The Tissue Response to Hypoxia: How Therapeutic Carbon Dioxide Moves the Response toward Homeostasis and Away from Instability
Abstract
:1. Introduction
2. Therapeutic Effects of Carbon Dioxide
2.1. Accelerated Wound and Fracture Healing
2.2. Increased Blood Flow to Ischemic Limbs
2.3. Greater Blood Flow and Vascularization in Diabetes
2.4. Improved Skeletal Muscle Function and Healing
2.5. Reduced Inflammation
2.6. Decreased Tumor Growth and Metastasis
3. Mechanisms of Action of Carbon Dioxide Therapy
3.1. CO2/H+ Concentrations and Carbonic Anhydrase Govern the Sensing of CO2 in the Regulation of Cellular Function
3.2. Increasing Blood Flow and Tissue Oxygenation
3.3. Enhancing Angiogenesis
3.4. Stimulating Skeletal Muscle Mitochondrial Biogenesis
3.5. Reducing Inflammation
3.6. Antioxidant Effects
3.7. Benefits of Diabetes Mellitus
3.8. Reducing Tumor Hypoxia
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE2 | angiotensin-converting enzyme 2 |
ADO | adenosine |
AMP | adenosine monophosphate |
AMPK | AMP-activated protein kinase |
ARDS | acute respiratory distress syndrome |
ATP | adenosine triphosphate |
CA | carbonic anhydrase |
CB | carbonated water bath |
CG | carbonated paste or gel |
cGMP | cyclic guanosine monophosphate |
CGRP | calcitonin gene-related peptide |
CO2 | carbon dioxide |
COX | cytochrome c oxidase |
COVID-19 | coronavirus disease 2019 |
CS | citrate synthase |
EDHF | endothelium-derived hyperpolarizing factor |
eNOS | endothelial nitric oxide synthase |
ERK1/2 | extracellular signal-regulated kinase 1/2 |
ERRα | orphan nuclear receptor estrogen-related receptor-alpha |
H+ | hydrogen proton |
HIF-1α | hypoxia-inducible factor 1-alpha |
IA | intra-arterial infusion of a carbonated solution |
IH | inhaled CO2 or hypercarbia due to hypoventilation |
IL-10 | interleukin-10 |
IL-1β | interleukin 1 beta |
IL-6 | interleukin 6 |
IP | intraperitoneal insufflation of CO2 |
ITC | iron–transferrin complex |
KCa | calcium-activated potassium |
KATP | ATP-sensitive potassium |
MAPKs | mitogen-activated protein kinases |
MDM-2 | mouse double minute 2 |
NAD+ | nicotinamide adenine dinucleotide |
NF-κB | nuclear factor-κB |
NO | nitric oxide |
NRF1, NRF2 | nuclear transcription factors nuclear respiratory factor 1, 2 |
O-2 | superoxide |
O2 | molecular oxygen |
p38 MAP-kinase | mitogen-activated protein (MAP) kinase |
PGC-1α | peroxisome proliferator-activated receptor-gamma coactivator—1 alpha |
ROS | reactive oxygen species |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
SIRT1 | sirtuin 1 |
SQ | subcutaneous injections of CO2 |
STZ | streptozotocin |
TD | transdermal application of CO2 |
TFAM | mitochondrial transcription factor A |
TNF-α | tumor necrosis factor-alpha |
TSP-1t | hrombospondin 1 |
VEGF | vascular endothelial growth factor |
References
- Crystal, G.J. Carbon dioxide and the heart: Physiology and clinical implications. Anesth. Analg. 2015, 121, 610–623. [Google Scholar] [CrossRef]
- Reglin, B.; Pries, A.R. Metabolic control of microvascular networks: Oxygen sensing and beyond. J. Vasc. Res. 2014, 51, 376–392. [Google Scholar] [CrossRef] [PubMed]
- Kierans, S.J.; Taylor, C.T. Regulation of glycolysis by the hypoxia-inducible factor (HIF): Implications for cellular physiology. J. Physiol. 2021, 599, 23–37. [Google Scholar] [CrossRef]
- Rodríguez, C.; Muñoz, M.; Contreras, C.; Prieto, D. AMPK, metabolism, and vascular function. FEBS J. 2021, 288, 3746–3771. [Google Scholar] [CrossRef]
- Bottoni, P.; Óvári, M.; Záray, G.; Caroli, S. Characteristics of spring waters in budapest: A short review. Microchem. J. 2013, 110, 770–774. [Google Scholar] [CrossRef]
- Xu, Y.-J.; Elimban, V.; Bhullar, S.K.; Dhalla, N.S. Effects of CO2 water-bath treatment on blood flow and angiogenesis in ischemic hind limb of diabetic rat. Can. J. Physiol. Pharmacol. 2018, 96, 1017–1021. [Google Scholar] [CrossRef]
- Yatagai, N.; Hasegawa, T.; Amano, R.; Saito, I.; Arimoto, S.; Takeda, D.; Kakei, Y.; Akashi, M. Transcutaneous carbon dioxide decreases immunosuppressive factors in squamous cell carcinoma. In Vivo. BioMed Res. Int. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Németh, B.; Kiss, I.; Ajtay, B.; Péter, I.; Kreska, Z.; Cziráki, A.; Horváth, I.G.; Ajtay, Z. Transcutaneous carbon dioxide treatment is capable of reducing peripheral vascular resistance in hypertensive patients. Vivo 2018, 32, 1555–1559. [Google Scholar] [CrossRef] [Green Version]
- Katayama, N.; Sugimoto, K.; Okada, T.; Ueha, T.; Sakai, Y.; Akiyoshi, H.; Mie, K.; Ueshima, E.; Sofue, K.; Koide, Y.; et al. Intra-arterially infused carbon dioxide-saturated solution for sensitizing the anticancer effect of cisplatin in a rabbit VX2 liver tumor model. Int. J. Oncol. 2017, 51, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Hanly, E.J.; Fuentes, J.M.; Aurora, A.R.; Bachman, S.L.; De Maio, A.; Marohn, M.R.; Talamini, M.A. Carbon dioxide pneumoperitoneum prevents mortality from sepsis. Surg. Endosc. 2006, 20, 1482–1487. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.; Masterson, C.; Laffey, J.G. Permissive hypercapnia: What to remember. Curr. Opin. Anaesthesiol. 2015, 28, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Amano-Iga, R.; Hasegawa, T.; Takeda, D.; Murakami, A.; Yatagai, N.; Saito, I.; Arimoto, S.; Kakei, Y.; Sakakibara, A.; Akashi, M. Local application of transcutaneous carbon dioxide paste decreases inflammation and accelerates wound healing. Cureus 2021, 13, e19518. [Google Scholar] [CrossRef]
- Ahramiyanpour, N.; Shafie’ei, M.; Sarvipour, N.; Amiri, R.; Akbari, Z. Carboxytherapy in dermatology: A systematic review. J. Cosmet. Dermatol. 2022, 21, 1874–1894. [Google Scholar] [CrossRef]
- Oda, T.; Iwakura, T.; Fukui, T.; Oe, K.; Mifune, Y.; Hayashi, S.; Matsumoto, T.; Matsushita, T.; Kawamoto, T.; Sakai, Y.; et al. Effects of the duration of transcutaneous CO2 application on the facilitatory effect in rat fracture repair. J. Orthop. Sci. 2020, 25, 886–891. [Google Scholar] [CrossRef]
- Saito, I.; Hasegawa, T.; Ueha, T.; Takeda, D.; Iwata, E.; Arimoto, S.; Sakakibara, A.; Sakakibara, S.; Akashi, M.; Sakai, Y.; et al. Effect of local application of transcutaneous carbon dioxide on survival of random-pattern skin flaps. J. Plast. Reconstr. Aesthet. Surg. 2018, 71, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- Wollina, U.; Heinig, B.; Uhlemann, C. Transdermal CO2 application in chronic wounds. Int. J. Low. Extrem Wounds 2004, 3, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Macura, M.; Ban Frangez, H.; Cankar, K.; Finžgar, M.; Frangez, I. The effect of transcutaneous application of gaseous CO2 on diabetic chronic wound healing—A double-blind randomized clinical trial. Int. Wound J. 2020, 17, 1607–1614. [Google Scholar] [CrossRef]
- Koga, T.; Niikura, T.; Lee, S.Y.; Okumachi, E.; Ueha, T.; Iwakura, T.; Sakai, Y.; Miwa, M.; Kuroda, R.; Kurosaka, M. Topical cutaneous CO2 application by means of a novel hydrogel accelerates fracture repair in rats. J. Bone Jt. Surg. 2014, 96, 2077–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niikura, T.; Iwakura, T.; Omori, T.; Lee, S.Y.; Sakai, Y.; Akisue, T.; Oe, K.; Fukui, T.; Matsushita, T.; Matsumoto, T.; et al. Topical cutaneous application of carbon dioxide via a hydrogel for improved fracture repair: Results of phase I clinical safety trial. BMC Musculoskelet. Disord. 2019, 20, 563. [Google Scholar] [CrossRef]
- Izumi, Y.; Yamaguchi, T.; Yamazaki, T.; Yamashita, N.; Nakamura, Y.; Shiota, M.; Tanaka, M.; Sano, S.; Osada-Oka, M.; Shimada, K.; et al. Percutaneous carbon dioxide treatment using a gas mist generator enhances the collateral blood flow in the ischemic hindlimb. J. Atheroscl. Thromb. 2015, 22, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Irie, H.; Tatsumi, T.; Takamiya, M.; Zen, K.; Takahashi, T.; Azuma, A.; Tateishi, K.; Nomura, T.; Hayashi, H.; Nakajima, N.; et al. Carbon dioxide-rich water bathing enhances collateral blood flow in ischemic hindlimb via mobilization of endothelial progenitor cells and activation of NO-cGMP system. Circulation 2005, 111, 1523–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toriyama, T.; Kumada, Y.; Matsubara, T.; Murata, A.; Ogino, A.; Hayashi, H.; Nakashima, H.; Takahashi, H.; Matsuo, H.; Kawahara, H. Effect of artificial carbon dioxide foot bathing on critical limb ischemia (fontaine IV) in peripheral arterial disease patients. Int. Angiol. 2002, 21, 367–373. [Google Scholar] [PubMed]
- Hartmann, B.R.; Bassenge, E.; Hartmann, M. Effects of serial percutaneous application of carbon dioxide in intermittent claudication: Results of a controlled trial. Angiology 1997, 48, 957–963. [Google Scholar] [CrossRef]
- Fabry; Monnet; Schmidt; Lusson; Carpentier; Baguet; Dubray. Clinical and microcirculatory effects of transcutaneous CO2 therapy in intermittent claudication. randomized double-blind clinical trial with a parallel design. Vasa 2009, 38, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Kivelä, R.; Silvennoinen, M.; Touvra, A.; Lehti, T.M.; Kainulainen, H.; Vihko, V. Effects of experimental type 1 diabetes and exercise training on angiogenic gene expression and capillarization in skeletal muscle. FASEB J. 2006, 20, 1570–1572. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Tanaka, M.; Ikeji, T.; Maeshige, N.; Sakai, Y.; Akisue, T.; Kondo, H.; Ishihara, A.; Fujino, H. Application of transcutaneous carbon dioxide improves capillary regression of skeletal muscle in hyperglycemia. J. Physiol. Sci. 2019, 69, 317–326. [Google Scholar] [CrossRef]
- Matsumoto, T.; Tanaka, M.; Nakanish, R.; Takuwa, M.; Hirabayashi, T.; Ono, K.; Ikeji, T.; Maeshige, N.; Sakai, Y.; Akisue, T.; et al. Transcutaneous carbon dioxide attenuates impaired oxidative capacity in skeletal muscle in hyperglycemia model. Gen. Physiol. Biophys. 2019, 38, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Oe, K.; Ueha, T.; Sakai, Y.; Nikura, T.; Lee, S.Y.; Koh, A.; Hasegawa, T.; Tanaka, M.; Miwa, M.; Kurosaka, M. The effect of transcutaneous application of carbon dioxide (CO2) on skeletal muscle. Biochem. Biophys. Res. Commun. 2011, 407, 148–152. [Google Scholar] [CrossRef]
- Akamine, T.; Taguchi, N. Effects of an artificially carbonated bath on athletic warm-up. J. Hum. Ergol. 1998, 27, 22–29. [Google Scholar] [CrossRef]
- Ueha, T.; Oe, K.; Miwa, M.; Hasegawa, T.; Koh, A.; Nishimoto, H.; Lee, S.; Niikura, T.; Kurosaka1, M.; Kuroda1, R.; et al. Increase in carbon dioxide accelerates the performance of endurance exercise in rats. J. Physiol. Sci. 2018, 68, 463–470. [Google Scholar] [CrossRef]
- Akahane, S.; Sakai, Y.; Ueha, T.; Nishimoto, H.; Inoue, M.; Niikura, T.; Kuroda, R. Transcutaneous carbon dioxide application accelerates muscle injury repair in rat models. Int. Orthop. 2017, 41, 1007–1015. [Google Scholar] [CrossRef]
- Nishimoto, H.; Inui, A.; Ueha, T.; Inoue, M.; Akahane, S.; Harada, R.; Mifune, Y.; Kokubu, T.; Nishida, K.; Kuroda, R.; et al. Transcutaneous carbon dioxide application with hydrogel prevents muscle atrophy in a rat sciatic nerve crush model. J. Orthop. Res. 2018, 36, 1653–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, M.; Sakai, Y.; Oe, K.; Ueha, T.; Koga, T.; Nishimoto, H.; Akahane, S.; Harada, R.; Lee, S.Y.; Niikura, T.; et al. Transcutaneous carbon dioxide application inhibits muscle atrophy after fracture in rats. J. Orthop. Sci. 2020, 25, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.; Muchamuel, T.; Andrade, S.; Menon, S. Interleukin 10 protects mice from lethal endotoxemia. J. Exp. Med. 1993, 177, 1205–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rongione, A.J.; Kusske, A.M.; Ashley, S.W.; Reber, H.A.; McFadden, D.W. Interleukin-10 prevents early cytokine release in severe intraabdominal infection and sepsis. J. Surg. Res. 1997, 70, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Rongione, A.J.; Kusske, A.M.; Kwan, K.; Ashley, S.W.; Reber, H.A.; McFadden, D.W. Interleukin-10 protects against lethality of intra-abdominal infection and sepsis. J. Gastrointest. Surg. 2000, 4, 70–76. [Google Scholar] [CrossRef]
- Yoshidome, H.; Kato, A.; Edwards, M.J.; Lentsch, A.B. Interleukin-10 suppresses hepatic ischemia/reperfusion injury in mice: Implications of a central role for nuclear factor κB. Hepatology 1999, 30, 203–208. [Google Scholar] [CrossRef]
- Hanly, E.J.; Bachman, S.L.; Marohn, M.R.; Boden, J.H.; Herring, A.E.; De Maio, A.; Talamini, M.A. Carbon dioxide pneumoperitoneum–mediated attenuation of the inflammatory response is independent of systemic acidosis. Surgery 2005, 137, 559–566. [Google Scholar] [CrossRef]
- Ure, B.M.; Niewold, T.A.; Bax, N.M.A.; Ham, M.; van de Zee, D.C.; Essen, G.J. Peritoneal, systemic, and distant organ inflammatory responses are reduced by a laparoscopic approach and carbon dioxide vs air. Surg. Endosc. 2002, 16, 836–842. [Google Scholar] [CrossRef]
- Galganska, H.; Jarmuszkiewicz, W.; Galganski, L. Carbon dioxide inhibits COVID-19-type proinflammatory responses through extracellular signal-regulated kinases 1 and 2, novel carbon dioxide sensors. Cell. Mol. Life Sci. 2021, 78, 8229–8242. [Google Scholar] [CrossRef]
- Semenza, G.L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Investig. 2013, 123, 3664–3671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, D.; Hasegawa, T.; Ueha, T.; Imai, Y.; Sakakibara, A.; Minoda, M.; Kawamoto, T.; Minamikawa, T.; Shibuya, Y.; Akisue, T.; et al. Transcutaneous carbon dioxide induces mitochondrial apoptosis and suppresses metastasis of oral squamous cell carcinoma in vivo. PLoS ONE 2014, 9, e100530. [Google Scholar] [CrossRef] [Green Version]
- Harada, R.; Kawamoto, T.; Ueha, T.; Minoda, M.; Toda, M.; Onishi, Y.; Fukase, N.; Hara, H.; Sakai, Y.; Miwa, M.; et al. Reoxygenation using a novel CO2 therapy decreases the metastatic potential of osteosarcoma cells. Exp. Cell Res. 2013, 319, 1988–1997. [Google Scholar] [CrossRef] [PubMed]
- Onishi, Y.; Akisue, T.; Kawamoto, T.; Ueha, T.; Hara, H.; Toda, M.; Harada, R.; Minoda, M.; Morishita, M.; Sasaki, R.; et al. Transcutaneous application of CO2 enhances the antitumor effect of radiation therapy in human malignant fibrous histiocytoma. Int. J. Oncol. 2014, 45, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Onishi, Y.; Kawamoto, T. Transcutaneous application of carbon dioxide (CO2) enhances chemosensitivity by reducing hypoxic conditions in human malignant fibrous histiocytoma. J. Cancer Sci. Ther. 2012, 4, 74–181. [Google Scholar] [CrossRef] [Green Version]
- Iwata, E.; Hasegawa, T.; Ueha, T.; Takeda, D.; Saito, I.; Kawamoto, T.; Akisue, T.; Sakai, Y.; Sasaki, R.; Kuroda, R.; et al. Transcutaneous carbon dioxide enhances the antitumor effect of radiotherapy on oral squamous cell carcinoma. Oncol. Rep. 2018, 40, 434–442. [Google Scholar] [CrossRef]
- Hosford, P.S.; Wells, J.A.; Nizari, S.; Christie, I.N.; Theparambil, S.M.; Castro, P.A.; Hadjihambi, A.; Barros, L.F.; Ruminot, I.; Lythgoe, M.F.; et al. CO2 signaling mediates neurovascular coupling in the cerebral cortex. Nat. Commun. 2022, 13, 2125. [Google Scholar] [CrossRef]
- Lahiri, S.; Forster, R.E., 2nd. CO2/H+ sensing: Peripheral and central chemoreception. Int. J. Biochem. Cell Biol. 2003, 35, 1413–1435. [Google Scholar] [CrossRef]
- Ogoh, S.; Nagaoka, R.; Mizuno, T.; Kimura, S.; Shidahara, Y.; Ishii, T.; Kudoh, M.; Iwamoto, E. Acute vascular effects of carbonated warm water lower leg immersion in healthy young adults. Physiol. Rep. 2016, 4, e13046. [Google Scholar] [CrossRef]
- Minamiyama, M.; Yamamoto, A. Direct evidence of the vasodilator action of carbon dioxide on subcutaneous microvasculature in rats by use of intra-vital video-microscopy. J. Biorheol. 2010, 24, 42–46. [Google Scholar] [CrossRef]
- Carr, P.; Graves, J.E.; Poston, L. Carbon dioxide induced vasorelaxation in rat mesenteric small arteries precontracted with noradrenaline is endothelium dependent and mediated by nitric oxide. Pflügers Arch. 1993, 423, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Bellien, J.; Favre, J.; Iacob, M.; Gao, J.; Thuillez, C.; Richard, V.; Joannidès, R. Arterial stiffness is regulated by nitric oxide and endothelium-derived hyperpolarizing factor during changes in blood flow in humans. Hypertension 2010, 55, 674–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, M.; Ishikawa, T.; Yamanaka, A.; Fujimori, A.; Goto, K. Local neurogenic regulation of rat hindlimb circulation: CO2-induced release of calcitonin gene-related peptide from sensory nerves. Br. J. Pharmacol. 1997, 122, 710–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charter, M.E.; Lamb, I.R.; Murrant, C.L. Arteriolar and capillary responses to CO2 and H+ in hamster skeletal muscle microvasculature: Implications for active hyperemia. Microcirculation 2018, 25, e12494. [Google Scholar] [CrossRef] [PubMed]
- Case, R.; Greenberg, H.; Moskowitz, R. Alterations in coronary sinus pO2 and O2 saturation resulting from pCO2 changes. Cardiovasc. Res. 1975, 9, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Phillis, J.W.; O’Regan, M.H.; Song, D. Further evidence for the role of adenosine in hypercapnia/acidosis-evoked coronary flow regulation. Gen. Pharmacol. 1999, 33, 431–437. [Google Scholar] [CrossRef]
- Nees, S.; Gerlach, E. Adenine Nucleotide and Adenosine Metabolism in Cultured Coronary Endothelial Cells: Formation and Release of Adenine Compounds and Possible Functional Implications. In Regulatory Function of Adenosine; Berne, R.M., Rall, T.W., Rubio, R., Eds.; Springer: Boston, MA, USA, 1983; pp. 347–360. [Google Scholar]
- Dospinescu, V.; Nijjar, S.; Spanos, F.; Cook, J.; de Wolf, E.; Biscotti, M.A.; Gerdol, M.; Dale, N. Structural determinants of CO2-sensitivity in the β connexin family suggested by evolutionary analysis. Commun. Biol. 2019, 2, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, E.; Dale, N.; Wall, M.J. CO2-sensitive connexin hemichannels in neurons and glia: Three different modes of signalling? Int. J. Mol. Sci. 2021, 22, 7254. [Google Scholar] [CrossRef]
- Okamoto, T.; Akiyama, M.; Takeda, M.; Gabazza, E.C.; Hayashi, T.; Suzuki, K. Connexin32 is expressed in vascular endothelial cells and participates in gap-junction intercellular communication. Biochem. Biophys. Res. Commun. 2009, 382, 264–268. [Google Scholar] [CrossRef]
- Braet, K.; Aspeslagh, S.; Vandamme, W.; Willecke, K.; Martin, P.E.M.; Evans, W.H.; Leybaert, L. Pharmacological sensitivity of ATP release triggered by photoliberation of inositol-1,4,5-trisphosphate and zero extracellular calcium in brain endothelial cells. J. Cell. Physiol. 2003, 197, 205–213. [Google Scholar] [CrossRef]
- Kirby, B.S.; Crecelius, A.R.; Richards, J.C.; Dinenno, F.A. Sources of intravascular ATP during exercise in humans: Critical role for skeletal muscle perfusion. Exp. Physiol. 2013, 98, 988–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brayden, J.E. Functional roles of KATP channels in vascular smooth muscle. Clin. Exp. Pharmacol. Physiol. 2002, 29, 312–316. [Google Scholar] [CrossRef]
- Davies, N.W. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons. Nature 1990, 343, 375–377. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.K.; Sá, R.C.; Arai, T.J.; Theilmann, R.J.; Hopkins, S.R.; Buxton, R.B.; Prisk, G.K. Regional pulmonary perfusion patterns in humans are not significantly altered by inspiratory hypercapnia. J. Appl. Physiol. 2019, 127, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Baudouin, S.V.; Evans, T.W. Action of carbon dioxide on hypoxic pulmonary vasoconstriction in the rat lung: Evidence against specific endothelium-derived relaxing factor-mediated vasodilation. Cri.t Care Med. 1993, 21, 740–746. [Google Scholar] [CrossRef]
- Dorrington, K.L.; Talbot, N.P. Human pulmonary vascular responses to hypoxia and hypercapnia. Pflugers Arch. 2004, 449, 1–15. [Google Scholar] [CrossRef]
- Barer, G.R.; Shaw, J.W. Pulmonary vasodilator and vasoconstrictor actions of carbon dioxide. J. Physiol. 1971, 213, 633–645. [Google Scholar] [CrossRef] [Green Version]
- Duling, B.R. Changes in microvascular diameter and oxygen tension induced by carbon dioxide. Circ. Res. 1973, 32, 370–376. [Google Scholar] [CrossRef] [Green Version]
- Sakai, Y.; Miwa, M.; Oe, K.; Ueha, T.; Koh, A.; Niikura, T.; Iwakura, T.; Lee, S.Y.; Tanaka, M.; Kurosaka, M. A novel system for transcutaneous application of carbon dioxide causing an “artificial bohr effect” in the human body. PLoS ONE 2011, 6, e24137. [Google Scholar] [CrossRef]
- Bohr, C.; Hasselbalch, K.; Krogh, A. Ueber einen in biologischer beziehung wichtigen einfluss, den die kohlensäurespannung des blutes auf dessen sauerstoffbindung übt1. Skandinavisches Archiv Für Physiologie 1904, 16, 402–412. [Google Scholar] [CrossRef]
- Malte, H.; Lykkeboe, G. The bohr/haldane effect: A model-based uncovering of the full extent of its impact on O2 delivery to and CO2 removal from tissues. J. Appl. Physiol. 2018, 125, 916–922. [Google Scholar] [CrossRef]
- Xu, Y.; Elimban, V.; Dhalla, N.S. Carbon dioxide water-bath treatment augments peripheral blood flow through the development of angiogenesis. Can. J. Physiol. Pharmacol. 2017, 95, 938–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, N.; Gerber, H.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Selfridge, A.C.; Cavadas, M.A.S.; Scholz, C.C.; Campbell, E.L.; Welch, L.C.; Lecuona, E.; Colgan, S.P.; Barrett, K.E.; Sporn, P.H.S.; Sznajder, J.I.; et al. Hypercapnia suppresses the HIF-dependent adaptive response to hypoxia. J. Biol. Chem. 2016, 291, 11800–11808. [Google Scholar] [CrossRef] [Green Version]
- Takemori, T.; Kawamoto, T.; Ueha, T.; Toda, M.; Morishita, M.; Kamata, E.; Fukase, N.; Hara, H.; Fujiwara, S.; Niikura, T.; et al. Transcutaneous carbon dioxide application suppresses bone destruction caused by breast cancer metastasis. Oncol. Rep. 2018, 40, 2079–2087. [Google Scholar] [CrossRef]
- Coffey, V.G.; Jemiolo, B.; Edge, J.; Garnham, A.P.; Trappe, S.W.; Hawley, J.A. Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2009, 297, R1441–R1451. [Google Scholar] [CrossRef] [Green Version]
- Coffey, V.G.; Hawley, J.A. Concurrent exercise training: Do opposites distract? J. Physiol. 2017, 595, 2883–2896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arany, Z.; Foo, S.; Ma, Y.; Ruas, J.L.; Bommi-Reddy, A.; Girnun, G.; Cooper, M.; Laznik, D.; Chinsomboon, J.; Rangwala, S.M.; et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature 2008, 451, 1008–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, T.L.; Lloyd, P.G.; Yang, H.; Terjung, R.L. Exercise Training and Peripheral Arterial Disease. Compr. Physiol. 2012, 2, 2933–3017. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Okutsu, M.; Akhtar, Y.N.; Lira, V.A. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J. Appl. Physiol. 2011, 110, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Sopariwala, D.H.; Likhite, N.; Pei, G.; Haroon, F.; Lin, L.; Yadav, V.; Zhao, Z.; Narkar, V.A. Estrogen-related receptor α is involved in angiogenesis and skeletal muscle revascularization in hindlimb ischemia. Faseb. J. 2021, 35, e21480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, L.; Zhang, M.; Qi, H.; Chen, L.; Chen, H.; Zhong, M.; Shi, X.; Li, Q. Downregulation of ERRα inhibits angiogenesis in human umbilical vein endothelial cells through regulating VEGF production and PI3K/akt/STAT3 signaling pathway. Eur. J. Pharmacol. 2015, 769, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Likhite, N.; Yadav, V.; Milliman, E.J.; Sopariwala, D.H.; Lorca, S.; Narayana, N.P.; Sheth, M.; Reineke, E.L.; Giguère, V.; Narkar, V. Loss of estrogen-related receptor alpha facilitates angiogenesis in endothelial cells. Mol. Cell Biol. 2019, 39, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, T.; Akita, N.; Kawamoto, E.; Hayashi, T.; Suzuki, K.; Shimaoka, M. Endothelial connexin32 enhances angiogenesis by positively regulating tube formation and cell migration. Exp. Cell Res. 2014, 321, 133–141. [Google Scholar] [CrossRef]
- Rahimi, N. The ubiquitin-proteasome system meets angiogenesis. Mol. Cancer Res. 2012, 11, 538–548. [Google Scholar] [CrossRef] [Green Version]
- Linthwaite, V.L.; Pawloski, W.; Pegg, H.B.; Townsend, P.D.; Thomas, M.J.; So, V.K.H.; Brown, A.P.; Hodgson, D.R.W.; Lorimer, G.H.; Fushman, D.; et al. Ubiquitin is a carbon dioxide–binding protein. Sci. Adv. 2021, 7, eabi5507. [Google Scholar] [CrossRef]
- Deng, M.; Yang, X.; Qin, B.; Liu, T.; Zhang, H.; Guo, W.; Lee, S.; Kim, J.; Yuan, J.; Pei, H.; et al. Deubiquitination and activation of AMPK by USP10. Mol. Cell. 2016, 61, 614–624. [Google Scholar] [CrossRef] [Green Version]
- Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Shoag, J.; Arany, Z. Regulation of hypoxia-inducible genes by PGC-1α. Arterioscl. Throm. Vas. 2010, 30, 662–666. [Google Scholar] [CrossRef] [Green Version]
- Cummins, E.P.; Oliver, K.M.; Lenihan, C.R.; Fitzpatrick, S.F.; Bruning, U.; Scholz, C.C.; Slattery, C.; Leonard, M.O.; McLoughlin, P.; Taylor, C.T. NF-κB links CO2 sensing to innate immunity and inflammation in mammalian cells. J. Immunol. 2010, 185, 4439–4445. [Google Scholar] [CrossRef] [Green Version]
- Keogh, C.E.; Scholz, C.C.; Rodriguez, J.; Selfridge, A.C.; von Kriegsheim, A.; Cummins, E.P. Carbon dioxide-dependent regulation of NF-kappaB family members RelB and p100 gives molecular insight into CO2-dependent immune regulation. J. Biol. Chem. 2017, 292, 11561–11571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogliotti, G.; Galliera, E.; Iorio, E.; De Bernardi Di Valserra, M.; Solimene, U.; Corsi, M.M. Effect of immersion in CO2-enriched water on free radical release and total antioxidant status in peripheral arterial occlusive disease. Int. Angiol. 2011, 30, 12–17. [Google Scholar]
- Bolevich, S.; Kogan, A.; Zivkovic, V.; Djuric, D.; Novikov, A.; Vorobyev, S.; Jakovljevic, V. Protective role of carbon dioxide (CO2) in generation of reactive oxygen species. Mol. Cell Biochem. 2016, 411, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Veselá, A.; Wilhelm, J. The role of carbon dioxide in free radical reactions of the organism. Physiol. Res. 2002, 51, 335–339. [Google Scholar]
- Nemeth, B.; Kiss, I.; Jencsik, T.; Peter, I.; Kreska, Z.; Koszegi, T.; Miseta, A.; Kustan, P.; Boncz, I.; Laczo, A.; et al. Angiotensin-converting enzyme inhibition improves the effectiveness of transcutaneous carbon dioxide treatment. vivo 2017, 31, 425–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botusan, I.R.; Sunkari, V.G.; Savu, O.; Catrina, A.I.; Grünler, J.; Lindberg, S.; Pereira, T.; Ylä-Herttuala, S.; Poellinger, L.; Brismar, K.; et al. Stabilization of HIF-1α is critical to improve wound healing in diabetic mice. Proc. Nat. Acad. Sci. USA 2008, 105, 19426–19431. [Google Scholar] [CrossRef] [Green Version]
- Stewart, K.J. Role of exercise training on cardiovascular disease in persons who have type 2 diabetes and hypertension. Cardiol. Clin. 2004, 22, 569–586. [Google Scholar] [CrossRef]
- Maruyama, K.; Okada, T.; Ueha, T.; Isohashi, K.; Ikeda, H.; Kanai, Y.; Sasaki, K.; Gentsu, T.; Ueshima, E.; Sofue, K.; et al. In vivo evaluation of percutaneous carbon dioxide treatment for improving intratumoral hypoxia using 18F-fluoromisonidazole PET-CT. Oncol. Lett. 2021, 21, 207. [Google Scholar] [CrossRef]
- Summers, B.A.; Overholt, J.L.; Prabhakar, N.R. CO2 and pH independently modulate L-type Ca2+ current in rabbit carotid body glomus cells. J. Neurophysiol. 2002, 88, 604–612. [Google Scholar] [CrossRef] [Green Version]
- Vadász, I.; Dada, L.A.; Briva, A.; Trejo, H.E.; Welch, L.C.; Chen, J.; Tóth, P.T.; Lecuona, E.; Witters, L.A.; Schumacker, P.T.; et al. AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting na, K-ATPase endocytosis. J. Clin. Investig. 2008, 118, 752–762. [Google Scholar] [CrossRef]
- Irrcher, I.; Adhihetty, P.J.; Sheehan, T.; Joseph, A.; Hood, D.A. PPARgamma coactivator-1alpha expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations. Am. J. Physiol: Cell Physiol. 2003, 284, C1669–C1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojuka, E.O.; Jones, T.E.; Han, D.; Chen, M.; Holloszy, J.O. Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle. FASEB J. 2003, 17, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Montalto, A.S.; Currò, M.; Russo, T.; Visalli, G.; Impellizzeri, P.; Antonuccio, P.; Arena, S.; Borruto, F.A.; Scalfari, G.; Ientile, R.; et al. In Vitro CO2-induced ROS production impairs cell cycle in SH-SY5Y neuroblastoma cells. Pediatr. Surg. Int. 2013, 29, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Iwabu, M.; Yamauchi, T.; Okada-Iwabu, M.; Sato, K.; Nakagawa, T.; Funata, M.; Yamaguchi, M.; Namiki, S.; Nakayama, R.; Tabata, M.; et al. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature 2010, 464, 1313–1319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivers, R.J.; Meininger, C.J. The Tissue Response to Hypoxia: How Therapeutic Carbon Dioxide Moves the Response toward Homeostasis and Away from Instability. Int. J. Mol. Sci. 2023, 24, 5181. https://doi.org/10.3390/ijms24065181
Rivers RJ, Meininger CJ. The Tissue Response to Hypoxia: How Therapeutic Carbon Dioxide Moves the Response toward Homeostasis and Away from Instability. International Journal of Molecular Sciences. 2023; 24(6):5181. https://doi.org/10.3390/ijms24065181
Chicago/Turabian StyleRivers, Richard J., and Cynthia J. Meininger. 2023. "The Tissue Response to Hypoxia: How Therapeutic Carbon Dioxide Moves the Response toward Homeostasis and Away from Instability" International Journal of Molecular Sciences 24, no. 6: 5181. https://doi.org/10.3390/ijms24065181
APA StyleRivers, R. J., & Meininger, C. J. (2023). The Tissue Response to Hypoxia: How Therapeutic Carbon Dioxide Moves the Response toward Homeostasis and Away from Instability. International Journal of Molecular Sciences, 24(6), 5181. https://doi.org/10.3390/ijms24065181