations in Cortical Thickness in Military Veterans. Neuropsychopharmacology 2020, 45, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Depue, B.E.; Olson-Madden, J.H.; Smolker, H.R.; Rajamani, M.; Brenner, L.A.; Banich, M. Reduced Amygdala Volume Is Associated with Deficits in Inhibitory Control: A Voxel- and Surface-Based Morphometric Analysis of Comorbid PTSD/Mild TBI. BioMed Res. Int. 2014, 2014, 691505. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958771/ (accessed on 22 May 2022). [CrossRef] [PubMed] [Green Version]
- Lopez-Larson, M.; King, J.B.; McGlade, E.; Bueler, E.; Stoeckel, A.; Epstein, D.J.; Yurgelun-Todd, D. Enlarged Thalamic Volumes and Increased Fractional Anisotropy in the Thalamic Radiations in Veterans with Suicide Behaviors. Front. Psychiatry 2013, 4, 83. Available online: https://pubmed.ncbi.nlm.nih.gov/23964245/ (accessed on 22 May 2022). [CrossRef] [Green Version]
- Song, H.; Konan, L.M.; Cui, J.; Johnson, C.E.; Langenderfer, M.; Grant, D.; Ndam, T.; Simonyi, A.; White, T.; Demirci, U.; et al. Ultrastructural brain abnormalities and associated behavioral changes in mice after low-intensity blast exposure. Behav. Brain Res. 2018, 347, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Gama Sosa, M.A.; De Gasperi, R.; Pryor, D.; Perez Garcia, G.S.; Perez, G.M.; Abutarboush, R.; Kawoos, U.; Hogg, S.; Ache, B.; Janssen, W.G.; et al. Low-Level Blast Exposure Induces Chronic Vascular Remodeling, Perivascular Astrocytic Degeneration and Vascular-Associated Neuroinflammation. Acta Neuropathol. Commun. 2021, 9, 167. Available online: https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-021-01269-5 (accessed on 26 May 2022). [CrossRef]
- Goldstein, L.E.; Fisher, A.M.; Tagge, C.A.; Zhang, X.L.; Velisek, L.; Sullivan, J.A.; Upreti, C.; Kracht, J.M.; Ericsson, M.; Wojnarowicz, M.W.; et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 2012, 4, 134ra60. [Google Scholar] [CrossRef] [Green Version]
- Corrigan, F.; Cernak, I.; McAteer, K.; Hellewell, S.C.; Rosenfeld, J.V.; Turner, R.J.; Vink, R. NK1 antagonists attenuate tau phosphorylation after blast and repeated concussive injury. Sci. Rep. 2012, 11, 8861. [Google Scholar] [CrossRef]
- Brenner, L.A.; Vanderploeg, R.D.; Terrio, H. Assessment and Diagnosis of Mild Traumatic Brain Injury, Posttraumatic Stress Disorder, and Other Polytrauma Conditions: Burden of Adversity Hypothesis. Rehabil. Psychol. 2009, 54, 239–246. Available online: https://psycnet.apa.org/record/2009-12547-001 (accessed on 13 May 2022). [CrossRef]
- Campbell, D.J.; Nobel, O.B.-Y. Occupational Stressors in Military Service: A Review and Framework. Mil. Psychol. 2009, 21, S47–S67. Available online: https://www.tandfonline.com/doi/abs/10.1080/08995600903249149 (accessed on 22 May 2022). [CrossRef]
- Martins, L.C.; Lopes, C.S. Lopes. Rank, Job Stress, Psychological Distress and Physical Activity among Military Personnel. BMC Public Health 2013, 13, 716. Available online: https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-13-716 (accessed on 13 May 2022). [CrossRef] [Green Version]
- Pflanz, S.; Sonnek, S. Work Stress in the Military: Prevalence, Causes, and Relationship to Emotional Health. Mil. Med. 2002, 167, 877–882. [Google Scholar] [CrossRef] [Green Version]
- Selye, H. Forty Years of Stress Research: Principal Remaining Problems and Misconceptions. Can. Med. Assoc. J. 1976, 115, 53–56. [Google Scholar]
- Ulrich-Lai, Y.; Herman, J. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009, 10, 397–409. Available online: https://www.nature.com/articles/nrn2647 (accessed on 22 May 2022).
- Tsigos, C.; Kyrou, I.; Kassi, E.; Chrousos, G.P. Stress: Endocrine Physiology and Pathophysiology. Endotext. 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK278995/ (accessed on 22 May 2022).
- Allison, P.; Mnatsakanova, A.; Fekedulegn, D.B.; Violanti, J.M.; Charles, L.E.; Hartley, T.A.; Andrew, M.E.; Miller, D.B. Association of Occupational Stress with Waking, Diurnal, and Bedtime Cortisol Response in Police Officers. Am. J. Hum. Biol. 2019, 31, e23296. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/ajhb.23296 (accessed on 22 May 2022). [CrossRef]
- Walvekar, S.S.; Ambekar, J.G.; Devaranavadagi, B.B. Devaranavadagi. Study on Serum Cortisol and Perceived Stress Scale in the Police Constables. J. Clin. Diagn. Res. JCDR 2015, 9, BC10. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378726/ (accessed on 22 May 2022).
- Roy, M.; Kirschbaum, C.; Steptoe, A. Intraindividual Variation in Recent Stress Exposure as a Moderator of Cortisol and Testosterone Levels. Ann. Behav. Med. 2003, 26, 194–200. Available online: https://academic.oup.com/abm/article/26/3/194/4631584 (accessed on 22 May 2022). [CrossRef]
- Theorell, T.; Karasek, R.A.; Eneroth, P. Job strain variations in relation to plasma testosterone fluctuations in working men—A longitudinal study. J. Intern. Med. 1990, 227, 31–36. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2796.1990.tb00115.x (accessed on 22 May 2022). [CrossRef]
- Taylor, M.K.; Carpenter, J.; Stone, M.; Hernandez, L.M.; Rauh, M.J.; Laurent, H.K.; Granger, D.A. Genetic and environmental modulation of neurotrophic and anabolic stress response: Counterbalancing forces. Physiol. Behav. 2015, 151, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gutshall, C.L.; Hampton, D.P., Jr.; Sebetan, I.M.; Stein, P.C.; Broxtermann, T.J. The Effects of Occupational Stress on Cognitive Performance in Police Officers. Police Pract. Res. 2017, 18, 463–477. [Google Scholar] [CrossRef]
- Carleton, R.N.; Afifi, T.O.; Turner, S.; Taillieu, T.; Duranceau, S.; LeBouthillier, D.M.; Sareen, J.; Ricciardelli, R.; Macphee, R.S.; Groll, D.; et al. Mental Disorder Symptoms among Public Safety Personnel in Canada. Can. J. Psychiatry 2018, 63, 54–64. Available online: https://pubmed.ncbi.nlm.nih.gov/28845686/ (accessed on 22 May 2022). [CrossRef] [PubMed] [Green Version]
- Doyle, J.N.; Campbell, M.A.; Gryshchuk, L. Occupational Stress and Anger: Mediating Effects of Resiliency in First Responders. J. Police Crim. Psychol. 2021, 36, 463–472. Available online: https://link.springer.com/article/10.1007/s11896-021-09429-y (accessed on 22 May 2022). [CrossRef] [PubMed]
- Savic, I. Structural Changes of the Brain in Relation to Occupational Stress. Cereb. Cortex 2015, 25, 1554–1564. Available online: https://academic.oup.com/cercor/article/25/6/1554/300206 (accessed on 22 May 2022). [CrossRef] [PubMed] [Green Version]
- Lee, D.; Kim, W.; Lee, J.E.; Lee, J.; Lee, S.K.; Chang, S.J.; Hyun, D.S.; Ryu, H.Y.; Kim, C.; Jung, Y.C. Regional Gray Matter Volume Related to High Occupational Stress in Firefighters. J. Korean Med. Sci. 2021, 36, e335. Available online: https://pubmed.ncbi.nlm.nih.gov/34962111/ (accessed on 21 May 2022). [CrossRef]
- Blix, E.; Perski, A.; Berglund, H.; Savić, I. Long-Term Occupational Stress Is Associated with Regional Reductions in Brain Tissue Volumes. PLoS ONE 2013, 8, e64065. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064065 (accessed on 21 May 2022). [CrossRef] [Green Version]
- Piasecka, M.; Papakokkinou, E.; Valassi, E.; Santos, A.; Webb, S.M.; de Vries, F.; Pereira, A.M.; Ragnarsson, O. Psychiatric and neurocognitive consequences of endogenous hypercortisolism. J. Intern. Med. 2020, 288, 168–182. [Google Scholar] [CrossRef]
- Kwon, S.K.; Kovesdi, E.; Gyorgy, A.B.; Wingo, D.; Kamnaksh, A.; Walker, J.; Long, J.B.; Agoston, D.V. Stress and Traumatic Brain Injury: A Behavioral, Proteomics, and Histological Study. Front. Neurol. MAR 2011, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, C.W.; Pagulayan, K.F.; Petrie, E.C.; Mayer, C.L.; Colasurdo, E.A.; Shofer, J.B.; Hart, K.L.; Hoff, D.; Tarabochia, M.A.; Peskind, E.R. High Prevalence of Chronic Pituitary and Target-Organ Hormone Abnormalities after Blast-Related Mild Traumatic Brain Injury. Front. Neurol. 2012, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Glenn, A.L.; Raine, A.; Schug, R.A.; Gao, Y.; Granger, D.A. Increased Testosterone to Cortisol Ratio in Psychopathy. J. Abnorm. Psychol. 2011, 120, 389. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166523/ (accessed on 26 May 2022). [CrossRef] [Green Version]
- Montoya, E.R.; Terburg, D.; Bos, P.A.; Van Honk, J. Testosterone, Cortisol, and Serotonin as Key Regulators of Social Aggression: A Review and Theoretical Perspective. Motiv. Emot. 2012, 36, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Terburg, D.; Morgan, B.; van Honk, J. The testosterone–cortisol ratio: A hormonal marker for proneness to social aggression. Int. J. Law Psychiatry 2009, 32, 216–223. Available online: https://pubmed.ncbi.nlm.nih.gov/19446881/ (accessed on 26 May 2022). [CrossRef]
- Dabbs, J.M.; Jurkovic, G.J.; Frady, R.L. Salivary Testosterone and Cortisol among Late Adolescent Male Offenders. J. Abnorm. Child Psychol. 1991, 19, 469–478. Available online: https://pubmed.ncbi.nlm.nih.gov/1757712/ (accessed on 26 May 2022). [CrossRef]
- Barel, E.; Shahrabani, S.; Tzischinsky, O. Sex Hormone/Cortisol Ratios Differentially Modulate Risk-Taking in Men and Women. Evol. Psychol. 2017, 15, 1. [Google Scholar] [CrossRef]
- Mehta, P.H.; Mor, S.; Yap, A.J.; Prasad, S. Dual-Hormone Changes Are Related to Bargaining Performance. Psychol. Sci. 2015, 26, 866–876. Available online: https://journals.sagepub.com/doi/10.1177/0956797615572905 (accessed on 26 May 2022). [CrossRef] [Green Version]
- Korpel, P.O.; Varkevisser, T.; Hoppenbrouwers, S.S.; Van Honk, J.; Geuze, E. The Predictive Value of Early-Life Trauma, Psychopathy, and theTestosterone–Cortisol Ratio for Impulsive Aggression Problems in veterans. Chronic Stress 2019, 3, 2470547019871901. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219916/ (accessed on 26 May 2022). [CrossRef] [Green Version]
- Mazur, A.; Booth, A. Testosterone Is Related to Deviance in Male Army Veterans, but Relationships Are Not Moderated by Cortisol. Biol. Psychol. 2014, 96, 72–76. [Google Scholar] [CrossRef]
- Smith, S.M.; Vale, W.W. The Role of the Hypothalamic-Pituitary-Adrenal Axis in Neuroendocrine Responses to Stress. Dialogues Clin. Neurosci. 2006, 8, 383. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181830/ (accessed on 26 May 2022). [CrossRef]
- Steudte-Schmiedgen, S.; Kirschbaum, C.; Alexander, N.; Stalder, T. An Integrative Model Linking Traumatization, Cortisol Dysregulation and Posttraumatic Stress Disorder: Insight from Recent Hair Cortisol Findings. Neurosci. Biobehav. Rev. 2016, 69, 124–135. Available online: https://pubmed.ncbi.nlm.nih.gov/27443960/ (accessed on 26 May 2022). [CrossRef]
- Hellewell, S.C.; Cernak, I. Measuring Resilience to Operational Stress in Canadian Armed Forces Personnel. J. Trauma. Stress 2018, 31, 89–101. [Google Scholar] [CrossRef]
- Steptoe, A.; Hamer, M.; Chida, Y. The Effects of Acute Psychological Stress on Circulating Inflammatory Factors in Humans: A Review and Meta-Analysis. Brain Behav. Immun. 2007, 21, 901–912. Available online: https://pubmed.ncbi.nlm.nih.gov/17475444/ (accessed on 26 May 2022). [CrossRef]
- Tsujita, S.; Morimoto, K. Secretory IgA in saliva can be a useful stress marker. Environ. Health Prev. Med. 1999, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mahayana, I.T.; Tcheang, L.; Chen, C.Y.; Juan, C.H.; Muggleton, N.G. The Precuneus and Visuospatial Attention in near and Far Space: A Transcranial Magnetic Stimulation Study. Brain Stimul. 2014, 7, 673–679. Available online: https://pubmed.ncbi.nlm.nih.gov/25112521/ (accessed on 26 May 2022). [CrossRef] [PubMed]
- Cavanna, A.E.; Trimble, M.R. The Precuneus: A Review of Its Functional Anatomy and Behavioural Correlates. Brain 2006, 129, 564–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, B.J.; Schmidt, D.; Mottaghy, F.M.; Taylor, J.; Halsband, U.; Herzog, H.; Tellmann, L.; Müller-Gärtner, H.W. Episodic retrieval activates the precuneus irrespective of the imagery content of word pair associates: A PET study. Brain 1999, 122, 255–263. Available online: https://academic.oup.com/brain/article/122/2/255/357454 (accessed on 26 May 2022). [CrossRef] [PubMed] [Green Version]
- Molnar-Szakacs, I.; Uddin, L.Q. Self-Processing and the Default Mode Network: Interactions with the Mirror Neuron System. Front. Hum. Neurosci. 2013, 7, 571. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Utevsky, A.V.; Huettel, S.A.; Braams, B.R.; Peters, S.; Crone, E.A.; van Duijvenvoorde, A.C. Developmental Maturation of the Precuneus as a Functional Core of the Default Mode Network. J. Cogn. Neurosci. 2019, 31, 1506–1519. Available online: https://direct.mit.edu/jocn/article/31/10/1506/95324/Developmental-Maturation-of-the-Precuneus-as-a (accessed on 26 May 2022). [CrossRef] [Green Version]
- Li, B.; Zhang, L.; Zhang, Y.; Chen, Y.; Peng, J.; Shao, Y.; Zhang, X. Decreased Functional Connectivity Between the Right Precuneus and Middle Frontal Gyrus Is Related to Attentional Decline Following Acute Sleep Deprivation. Front. Neurosci. 2020, 14, 1303. [Google Scholar] [CrossRef]
- Zhou, Y.; Kierans, A.; Kenul, D.; Ge, Y.; Rath, J.; Reaume, J.; Grossman, R.I.; Lui, Y.W. Mild Traumatic Brain Injury: Longitudinal Regional Brain Volume Changes. Radiology 2013, 267, 880–890. Available online: https://pubmed.ncbi.nlm.nih.gov/23481161/ (accessed on 17 May 2022). [CrossRef]
- Haldane, M.; Cunningham, G.; Androutsos, C.; Frangou, S. Structural Brain Correlates of Response Inhibition in Bipolar Disorder I. J. Psychopharmacol. 2008, 22, 138–143. [Google Scholar] [CrossRef]
- Palejwala, A.H.; Dadario, N.B.; Young, I.M.; O’Connor, K.; Briggs, R.G.; Conner, A.K.; O’Donoghue, D.L.; Sughrue, M.E. Anatomy and White Matter Connections of the Lingual Gyrus and Cuneus. World Neurosurg. 2021, 151, e426–e437. [Google Scholar] [CrossRef]
- Rolls, E.T. Limbic Systems for Emotion and for Memory, but No Single Limbic System. Cortex 2015, 62, 119–157. [Google Scholar] [CrossRef]
- Kanske, P.; Kotz, S.A. Emotion Triggers Executive Attention: Anterior Cingulate Cortex and Amygdala Responses to Emotional Words in a Conflict Task. Hum. Brain Mapp. 2011, 32, 198–208. [Google Scholar] [CrossRef]
- Leech, R.; Sharp, D.J. The Role of the Posterior Cingulate Cortex in Cognition and Disease. Brain 2014, 137, 12–32. Available online: https://academic.oup.com/brain/article/137/1/12/358120 (accessed on 26 May 2022). [CrossRef] [Green Version]
- Michel, B.F.; Sambuchi, N.; Vogt, B.A. Impact of Mild Traumatic Brain Injury on Cingulate Functions. Handb. Clin. Neurol. 2019, 166, 151–162. [Google Scholar]
- Grossman, E.J.; Inglese, M. The Role of Thalamic Damage in Mild Traumatic Brain Injury. J. Neurotrauma 2016, 33, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.V.; Wood, D.M.G.; Bigler, E.D.; Blatter, D.D. Lesion Volume, Injury Severity, and Thalamic Integrity Following Head Injury. J. Neurotrauma 1996, 13, 59–65. Available online: https://pubmed.ncbi.nlm.nih.gov/9094376/ (accessed on 26 May 2022). [CrossRef]
- Dickerson, M.R.; Bailey, Z.S.; Murphy, S.F.; Urban, M.J.; VandeVord, P.J. Glial Activation in the Thalamus Contributes to Vestibulomotor Deficits Following Blast-Induced Neurotrauma. Front. Neurol. 2020, 11, 618. Available online: https://pubmed.ncbi.nlm.nih.gov/32760340/ (accessed on 26 May 2022). [CrossRef]
- Nelson, A.J.D. The Anterior Thalamic Nuclei and Cognition: A Role beyond Space? Neurosci. Biobehav. Rev. 2021, 126, 1–11. [Google Scholar] [CrossRef]
- Berman, R.A.; Wurtz, R.H. Exploring the pulvinar path to visual cortex. Prog. Brain Res. 2008, 171, 467. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802535/ (accessed on 26 May 2022).
- Kitajima, M.; Hirai, T.; Yoneda, T.; Iryo, Y.; Azuma, M.; Tateishi, M.; Morita, K.; Komi, M.; Yamashita, Y. Visualization of the Medial and Lateral Geniculate Nucleus on Phase Difference Enhanced Imaging. AJNR Am. J. Neuroradiol. 2015, 36, 1669. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968773/ (accessed on 26 May 2022). [CrossRef] [Green Version]
- Cherney, L.R.; Gardner, P.; Logemann, J.A.; Newman, L.A.; O’Neil-Pirozzi, T.; Roth, C.R.; Solomon, N.P. The Role of Speech-Language Pathology and Audiology in the Optimal Management of the Service Member Returning from Iraq or Afghanistan with a Blast-Related Head Injury: Position of the Communication Sciences and Disorders Clinical Trials Research Group. J. Head Trauma Rehabil. 2010, 25, 219–224. Available online: https://journals.lww.com/headtraumarehab/Fulltext/2010/05000/The_Role_of_Speech_Language_Pathology_and.8.aspx (accessed on 26 May 2022). [CrossRef] [PubMed]
- Tomaiuolo, F.; Cerasa, A.; Lerch, J.P.; Bivona, U.; Carlesimo, G.A.; Ciurli, P.; Raffa, G.; Quattropani, M.C.; Germanò, A.; Caltagirone, C.; et al. Brain Neurodegeneration in the Chronic Stage of the Survivors from Severe Non-Missile Traumatic Brain Injury: A Voxel-Based Morphometry Within-Group at One versus Nine Years from a Head Injury. J. Neurotrauma 2021, 38, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Petrie, E.C.; Cross, D.J.; Yarnykh, V.L.; Richards, T.; Martin, N.M.; Pagulayan, K.; Hoff, D.; Hart, K.; Mayer, C.; Tarabochia, M.; et al. Neuroimaging, Behavioral, and Psychological Sequelae of Repetitive Combined Blast/Impact Mild Traumatic Brain Injury in Iraq and Afghanistan War Veterans. J. Neurotrauma 2014, 31, 425–436. Available online: https://pubmed.ncbi.nlm.nih.gov/24102309/ (accessed on 21 May 2022). [CrossRef] [PubMed] [Green Version]
- Granger, D.A.; Kivlighan, K.T.; El-Sheikh, M.O.; Gordis, E.B.; Stroud, L.R. Salivary Alpha-Amylase in Biobehavioral Research: Recent Developments and Applications. Ann. N. Y. Acad. Sci. 2007, 1098, 122–144. [Google Scholar] [CrossRef]
- Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; Van Der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness, S.; et al. Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain. Neuron 2002, 33, 341–355. Available online: https://pubmed.ncbi.nlm.nih.gov/11832223/ (accessed on 17 May 2022). [CrossRef] [Green Version]
- Fischl, B. FreeSurfer. NeuroImage 2012, 62, 774–781. Available online: https://pubmed.ncbi.nlm.nih.gov/22248573/ (accessed on 17 May 2022). [CrossRef] [Green Version]
- Iglesias, J.E.; Insausti, R.; Lerma-Usabiaga, G.; Bocchetta, M.; Van Leemput, K.; Greve, D.N.; van der Kouwe, A.; Fischl, B.; Caballero-Gaudes, C.; Paz-Alonso, P.M. A Probabilistic Atlas of the Human Thalamic Nuclei Combining Ex Vivo MRI and Histology. NeuroImage 2018, 183, 314–326. [Google Scholar] [CrossRef]
Variable | BINT (n = 12) | Control (n = 8) | p-Value |
---|---|---|---|
Age (mean, standard deviation) | 40.25 (±8.61) | 42.38 (±9.05) | 0.60 |
Sex (number M/F) | 10/2 | 5/3 | 0.35 |
Education (years, standard deviation) | 14.18 (±1.68) | 15.13 (±0.83) | 0.12 |
Time since last blast exposure (median years, range) | 6 (0.66–35) | - | - |
Number of blast exposures (median, range) | 3.5 (2–5000) | - | - |
Cluster Number | Hemisphere | Peak Structure | Peak Coordinates | Cluster Size (Voxels) | Z Score | FDR-Corrected p-Value | ||
---|---|---|---|---|---|---|---|---|
x | y | z | ||||||
1 | Right | Precuneus | 6 | −53 | 18 | 35,079 | 4.8 | p < 0.001 |
2 | Right | Fusiform gyrus | 36 | −63 | −16 | 28,912 | 5 | p < 0.001 |
3 | Left | Inferior temporal gyrus | −34 | −19 | −39 | 15,094 | 4.7 | p < 0.001 |
4 | Left | SupraMarginal gyrus | −48 | −30 | 20 | 9446 | 4 | p < 0.001 |
5 | Left | Cuneus | −2.0 | −89 | 34 | 5981 | 4.2 | p < 0.001 |
6 | Left | Inferior frontal gyrus, orbitofrontal part | −43 | 29 | −3 | 4381 | 4 | p < 0.01 |
7 | Right | Middle temporal gyrus | 53 | 50 | 21 | 4264 | 4.6 | p < 0.001 |
8 | Right | Middle occipital gyrus | 33 | −72 | 17 | 3401 | 4.9 | p < 0.001 |
9 | Right | Insula | 39 | −5 | 23 | 3369 | 2.5 | p < 0.05 |
10 | Left | Temporal pole, middle temporal gyrus | −54 | 13 | −33 | 2520 | 3.1 | p < 0.01 |
11 | Left | Superior frontal gyrus, orbital part | −11 | 39 | −28 | 2064 | 3.5 | p < 0.05 |
12 | Left | Supplementary motor area | −7 | 20 | 51 | 2054 | 2.9 | p < 0.05 |
13 | Left | Inferior frontal gyrus, triangular part | −53 | 29 | 20 | 1526 | 2.8 | p < 0.05 |
14 | Right | Precentral gyrus | 22 | −26 | 72 | 1520 | 2.8 | p < 0.05 |
15 | Left | Pallidum | −11 | 0 | 0 | 841 | 2.9 | p < 0.05 |
Brain Structure | BINT (Mean ± SD) | Stress (Mean ± SD) | p-Value |
---|---|---|---|
Total Brain Volume | 1156 (±111) | 1140 (±112) | 0.77 |
Total Gray Matter | 557 (±25) | 547 (±21) | 0.49 |
Total White Matter | 449 (±26) | 453 (±21) | 0.75 |
Subcortical gray matter | 5.17 (±0.19) | 5.15 (±0.19) | 0.87 |
Inferior temporal gyrus, right | 2.58 (±0.09) | 2.72 (±0.15) | 0.02 |
Inferior temporal gyrus, left | 2.64 (±0.09) | 2.77 (±0.13) | 0.04 |
Anteroventral thalamic nucleus, right | 159.90 (±25.60) | 181.70 (±24.17) | 0.07 |
Anteroventral thalamic nucleus, left | 126.40 (±21.23) | 149.50 (±18.12) | 0.05 |
Lateral geniculate nucleus, right | 277.80 (±30.02) | 314.00 (±27.62) | 0.02 |
Lateral geniculate nucleus, left | 284.60 (±33.84) | 287.10 (±27.37) | 0.89 |
Medial geniculate nucleus, right | 105.40 (±19.83) | 129.60 (±10.85) | 0.01 |
Medial geniculate nucleus, left | 102.60 (±20.10) | 116.70 (14.08) | 0.18 |
Pulvinar nucleus, right | 290.10 (±36.47) | 316.50 (±13.32) | 0.18 |
Pulvinar nucleus, left | 260.90 (±45.04) | 308.90 (±43.57) | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellewell, S.C.; Granger, D.A.; Cernak, I. Blast-Induced Neurotrauma Results in Spatially Distinct Gray Matter Alteration Alongside Hormonal Alteration: A Preliminary Investigation. Int. J. Mol. Sci. 2023, 24, 6797. https://doi.org/10.3390/ijms24076797
Hellewell SC, Granger DA, Cernak I. Blast-Induced Neurotrauma Results in Spatially Distinct Gray Matter Alteration Alongside Hormonal Alteration: A Preliminary Investigation. International Journal of Molecular Sciences. 2023; 24(7):6797. https://doi.org/10.3390/ijms24076797
Chicago/Turabian StyleHellewell, Sarah C., Douglas A. Granger, and Ibolja Cernak. 2023. "Blast-Induced Neurotrauma Results in Spatially Distinct Gray Matter Alteration Alongside Hormonal Alteration: A Preliminary Investigation" International Journal of Molecular Sciences 24, no. 7: 6797. https://doi.org/10.3390/ijms24076797