Hybrid Nanoparticles at Fluid–Fluid Interfaces: Insight from Theory and Simulation
Abstract
1. Introduction
2. Chemically Homogeneous Particles at Fluid–Fluid Interfaces
2.1. Simple Phenomenological Models of Nanoparticles at Interfaces
2.1.1. Spherical Particles with Homogeneous Surfaces
2.1.2. Non-Spherical Homogeneous Particles
2.2. Self-Assembly of Homogeneous Particles at Fluid–Fluid Interfaces
3. Janus Particles at Fluid–Fluid Interfaces
3.1. Thermodynamics of Janus Particles at Fluid–Fluid Interfaces
3.2. Spherical Janus Particles
3.3. Non-Spherical Janus Particles
3.4. Self-Assembly of Janus Particles at Fluid–Fluid Interfaces
4. Hairy Particles at Fluid–Fluid Interfaces
4.1. Individual Hairy Particles at Fluid–Fluid Interfaces
4.2. Self-Assembly of Hairy Particles at Fluid–Fluid Interfaces
5. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bresme, F.; Oettel, M. Nanoparticles at fluid interfaces. J. Phys. Condens. Matter 2007, 19, 413101. [Google Scholar] [CrossRef]
- Shi, S.; Russell, T.P. Nanoparticle Assembly at Liquid–Liquid Interfaces: From the Nanoscale to Mesoscale. Adv. Mater. 2018, 30, 1800714. [Google Scholar] [CrossRef]
- Guzmán, E.; Martínez-Pedrero, F.; Calero, C.; Maestro, A.; Ortega, F.; Rubio, R.G. A broad perspective to particle-laden fluid interfaces systems: From chemically homogeneous particles to active colloids. Adv. Colloid Interface Sci. 2022, 302, 102620. [Google Scholar] [CrossRef]
- Fernandez-Rodriguez, M.A.; Rodriguez-Valverde, M.A.; Cabrerizo-Vilchez, M.A.; Hidalgo-Alvarez, R. Surface activity of Janus particles adsorbed at fluid–fluid interfaces: Theoretical and experimental aspects. Adv. Colloid Interface Sci. 2016, 233, 240–254. [Google Scholar] [CrossRef]
- Fernandez-Rodriguez, M.A.; Binks, B.P.; Rodriguez-Valverde, M.A.; Cabrerizo-Vilchez, M.A.; Hidalgo-Alvarez, R. Particles adsorbed at various non-aqueous liquid-liquid interfaces. Adv. Colloid Interface Sci. 2017, 247, 208–222. [Google Scholar] [CrossRef]
- Bradley, L.C.; Chen, W.H.; Stebe, K.J.; Lee, D. Janus and patchy colloids at fluid interfaces. Curr. Opin. Colloid Interface Sci. 2017, 30, 25–33. [Google Scholar] [CrossRef]
- Giner-Casares, J.J.; Reguera, J. Directed self-assembly of inorganic nanoparticles at air/liquid interfaces. Nanoscale 2016, 8, 16589–16595. [Google Scholar] [CrossRef]
- Martínez-Pedrero, F. Static and dynamic behavior of magnetic particles at fluid interfaces. Adv. Colloid Interface Sci. 2020, 284, 102233. [Google Scholar] [CrossRef]
- Martínez-Pedrero, F.; Ortega, F.; Rubio, R.G.; Calero, C. Collective Transport of Magnetic Microparticles at a Fluid Interface through Dynamic Self-Assembled Lattices. Adv. Funct. Mater. 2020, 30, 2002206. [Google Scholar] [CrossRef]
- Gonzalez Ortiz, D.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Current Trends in Pickering Emulsions: Particle Morphology and Applications. Engineering 2020, 6, 468–482. [Google Scholar] [CrossRef]
- Cheng, Q.; Fang, H.; Cao, R.; Ma, Z.; Wang, S.; Xie, R.; Xia, H.; Wang, D. Interfacial self-assembly of nanoparticles into macroscopic, monolayered films. Supramol. Mater. 2022, 1, 100021. [Google Scholar] [CrossRef]
- Ji, X.; Wang, X.; Zhang, Y.; Zang, D. Interfacial viscoelasticity and jamming of colloidal particles at fluid–fluid interfaces: A review. Rep. Prog. Phys. 2020, 83, 126601. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Hurd Price, C.A.; Jing, L.; Tian, Q.; Liu, J.; Qian, K. Janus particles: Design, preparation, and biomedical applications. Mater. Today Bio 2019, 4, 100033. [Google Scholar] [CrossRef]
- Duan, Y.; Zhao, X.; Sun, M.; Hao, H. Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials. Ind. Eng. Chem. Res. 2021, 60, 1071–1095. [Google Scholar] [CrossRef]
- Bila, A.; Torsæter, O. Enhancing Oil Recovery with Hydrophilic Polymer-Coated Silica Nanoparticles. Energies 2020, 13, 5720. [Google Scholar] [CrossRef]
- Razavirad, F.; Shahrabadi, A.; Babakhani Dehkordi, P.; Rashidi, A. Experimental Pore-Scale Study of a Novel Functionalized Iron-Carbon Nanohybrid for Enhanced Oil Recovery (EOR). Nanomaterials 2022, 12, 103. [Google Scholar] [CrossRef]
- Hincapie, R.E.; Borovina, A.; Neubauer, E.; Tahir, M.; Saleh, S.; Arekhov, V.; Biernat, M.; Clemens, T. Recovery Observations from Alkali, Nanoparticles and Polymer Flooding as Combined Processes. Polymers 2022, 14, 603. [Google Scholar] [CrossRef]
- Wu, P.; Nikolov, A.D.; Wasan, D.T. Nanofluid Structural Forces Alter Solid Wetting, Enhancing Oil Recovery. Colloids Interfaces 2022, 6, 33. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, S.; Li, Q.; Liu, X.; Zou, H.; Yang, H. Metal-Nanoparticles-Loaded Ultrathin g-C3N4 Nanosheets at Liquid–Liquid Interfaces for Enhanced Biphasic Catalysis. ACS Appl. Mater. Interfaces 2021, 13, 47236–47243. [Google Scholar] [CrossRef] [PubMed]
- Rafique, K.; Anwar, M.I.; Misiran, M.; Khan, I.; Seikh, A.H.; Sherif, E.S.M.; Sooppy Nisar, K. Keller-Box Simulation for the Buongiorno Mathematical Model of Micropolar Nanofluid Flow over a Nonlinear Inclined Surface. Processes 2019, 7, 926. [Google Scholar] [CrossRef]
- Bakthavatchalam, B.; Habib, K.; Saidur, R.; Aslfattahi, N.; Rashedi, A. Investigation of Electrical Conductivity, Optical Property, and Stability of 2D MXene Nanofluid Containing Ionic Liquids. Appl. Sci. 2020, 10, 8943. [Google Scholar] [CrossRef]
- Alazwari, M.A.; Safaei, M.R. Combination Effect of Baffle Arrangement and Hybrid Nanofluid on Thermal Performance of a Shell and Tube Heat Exchanger Using 3-D Homogeneous Mixture Model. Mathematics 2021, 9, 881. [Google Scholar] [CrossRef]
- Baldin, V.; da Silva, L.R.R.; Gelamo, R.V.; Iglesias, A.B.; da Silva, R.B.; Khanna, N.; Rocha Machado, A. Influence of Graphene Nanosheets on Thermo-Physical and Tribological Properties of Sustainable Cutting Fluids for MQL Application in Machining Processes. Lubricants 2022, 10, 193. [Google Scholar] [CrossRef]
- Alwawi, F.A.; Al Faqih, F.M.; Swalmeh, M.Z.; Ibrahim, M.A.H. Combined Convective Energy Transmission Performance of Williamson Hybrid Nanofluid over a Cylindrical Shape with Magnetic and Radiation Impressions. Mathematics 2022, 10, 191. [Google Scholar] [CrossRef]
- Omri, M.; Aich, W.; Rmili, H.; Kolsi, L. Experimental Analysis of the Thermal Performance Enhancement of a Vertical Helical Coil Heat Exchanger Using Copper Oxide-Graphene (80-20Hybrid Nanofluid. Appl. Sci. 2022, 12, 614. [Google Scholar] [CrossRef]
- de Gennes, P.G. Soft matter. Rev. Mod. Phys. 1992, 64, 645–648. [Google Scholar] [CrossRef]
- Wei, P.; Luo, Q.; Edgehouse, K.J.; Hemmingsen, C.M.; Rodier, B.J.; Pentzer, E.B. 2D Particles at Fluid–Fluid Interfaces: Assembly and Templating of Hybrid Structures for Advanced Applications. ACS Appl. Mater. Interfaces 2018, 10, 21765–21781. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K.S.; Granick, S. Janus Particle Synthesis and Assembly. Adv. Mater. 2010, 22, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Ruditskiy, A.; Song, J.H.K.; Kretzschmar, I. Assembly Behavior of Iron Oxide-Capped Janus Particles in a Magnetic Field. Langmuir 2012, 28, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Shemi, O.; Solomon, M.J. Effect of Surface Chemistry and Metallic Layer Thickness on the Clustering of Metallodielectric Janus Spheres. Langmuir 2014, 30, 15408–15415. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Schultz, B.; Zhang, W.; Glotzer, S.C.; Solomon, M.J. Actuation of shape-memory colloidal fibres of Janus ellipsoids. Nat. Mater. 2015, 14, 117–124. [Google Scholar] [CrossRef]
- Pourrahimi, A.M.; Pumera, M. Multifunctional and self-propelled spherical Janus nano/micromotors: Recent advances. Nanoscale 2018, 10, 16398–16415. [Google Scholar] [CrossRef] [PubMed]
- Jalilvand, Z.; Haider, H.; Cui, J.; Kretzschmar, I. Pt-SiO2 Janus Particles and the Water/Oil Interface: A Competition between Motility and Thermodynamics. Langmuir 2020, 36, 6880–6887. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Brooks, A.M.; Shelton, W.A.; Bishop, K.J.M.; Bharti, B. Directed propulsion of spherical particles along three dimensional helical trajectories. Nat. Commun. 2019, 10, 2575. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Luan, J.; Wang, M.; Chen, Y.; Wilson, D.A.; Peng, F.; Tu, Y. Fabrication of Self-Propelled Micro- and Nanomotors Based on Janus Structures. Chem.—A Eur. J. 2019, 25, 8663–8680. [Google Scholar] [CrossRef]
- Fei, W.; Gu, Y.; Bishop, K.J. Active colloidal particles at fluid–fluid interfaces. Curr. Opin. Colloid Interface Sci. 2017, 32, 57–68. [Google Scholar] [CrossRef]
- Morozova, T.I.; Lee, V.E.; Bizmark, N.; Datta, S.S.; Prud’homme, R.K.; Nikoubashman, A.; Priestley, R.D. In Silico Design Enables the Rapid Production of Surface-Active Colloidal Amphiphiles. ACS Cent. Sci. 2020, 6, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Panday, P.N.; Bandopadhyay, A.; Das, P.K. Surfing of particles and droplets on the free surface of a liquid: A review. Eur. Phys. J. Spec. Top. 2022. [Google Scholar] [CrossRef]
- Sharan, P.; Postek, W.; Gemming, T.; Garstecki, P.; Simmchen, J. Study of Active Janus Particles in the Presence of an Engineered Oil–Water Interface. Langmuir 2021, 37, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Hou, W.; Zhao, H. Silica particles with dynamic Janus surfaces in Pickering emulsion. Polymer 2022, 240, 124487. [Google Scholar] [CrossRef]
- Tu, F.; Park, B.J.; Lee, D. Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants. Langmuir 2013, 29, 12679–12687. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Li, Y.; Wang, L.; Chen, D.; Bao, M.; Wang, Z. Amphiphilic Janus particles for efficient dispersion of oil contaminants in seawater. J. Colloid Interface Sci. 2019, 556, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, T.; Yang, X.; Jiang, G.; Luckham, P.F.; Xu, J.; Li, X.; Ni, X. Highly Stabilized Foam by Adding Amphiphilic Janus Particles for Drilling a High-Temperature and High-Calcium Geothermal Well. Ind. Eng. Chem. Res. 2019, 58, 9795–9805. [Google Scholar] [CrossRef]
- Månsson, L.K.; Peng, F.; Crassous, J.J.; Schurtenberger, P. A microgel-Pickering emulsion route to colloidal molecules with temperature-tunable interaction sites. Soft Matter 2020, 16, 1908–1921. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, X.; Fu, Z.; Zhao, X.; Li, Y.; Li, J. Rheology of Nanosilica-Compatibilized Immiscible Polymer Blends: Formation of a “Heterogeneous Network” Facilitated by Interfacially Anchored Hybrid Nanosilica. Macromolecules 2017, 50, 9494–9506. [Google Scholar] [CrossRef]
- Yao, X.; Zhao, G.; Dai, C.; Wu, Y.; Lyu, Y. Interfacial characteristics and the stability mechanism of a dispersed particle gel (DPG) three-phase foam. J. Mol. Liq. 2020, 301, 112425. [Google Scholar] [CrossRef]
- Binks, B.P.; Vishal, B. Particle-stabilized oil foams. Adv. Colloid Interface Sci. 2021, 291, 102404. [Google Scholar] [CrossRef]
- Low, L.E.; Siva, S.P.; Ho, Y.K.; Chan, E.S.; Tey, B.T. Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Adv. Colloid Interface Sci. 2020, 277, 102117. [Google Scholar] [CrossRef]
- Yi, Y.; Sanchez, L.; Gao, Y.; Yu, Y. Janus particles for biological imaging and sensing. Analyst 2016, 141, 3526–3539. [Google Scholar] [CrossRef]
- Xing, Y.; Zhou, Y.; Fan, L.; Yang, Y.; Zhang, Y.; Deng, X.; Dong, C.; Shuang, S. Construction strategy for ratiometric fluorescent probe based on Janus silica nanoparticles as a platform toward intracellular pH detection. Talanta 2019, 205, 120021. [Google Scholar] [CrossRef]
- Forth, J.; Kim, P.Y.; Xie, G.; Liu, X.; Helms, B.A.; Russell, T.P. Building Reconfigurable Devices Using Complex Liquid–Fluid Interfaces. Adv. Mater. 2019, 31, 1806370. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, S.; Villa, C.H.; Dishman, A.F.; Grabowski, M.E.; Pan, D.C.; Durmaz, H.; Misra, A.C.; Colón-Meléndez, L.; Solomon, M.J.; Muzykantov, V.R.; et al. Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications. J. Drug Target. 2015, 23, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Lin, J.; Li, Y.; Li, Y.; Wu, H.; Yu, F.; Jia, M.; Yang, X.; Wu, S.; Xie, L.; et al. Bacillus-Shape Design of Polymer Based Drug Delivery Systems with Janus-Faced Function for Synergistic Targeted Drug Delivery and More Effective Cancer Therapy. Mol. Pharm. 2015, 12, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Tohidi, Z.; Teimouri, A.; Jafari, A.; Gharibshahi, R.; Omidkhah, M.R. Application of Janus nanoparticles in enhanced oil recovery processes: Current status and future opportunities. J. Pet. Sci. Eng. 2022, 208, 109602. [Google Scholar] [CrossRef]
- Cao, J.; Chen, Y.; Xu, G.; Wang, X.; Li, Y.; Zhao, S.; Liu, C.; Wang, X. Study on interface regulation effects of Janus nanofluid for enhanced oil recovery. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 653, 129880. [Google Scholar] [CrossRef]
- Moffitt, M.G. Self-Assembly of Polymer Brush-Functionalized Inorganic Nanoparticles: From Hairy Balls to Smart Molecular Mimics. J. Phys. Chem. Lett. 2013, 4, 3654–3666. [Google Scholar] [CrossRef]
- Zhao, B.; Zhu, L. Mixed Polymer Brush-Grafted Particles: A New Class of Environmentally Responsive Nanostructured Materials. Macromolecules 2009, 42, 9369–9383. [Google Scholar] [CrossRef]
- Garbin, V.; Crocker, J.C.; Stebe, K.J. Nanoparticles at fluid interfaces: Exploiting capping ligands to control adsorption, stability and dynamics. J. Colloid Interface Sci. 2012, 387, 1–11. [Google Scholar] [CrossRef]
- Pengo, P.; Şologan, M.; Pasquato, L.; Guida, F.; Pacor, S.; Tossi, A.; Stellacci, F.; Marson, D.; Boccardo, S.; Pricl, S.; et al. Gold nanoparticles with patterned surface monolayers for nanomedicine: Current perspectives. Eur. Biophys. J. 2017, 46, 749–771. [Google Scholar] [CrossRef]
- Ballard, N.; Law, A.D.; Bon, S.A.F. Colloidal particles at fluid interfaces: Behaviour of isolated particles. Soft Matter 2019, 15, 1186–1199. [Google Scholar] [CrossRef]
- Correia, E.L.; Brown, N.; Razavi, S. Janus Particles at Fluid Interfaces: Stability and Interfacial Rheology. Nanomaterials 2021, 11, 374. [Google Scholar] [CrossRef]
- Dani, A.; Yeganeh, M.; Maldarelli, C. Hydrodynamic interactions between charged and uncharged Brownian colloids at a fluid–fluid interface. J. Colloid Interface Sci. 2022, 628, 931–945. [Google Scholar] [CrossRef] [PubMed]
- López, D.; Chamat, N.M.; Galeano-Caro, D.; Páramo, L.; Ramirez, D.; Jaramillo, D.; Cortés, F.B.; Franco, C.A. Use of Nanoparticles in Completion Fluids as Dual Effect Treatments for Well Stimulation and Clay Swelling Damage Inhibition: An Assessment of the Effect of Nanoparticle Chemical Nature. Nanomaterials 2023, 13, 388. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Abdelmonem, A.M.; Behzadi, S.; Clement, J.H.; Dutz, S.; Ejtehadi, M.R.; Hartmann, R.; Kantner, K.; Linne, U.; Maffre, P.; et al. Temperature: The “Ignored” Factor at the NanoBio Interface. ACS Nano 2013, 7, 6555–6562. [Google Scholar] [CrossRef] [PubMed]
- Rowlinson, J.; Widom, B. Molecular Theory of Capillarity; Dover Books on Chemistry; Dover Publications: Mineola, NY, USA, 2002. [Google Scholar]
- Pieranski, P. Two-Dimensional Interfacial Colloidal Crystals. Phys. Rev. Lett. 1980, 45, 569–572. [Google Scholar] [CrossRef]
- Maestro, A.; Guzmán, E.; Ortega, F.; Rubio, R.G. Contact angle of micro- and nanoparticles at fluid interfaces. Curr. Opin. Colloid Interface Sci. 2014, 19, 355–367. [Google Scholar] [CrossRef]
- Amirfazli, A.; Neumann, A. Status of the three-phase line tension: A review. Adv. Colloid Interface Sci. 2004, 110, 121–141. [Google Scholar] [CrossRef]
- Aveyard, R.; Clint, J.H.; Horozov, T.S. Aspects of the stabilisation of emulsions by solid particles: Effects of line tension and monolayer curvature energy. Phys. Chem. Chem. Phys. 2003, 5, 2398–2409. [Google Scholar] [CrossRef]
- McBride, S.P.; Law, B.M. Influence of Line Tension on Spherical Colloidal Particles at Liquid-Vapor Interfaces. Phys. Rev. Lett. 2012, 109, 196101. [Google Scholar] [CrossRef]
- Cheung, D.L. Molecular dynamics study of nanoparticle stability at liquid interfaces: Effect of nanoparticle-solvent interaction and capillary waves. J. Chem. Phys. 2011, 135, 054704. [Google Scholar] [CrossRef]
- Cheung, D.L.; Bon, S.A.F. Interaction of Nanoparticles with Ideal Liquid-Liquid Interfaces. Phys. Rev. Lett. 2009, 102, 066103. [Google Scholar] [CrossRef]
- Soligno, G.; Dijkstra, M.; van Roij, R. The equilibrium shape of fluid–fluid interfaces: Derivation and a new numerical method for Young’s and Young-Laplace equations. J. Chem. Phys. 2014, 141, 244702. [Google Scholar] [CrossRef]
- Nonomura, Y.; Komura, S. Surface activity of solid particles with extremely rough surfaces. J. Colloid Interface Sci. 2008, 317, 501–506. [Google Scholar] [CrossRef]
- Mable, C.J.; Warren, N.J.; Thompson, K.L.; Mykhaylyk, O.O.; Armes, S.P. Framboidal ABC triblock copolymer vesicles: A new class of efficient Pickering emulsifier. Chem. Sci. 2015, 6, 6179–6188. [Google Scholar] [CrossRef]
- Zanini, M.; Lesov, I.; Marini, E.; Hsu, C.P.; Marschelke, C.; Synytska, A.; Anachkov, S.E.; Isa, L. Detachment of Rough Colloids from Liquid–Liquid Interfaces. Langmuir 2018, 34, 4861–4873. [Google Scholar] [CrossRef] [PubMed]
- Aveyard, R.; Binks, B.P.; Clint, J.H. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 2003, 100–102, 503–546. [Google Scholar] [CrossRef]
- Deshmukh, O.S.; van den Ende, D.; Stuart, M.C.; Mugele, F.; Duits, M.H. Hard and soft colloids at fluid interfaces: Adsorption, interactions, assembly & rheology. Adv. Colloid Interface Sci. 2015, 222, 215–227. [Google Scholar] [CrossRef]
- Vialetto, J.; Zanini, M.; Isa, L. Attachment and detachment of particles to and from fluid interfaces. Curr. Opin. Colloid Interface Sci. 2022, 58, 101560. [Google Scholar] [CrossRef]
- Levine, S.; Bowen, B.D.; Partridge, S.J. Stabilization of emulsions by fine particles I. Partitioning of particles between continuous phase and oil/water interface. Colloids Surfaces 1989, 38, 325–343. [Google Scholar] [CrossRef]
- Binks, B.P.; Clint, J.H. Solid Wettability from Surface Energy Components: Relevance to Pickering Emulsions. Langmuir 2002, 18, 1270–1273. [Google Scholar] [CrossRef]
- de Graaf, J.; Dijkstra, M.; van Roij, R. Triangular tessellation scheme for the adsorption free energy at the liquid-liquid interface: Towards nonconvex patterned colloids. Phys. Rev. E 2009, 80, 051405. [Google Scholar] [CrossRef] [PubMed]
- Ballard, N.; Bon, S.A.F. Equilibrium orientations of non-spherical and chemically anisotropic particles at liquid-liquid interfaces and the effect on emulsion stability. J. Colloid Interface Sci. 2015, 448, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Coertjens, S.; Moldenaers, P.; Vermant, J.; Isa, L. Contact Angles of Microellipsoids at Fluid Interfaces. Langmuir 2014, 30, 4289–4300. [Google Scholar] [CrossRef] [PubMed]
- de Folter, J.W.J.; Hutter, E.M.; Castillo, S.I.R.; Klop, K.E.; Philipse, A.P.; Kegel, W.K. Particle Shape Anisotropy in Pickering Emulsions: Cubes and Peanuts. Langmuir 2014, 30, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Johnson, D.T. Adsorption of Acicular Particles at Liquid-Fluid Interfaces and the Influence of the Line Tension. Langmuir 2005, 21, 3838–3849. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, E.P.; Cavallaro, M.J.; Botto, L.; Bernate, J.C.; Garbin, V.; Stebe, K.J. Orientation and Self-Assembly of Cylindrical Particles by Anisotropic Capillary Interactions. Langmuir 2010, 26, 15142–15154. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, E.P.; Searson, P.C.; Stebe, K.J. Orientation of a Nanocylinder at a Fluid Interface. J. Phys. Chem. B 2006, 110, 4283–4290. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.R.; Ballard, N.; Rochford, L.A.; Nurumbetov, G.; Skelhon, T.S.; Bon, S.A.F. Understanding the multiple orientations of isolated superellipsoidal hematite particles at the oil–water interface. Soft Matter 2013, 9, 487–491. [Google Scholar] [CrossRef]
- Morris, G.; Neethling, S.; Cilliers, J. The effects of hydrophobicity and orientation of cubic particles on the stability of thin films. Miner. Eng. 2010, 23, 979–984. [Google Scholar] [CrossRef]
- Soligno, G.; Dijkstra, M.; van Roij, R. Self-Assembly of Cubes into 2D Hexagonal and Honeycomb Lattices by Hexapolar Capillary Interactions. Phys. Rev. Lett. 2016, 116, 258001. [Google Scholar] [CrossRef]
- Basavaraj, M.G.; Fuller, G.G.; Fransaer, J.; Vermant, J. Packing, Flipping, and Buckling Transitions in Compressed Monolayers of Ellipsoidal Latex Particles. Langmuir 2006, 22, 6605–6612. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, Q.; Gupta, S.; Emrick, T.; Russell, T.; Thiyagarajan, P. Drying Droplets: A Window into the Behavior of Nanorods at Interfaces. Small 2007, 3, 1214–1217. [Google Scholar] [CrossRef] [PubMed]
- Faraudo, J.; Bresme, F. Stability of particles adsorbed at liquid/fluid interfaces: Shape effects induced by line tension. J. Chem. Phys. 2003, 118, 6518–6528. [Google Scholar] [CrossRef]
- Faraudo, J.; Bresme, F. Interplay between thermodynamics and geometry in the adsorption of non-spherical nanoparticles at liquid/liquid interfaces. J. Non-Equilib. Thermodyn. 2004, 29, 397–404. [Google Scholar] [CrossRef]
- Bradley, L.C.; Chen, W.H.; Lee, D. Chapter 7—Anisotropic particles at fluid–fluid interfaces (experiment). In Anisotropic Particle Assemblies; Wu, N., Lee, D., Striolo, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 201–231. [Google Scholar] [CrossRef]
- Millett, P.C.; Wang, Y.U. Diffuse-interface field approach to modeling arbitrarily-shaped particles at fluid–fluid interfaces. J. Colloid Interface Sci. 2011, 353, 46–51. [Google Scholar] [CrossRef]
- Günther, F.; Janoschek, F.; Frijters, S.; Harting, J. Lattice Boltzmann simulations of anisotropic particles at liquid interfaces. Comput. Fluids 2013, 80, 184–189. [Google Scholar] [CrossRef]
- Davies, G.B.; Krüger, T.; Coveney, P.V.; Harting, J. Detachment energies of spheroidal particles from fluid–fluid interfaces. J. Chem. Phys. 2014, 141, 154902. [Google Scholar] [CrossRef]
- Luo, A.M.; Vermant, J.; Ilg, P.; Zhang, Z.; Sagis, L.M. Self-assembly of ellipsoidal particles at fluid–fluid interfaces with an empirical pair potential. J. Colloid Interface Sci. 2019, 534, 205–214. [Google Scholar] [CrossRef]
- Fan, H.; Resasco, D.E.; Striolo, A. Amphiphilic Silica Nanoparticles at the Decane-Water Interface: Insights from Atomistic Simulations. Langmuir 2011, 27, 5264–5274. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Striolo, A. Nanoparticle effects on the water-oil interfacial tension. Phys. Rev. E 2012, 86, 051610. [Google Scholar] [CrossRef]
- Luu, X.C.; Yu, J.; Striolo, A. Nanoparticles Adsorbed at the Water/Oil Interface: Coverage and Composition Effects on Structure and Diffusion. Langmuir 2013, 29, 7221–7228. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.M.; Jaeger, H.M.; Sorensen, C.M.; Klabunde, K.J. Formation of Long-Range-Ordered Nanocrystal Superlattices on Silicon Nitride Substrates. J. Phys. Chem. B 2001, 105, 3353–3357. [Google Scholar] [CrossRef]
- Bigioni, T.; Lin, X.M.; Nguyen, T.; Corwin, E.; Witten, T.; Jaeger, H. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 2006, 5, 265–270. [Google Scholar] [CrossRef]
- Sear, R.P.; Chung, S.W.; Markovich, G.; Gelbart, W.M.; Heath, J.R. Spontaneous patterning of quantum dots at the air-water interface. Phys. Rev. E 1999, 59, R6255–R6258. [Google Scholar] [CrossRef]
- Chen, W.; Tan, S.; Ng, T.K.; Ford, W.T.; Tong, P. Long-Ranged Attraction between Charged Polystyrene Spheres at Aqueous Interfaces. Phys. Rev. Lett. 2005, 95, 218301. [Google Scholar] [CrossRef]
- Li-Destri, G.; Ruffino, R.; Tuccitto, N.; Marletta, G. In situ structure and force characterization of 2D nano-colloids at the air/water interface. Soft Matter 2019, 15, 8475–8482. [Google Scholar] [CrossRef]
- Santini, E.; Guzmán, E.; Ravera, F.; Ciajolo, A.; Alfè, M.; Liggieri, L.; Ferrari, M. Soot particles at the aqueous interface and effects on foams stability. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 413, 216–223. [Google Scholar] [CrossRef]
- Rahman, S.E.; Laal-Dehghani, N.; Barman, S.; Christopher, G.F. Modifying interfacial interparticle forces to alter microstructure and viscoelasticity of densely packed particle laden interfaces. J. Colloid Interface Sci. 2019, 536, 30–41. [Google Scholar] [CrossRef]
- Reynaert, S.; Moldenaers, P.; Vermant, J. Control over Colloidal Aggregation in Monolayers of Latex Particles at the Oil-Water Interface. Langmuir 2006, 22, 4936–4945. [Google Scholar] [CrossRef] [PubMed]
- Bonales, L.J.; Martínez-Pedrero, F.; Rubio, M.A.; Rubio, R.G.; Ortega, F. Phase Behavior of Dense Colloidal Binary Monolayers. Langmuir 2012, 28, 16555–16566. [Google Scholar] [CrossRef] [PubMed]
- Bonales, L.J.; Rubio, J.E.F.; Ritacco, H.; Vega, C.; Rubio, R.G.; Ortega, F. Freezing Transition and Interaction Potential in Monolayers of Microparticles at Fluid Interfaces. Langmuir 2011, 27, 3391–3400. [Google Scholar] [CrossRef] [PubMed]
- Parolini, L.; Law, A.D.; Maestro, A.; Buzza, D.M.A.; Cicuta, P. Interaction between colloidal particles on an oil–water interface in dilute and dense phases. J. Phys. Condens. Matter 2015, 27, 194119. [Google Scholar] [CrossRef]
- Toor, A.; Feng, T.; Russell, T.P. Self-assembly of nanomaterials at fluid interfaces. Eur. Phys. J. E 2016, 39, 1–13. [Google Scholar] [CrossRef]
- Zang, D.; Stocco, A.; Langevin, D.; Wei, B.; Binks, B.P. An ellipsometry study of silica nanoparticle layers at the water surface. Phys. Chem. Chem. Phys. 2009, 11, 9522–9529. [Google Scholar] [CrossRef]
- Li, Y.J.; Huang, W.J.; Sun, S.G. A Universal Approach for the Self-Assembly of Hydrophilic Nanoparticles into Ordered Monolayer Films at a Toluene/Water Interface. Angew. Chem. Int. Ed. 2006, 45, 2537–2539. [Google Scholar] [CrossRef]
- Lin, H.; Song, L.; Huang, Y.; Cheng, Q.; Yang, Y.; Guo, Z.; Su, F.; Chen, T. Macroscopic Au@PANI Core/Shell Nanoparticle Superlattice Monolayer Film with Dual-Responsive Plasmonic Switches. ACS Appl. Mater. Interfaces 2020, 12, 11296–11304. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrovic, V.; Greshnykh, D.; Randjelovic, I.; Frömsdorf, A.; Kornowski, A.; Roth, S.V.; Klinke, C.; Weller, H. Preparation and Electrical Properties of Cobalt-Platinum Nanoparticle Monolayers Deposited by the Langmuir-Blodgett Technique. ACS Nano 2008, 2, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Dong, A.; Chen, J.; Vora, P.; Kikkawa, J.; Murray, C. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 2010, 466, 474–477. [Google Scholar] [CrossRef]
- Dong, A.; Chen, J.; Oh, S.J.; Koh, W.k.; Xiu, F.; Ye, X.; Ko, D.K.; Wang, K.L.; Kagan, C.R.; Murray, C.B. Multiscale Periodic Assembly of Striped Nanocrystal Superlattice Films on a Liquid Surface. Nano Lett. 2011, 11, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Yoo, S.H.; Park, S. Three-Dimensional Pt-Coated Au Nanoparticle Arrays: Applications for Electrocatalysis and Surface-Enhanced Raman Scattering. Langmuir 2008, 24, 4370–4375. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Park, Y.K.; Kim, S.K.; Park, S. Linker-Molecule-Free Gold Nanorod Layer-by-Layer Films for Surface-Enhanced Raman Scattering. Anal. Chem. 2007, 79, 8584–8589. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Oh, M.K.; Kim, S.K.; Park, S. Linker-Molecule-Free Gold Nanorod Films: Effect of Nanorod Size on Surface Enhanced Raman Scattering. J. Phys. Chem. C 2009, 113, 13551–13557. [Google Scholar] [CrossRef]
- Park, Y.K.; Yoo, S.H.; Park, S. Assembly of Highly Ordered Nanoparticle Monolayers at a Water/Hexane Interface. Langmuir 2007, 23, 10505–10510. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Park, S. Directing Close-Packing of Midnanosized Gold Nanoparticles at a Water/Hexane Interface. Chem. Mater. 2008, 20, 2388–2393. [Google Scholar] [CrossRef]
- Hu, L.; Wu, L.; Liao, M.; Fang, X. High-Performance NiCo2O4 Nanofilm Photodetectors Fabricated by an Interfacial Self-Assembly Strategy. Adv. Mater. 2011, 23, 1988–1992. [Google Scholar] [CrossRef]
- Hu, L.; Chen, M.; Fang, X.; Wu, L. Oil–water interfacial self-assembly: A novel strategy for nanofilm and nanodevice fabrication. Chem. Soc. Rev. 2012, 41, 1350–1362. [Google Scholar] [CrossRef]
- Chen, M.; Hu, L.; Xu, J.; Liao, M.; Wu, L.; Fang, X. ZnO Hollow-Sphere Nanofilm-Based High-Performance and Low-Cost Photodetector. Small 2011, 7, 2449–2453. [Google Scholar] [CrossRef]
- Cui, B.; Lin, H.; Liu, Y.z.; Li, J.b.; Sun, P.; Zhao, X.c.; Liu, C.j. Photophysical and Photocatalytic Properties of Core-Ring Structured NiCo2O4 Nanoplatelets. J. Phys. Chem. C 2009, 113, 14083–14087. [Google Scholar] [CrossRef]
- Biswas, S.; Drzal, L.T. A Novel Approach to Create a Highly Ordered Monolayer Film of Graphene Nanosheets at the Liquid-Liquid Interface. Nano Lett. 2009, 9, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Kutuzov, S.; He, J.; Tangirala, R.; Emrick, T.; Russell, T.P.; Böker, A. On the kinetics of nanoparticle self-assembly at liquid/liquid interfaces. Phys. Chem. Chem. Phys. 2007, 9, 6351–6358. [Google Scholar] [CrossRef]
- Vialetto, J.; Rudiuk, S.; Morel, M.; Baigl, D. From bulk crystallization of inorganic nanoparticles at the air/water interface: Tunable organization and intense structural colors. Nanoscale 2020, 12, 6279–6284. [Google Scholar] [CrossRef]
- Luo, M.; Mazyar, O.A.; Zhu, Q.; Vaughn, M.W.; Hase, W.L.; Dai, L.L. Molecular Dynamics Simulation of Nanoparticle Self-Assembly at a Liquid-Liquid Interface. Langmuir 2006, 22, 6385–6390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pfleiderer, P.; Schofield, A.B.; Clasen, C.; Vermant, J. Synthesis and Directed Self-Assembly of Patterned Anisometric Polymeric Particles. J. Am. Chem. Soc. 2011, 133, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Razavi, S.; Kretzschmar, I.; Koplik, J.; Colosqui, C.E. Nanoparticles at liquid interfaces: Rotational dynamics and angular locking. J. Chem. Phys. 2014, 140, 014904. [Google Scholar] [CrossRef]
- Razavi, S.; Koplik, J.; Kretzschmar, I. Molecular Dynamics Simulations: Insight into Molecular Phenomena at Interfaces. Langmuir 2014, 30, 11272–11283. [Google Scholar] [CrossRef] [PubMed]
- Park, B.J.; Lee, D. Equilibrium Orientation of Nonspherical Janus Particles at Fluid–Fluid Interfaces. ACS Nano 2012, 6, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Ondarçuhu, T.; Fabre, P.; Raphaël, E.; Veyssié, M. Specific properties of amphiphilic particles at fluid interfaces. J. Phys. Fr. 1990, 51, 1527–1536. [Google Scholar] [CrossRef]
- Binks, B.P.; Fletcher, P.D.I. Particles Adsorbed at the Oil-Water Interface: A Theoretical Comparison between Spheres of Uniform Wettability and “Janus” Particles. Langmuir 2001, 17, 4708–4710. [Google Scholar] [CrossRef]
- Jiang, S.; Granick, S. Janus balance of amphiphilic colloidal particles. J. Chem. Phys. 2007, 127, 161102. [Google Scholar] [CrossRef]
- Rezvantalab, H.; Shojaei-Zadeh, S. Designing patchy particles for optimum interfacial activity. Phys. Chem. Chem. Phys. 2014, 16, 8283–8293. [Google Scholar] [CrossRef]
- Aveyard, R. Can Janus particles give thermodynamically stable Pickering emulsions? Soft Matter 2012, 8, 5233–5240. [Google Scholar] [CrossRef]
- Rezvantalab, H.; Shojaei-Zadeh, S. Capillary interactions between spherical Janus particles at liquid–fluid interfaces. Soft Matter 2013, 9, 3640–3650. [Google Scholar] [CrossRef]
- Brakke, K.A.; Klinowski, J.; Mackay, A.L. The Surface Evolver and the stability of liquid surfaces. Philos. Trans. R. Soc. London. Ser. A: Math. Phys. Eng. Sci. 1996, 354, 2143–2157. [Google Scholar] [CrossRef]
- Cheung, D.L.; Bon, S.A.F. Stability of Janus nanoparticles at fluid interfaces. Soft Matter 2009, 5, 3969–3976. [Google Scholar] [CrossRef]
- Razavi, S.; Koplik, J.; Kretzschmar, I. The effect of capillary bridging on the Janus particle stability at the interface of two immiscible liquids. Soft Matter 2013, 9, 4585–4589. [Google Scholar] [CrossRef]
- Jeong, H.W.; Park, J.W.; Lee, H.M.; Choi, K.H.; Lee, S.J.; Kim, J.W.; Park, B.J. Retardation of Capillary Force between Janus Particles at the Oil-Water Interface. J. Phys. Chem. Lett. 2022, 13, 10018–10024. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Ko, W.; Lee, B.; Park, B. Effect of Geometric and Chemical Anisotropy of Janus Ellipsoids on Janus Boundary Mismatch at the Fluid–Fluid Interface. Materials 2016, 9, 664. [Google Scholar] [CrossRef]
- Park, B.J.; Lee, D. Configuration of nonspherical amphiphilic particles at a fluid–fluid interface. Soft Matter 2012, 8, 7690–7698. [Google Scholar] [CrossRef]
- Park, B.J.; Choi, C.H.; Kang, S.M.; Tettey, K.E.; Lee, C.S.; Lee, D. Double Hydrophilic Janus Cylinders at an Air–Water Interface. Langmuir 2013, 29, 1841–1849. [Google Scholar] [CrossRef] [PubMed]
- Park, B.J.; Choi, C.H.; Kang, S.M.; Tettey, K.E.; Lee, C.S.; Lee, D. Geometrically and chemically anisotropic particles at an oil–water interface. Soft Matter 2013, 9, 3383–3388. [Google Scholar] [CrossRef]
- Borówko, M.; Słyk, E.; Sokołowski, S.; Staszewski, T. Janus Dimers at Liquid–Liquid Interfaces. J. Phys. Chem. B 2019, 123, 4139–4147. [Google Scholar] [CrossRef] [PubMed]
- Borówko, M.; Sokołowski, S.; Staszewski, T. Amphiphilic Dimers at Liquid–Liquid Interfaces: A Density Functional Approach. J. Phys. Chem. B 2019, 123, 5962–5972. [Google Scholar] [CrossRef] [PubMed]
- Neumann, A.; Economopoulos, O.; Boruvka, L.; Rapacchietta, A. Free energy analysis of heterogeneous cylindrical particles at fluid interfaces. J. Colloid Interface Sci. 1979, 71, 293–300. [Google Scholar] [CrossRef]
- Gao, H.M.; Lu, Z.Y.; Liu, H.; Sun, Z.Y.; An, L.J. Orientation and surface activity of Janus particles at fluid–fluid interfaces. J. Chem. Phys. 2014, 141, 134907. [Google Scholar] [CrossRef] [PubMed]
- Luu, X.C.; Yu, J.; Striolo, A. Ellipsoidal Janus Nanoparticles Adsorbed at the Water–Oil Interface: Some Evidence of Emergent Behavior. J. Phys. Chem. B 2013, 117, 13922–13929. [Google Scholar] [CrossRef] [PubMed]
- Luu, X.C.; Striolo, A. Ellipsoidal Janus Nanoparticles Assembled at Spherical Oil/Water Interfaces. J. Phys. Chem. B 2014, 118, 13737–13743. [Google Scholar] [CrossRef] [PubMed]
- Ruhland, T.M.; Gröschel, A.H.; Walther, A.; Müller, A.H.E. Janus Cylinders at Liquid–Liquid Interfaces. Langmuir 2011, 27, 9807–9814. [Google Scholar] [CrossRef] [PubMed]
- Ruhland, T.M.; Gröschel, A.H.; Ballard, N.; Skelhon, T.S.; Walther, A.; Müller, A.H.E.; Bon, S.A.F. Influence of Janus Particle Shape on Their Interfacial Behavior at Liquid–Liquid Interfaces. Langmuir 2013, 29, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Anzivino, C.; Chang, F.; Soligno, G.; van Roij, R.; Kegel, W.K.; Dijkstra, M. Equilibrium configurations and capillary interactions of Janus dumbbells and spherocylinders at fluid–fluid interfaces. Soft Matter 2019, 15, 2638–2647. [Google Scholar] [CrossRef]
- Günther, F.; Xie, Q.; Harting, J. Equilibrium Orientation and Adsorption of an Ellipsoidal Janus Particle at a Fluid–Fluid Interface. Colloids Interfaces 2020, 4, 55. [Google Scholar] [CrossRef]
- Hossain, M.T.; Gates, I.D.; Natale, G. Dynamics of Brownian Janus rods at a liquid–liquid interface. Phys. Fluids 2022, 34, 012117. [Google Scholar] [CrossRef]
- Park, B.J.; Brugarolas, T.; Lee, D. Janus particles at an oil–water interface. Soft Matter 2011, 7, 6413–6417. [Google Scholar] [CrossRef]
- Adams, D.J.; Adams, S.; Melrose, J.; Weaver, A.C. Influence of particle surface roughness on the behaviour of Janus particles at interfaces. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 360–365. [Google Scholar] [CrossRef]
- Lenis, J.; Razavi, S.; Cao, K.D.; Lin, B.; Lee, K.Y.C.; Tu, R.S.; Kretzschmar, I. Mechanical Stability of Polystyrene and Janus Particle Monolayers at the Air/Water Interface. J. Am. Chem. Soc. 2015, 137, 15370–15373. [Google Scholar] [CrossRef] [PubMed]
- Sashuk, V.; Hołyst, R.; Wojciechowski, T.; Fiałkowski, M. Close-packed monolayers of charged Janus-type nanoparticles at the air–water interface. J. Colloid Interface Sci. 2012, 375, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, T.G.; Iwashita, Y.; Kimura, Y. Dependence of the Internal Structure on Water/Particle Volume Ratio in an Amphiphilic Janus Particle–Water–Oil Ternary System: From Micelle-like Clusters to Emulsions of Spherical Droplets. Langmuir 2017, 33, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Kozina, A.; Ramos, S.; Díaz-Leyva, P.; Castillo, R. Bilayers of Janus and homogeneous particle mixtures trapped at an air/water interface. Soft Matter 2018, 14, 2582–2585. [Google Scholar] [CrossRef]
- Sumer, Z.; Striolo, A. Nanoparticles shape-specific emergent behaviour on liquid crystal droplets. Mol. Syst. Des. Eng. 2020, 5, 449–460. [Google Scholar] [CrossRef]
- Kadam, R.; Zilli, M.; Maas, M.; Rezwan, K. Nanoscale Janus Particles with Dual Protein Functionalization. Part. Part. Syst. Charact. 2018, 35, 1700332. [Google Scholar] [CrossRef]
- Binder, K.; Milchev, A. Polymer brushes on flat and curved surfaces: How computer simulations can help to test theories and to interpret experiments. J. Polym. Sci. Part B: Polym. Phys. 2012, 50, 1515–1555. [Google Scholar] [CrossRef]
- Brancolini, G.; Tozzini, V. Building Minimalist Models for Functionalized Metal Nanoparticles. Front. Mol. Biosci. 2019, 6. [Google Scholar] [CrossRef] [PubMed]
- Ohno, K.; Morinaga, T.; Takeno, S.; Tsujii, Y.; Fukuda, T. Suspensions of Silica Particles Grafted with Concentrated Polymer Brush: Effects of Graft Chain Length on Brush Layer Thickness and Colloidal Crystallization. Macromolecules 2007, 40, 9143–9150. [Google Scholar] [CrossRef]
- Ohno, K.; Morinaga, T.; Takeno, S.; Tsujii, Y.; Fukuda, T. Suspensions of Silica Particles Grafted with Concentrated Polymer Brush: A New Family of Colloidal Crystals. Macromolecules 2006, 39, 1245–1249. [Google Scholar] [CrossRef]
- Daoud, M.; Cotton, J.P. Star shaped polymers: A model for the conformation and its concentration dependence. J. Phys. Fr. 1982, 43, 531–538. [Google Scholar] [CrossRef]
- Dan, N.; Tirrell, M. Polymers tethered to curves interfaces: A self-consistent-field analysis. Macromolecules 1992, 25, 2890–2895. [Google Scholar] [CrossRef]
- Wijmans, C.M.; Zhulina, E.B. Polymer brushes at curved surfaces. Macromolecules 1993, 26, 7214–7224. [Google Scholar] [CrossRef]
- Lo Verso, F.; Egorov, S.A.; Milchev, A.; Binder, K. Spherical polymer brushes under good solvent conditions: Molecular dynamics results compared to density functional theory. J. Chem. Phys. 2010, 133, 184901. [Google Scholar] [CrossRef]
- Ginzburg, V.V. Modeling the Morphology and Phase Behavior of One-Component Polymer-Grafted Nanoparticle Systems. Macromolecules 2017, 50, 9445–9455. [Google Scholar] [CrossRef]
- Lane, J.M.D.; Ismail, A.E.; Chandross, M.; Lorenz, C.D.; Grest, G.S. Forces between functionalized silica nanoparticles in solution. Phys. Rev. E 2009, 79, 050501. [Google Scholar] [CrossRef]
- Peters, B.L.; Lane, J.M.D.; Ismail, A.E.; Grest, G.S. Fully Atomistic Simulations of the Response of Silica Nanoparticle Coatings to Alkane Solvents. Langmuir 2012, 28, 17443–17449. [Google Scholar] [CrossRef] [PubMed]
- Salerno, K.M.; Ismail, A.E.; Lane, J.M.D.; Grest, G.S. Coating thickness and coverage effects on the forces between silica nanoparticles in water. J. Chem. Phys. 2014, 140, 194904. [Google Scholar] [CrossRef] [PubMed]
- Bolintineanu, D.S.; Lane, J.M.D.; Grest, G.S. Effects of Functional Groups and Ionization on the Structure of Alkanethiol-Coated Gold Nanoparticles. Langmuir 2014, 30, 11075–11085. [Google Scholar] [CrossRef] [PubMed]
- Chew, A.K.; Dallin, B.C.; Van Lehn, R.C. The Interplay of Ligand Properties and Core Size Dictates the Hydrophobicity of Monolayer-Protected Gold Nanoparticles. ACS Nano 2021, 15, 4534–4545. [Google Scholar] [CrossRef] [PubMed]
- Giri, A.K.; Spohr, E. Conformational Equilibria of Organic Adsorbates on Nanostructures in Aqueous Solution: MD Simulations. J. Phys. Chem. C 2015, 119, 25566–25575. [Google Scholar] [CrossRef]
- Giri, A.K.; Spohr, E. Influence of Chain Length and Branching on the Structure of Functionalized Gold Nanoparticles. J. Phys. Chem. C 2018, 122, 26739–26747. [Google Scholar] [CrossRef]
- Heikkilä, E.; Gurtovenko, A.A.; Martinez-Seara, H.; Häkkinen, H.; Vattulainen, I.; Akola, J. Atomistic Simulations of Functional Au144(SR)60 Gold Nanoparticles in Aqueous Environment. J. Phys. Chem. C 2012, 116, 9805–9815. [Google Scholar] [CrossRef][Green Version]
- Dong, J.; Zhou, J. Solvent-Responsive Behavior of Polymer-Brush-Modified Amphiphilic Gold Nanoparticles. Macromol. Theory Simulations 2013, 22, 174–186. [Google Scholar] [CrossRef]
- Choueiri, R.M.; Galati, E.; Thérien-Aubin, H.; Klinkova, A.; Larin, E.M.; Querejeta-Fernández, A.; Han, L.; Xin, H.L.; Gang, O.; Zhulina, E.B.; et al. Surface patterning of nanoparticles with polymer patches. Nature 2016, 538, 79–83. [Google Scholar] [CrossRef]
- Staszewski, T. Structural Changes in Hairy Nanoparticles—Insights from Molecular Simulations. J. Phys. Chem. C 2020, 124, 27118–27129. [Google Scholar] [CrossRef]
- Staszewski, T.; Borówko, M. Adsorption-induced co-assembly of hairy and isotropic particles. Phys. Chem. Chem. Phys. 2020, 22, 8757–8767. [Google Scholar] [CrossRef]
- Borówko, M.; Staszewski, T. Adsorption on Ligand-Tethered Nanoparticles. Int. J. Mol. Sci. 2021, 22, 8810. [Google Scholar] [CrossRef]
- Staszewski, T.; Borówko, M.; Boguta, P. Adsorption of Polymer-Tethered Particles on Solid Surfaces. J. Phys. Chem. B 2022, 126, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Borówko, M.; Staszewski, T. Shape Transformations and Self-Assembly of Hairy Particles under Confinement. Int. J. Mol. Sci. 2022, 23, 7919. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, N.J.; Koerner, H.; Giannelis, E.P.; Vaia, R.A. Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: Opportunities and challenges. MRS Commun. 2013, 3, 13–29. [Google Scholar] [CrossRef]
- Chremos, A.; Douglas, J.F. Self-assembly of polymer-grafted nanoparticles in solvent-free conditions. Soft Matter 2016, 12, 9527–9537. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lafitte, T.; Kumar, S.K.; Panagiotopoulos, A.Z. Self-assembly of polymer-grafted nanoparticles in thin films. Soft Matter 2014, 10, 786–794. [Google Scholar] [CrossRef]
- Borówko, M.; Rżysko, W.; Sokołowski, S.; Staszewski, T. Self-assembly of hairy disks in two dimensions—Insights from molecular simulations. Soft Matter 2018, 14, 3115–3126. [Google Scholar] [CrossRef]
- Rżysko, W.; Staszewski, T.; Borówko, M. Self-assembly of rod-coil copolymer tethered disks on surfaces. Colloids Surf. A: Physicochem. Eng. Asp. 2019, 570, 499–509. [Google Scholar] [CrossRef]
- Horozov, T.S.; Binks, B.P.; Aveyard, R.; Clint, J.H. Effect of particle hydrophobicity on the formation and collapse of fumed silica particle monolayers at the oil–water interface. Colloids Surf. Physicochem. Eng. Asp. 2006, 282–283, 377–386. [Google Scholar] [CrossRef]
- Reincke, F.; Kegel, W.K.; Zhang, H.; Nolte, M.; Wang, D.; Vanmaekelbergh, D.; Möhwald, H. Understanding the self-assembly of charged nanoparticles at the water/oil interface. Phys. Chem. Chem. Phys. 2006, 8, 3828–3835. [Google Scholar] [CrossRef]
- Danov, K.D.; Kralchevsky, P.A.; Ananthapadmanabhan, K.P.; Lips, A. Particle-Interface Interaction across a Nonpolar Medium in Relation to the Production of Particle-Stabilized Emulsions. Langmuir 2006, 22, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Isa, L.; Amstad, E.; Schwenke, K.; Del Gado, E.; Ilg, P.; Kröger, M.; Reimhult, E. Adsorption of core-shell nanoparticles at liquid–liquid interfaces. Soft Matter 2011, 7, 7663–7675. [Google Scholar] [CrossRef]
- Udayana Ranatunga, R.J.K.; Kalescky, R.J.B.; Chiu, C.c.; Nielsen, S.O. Molecular Dynamics Simulations of Surfactant Functionalized Nanoparticles in the Vicinity of an Oil/Water Interface. J. Phys. Chem. C 2010, 114, 12151–12157. [Google Scholar] [CrossRef]
- Saleh, N.; Sarbu, T.; Sirk, K.; Lowry, G.V.; Matyjaszewski, K.; Tilton, R.D. Oil-in-Water Emulsions Stabilized by Highly Charged Polyelectrolyte-Grafted Silica Nanoparticles. Langmuir 2005, 21, 9873–9878. [Google Scholar] [CrossRef] [PubMed]
- Zabiegaj, D.; Santini, E.; Guzmán, E.; Ferrari, M.; Liggieri, L.; Ravera, F. Carbon SootIonic Surfactant Mixed Layers at Water/Air Interfaces. J. Nanosci. Nanotechnol. 2015, 15, 3618–3825. [Google Scholar] [CrossRef] [PubMed]
- Anyfantakis, M.; Geng, Z.; Morel, M.; Rudiuk, S.; Baigl, D. Modulation of the Coffee-Ring Effect in Particle/Surfactant Mixtures: The Importance of Particle–Interface Interactions. Langmuir 2015, 31, 4113–4120. [Google Scholar] [CrossRef] [PubMed]
- Santini, E.; Krägel, J.; Ravera, F.; Liggieri, L.; Miller, R. Study of the monolayer structure and wettability properties of silica nanoparticles and CTAB using the Langmuir trough technique. Colloids Surfaces A Physicochem. Eng. Asp. 2011, 382, 186–191. [Google Scholar] [CrossRef]
- Maestro, A.; Guzmán, E.; Santini, E.; Ravera, F.; Liggieri, L.; Ortega, F.; Rubio, R.G. Wettability of silica nanoparticle–surfactant nanocomposite interfacial layers. Soft Matter 2012, 8, 837–843. [Google Scholar] [CrossRef]
- Binks, B.P.; Isa, L.; Tyowua, A.T. Direct Measurement of Contact Angles of Silica Particles in Relation to Double Inversion of Pickering Emulsions. Langmuir 2013, 29, 4923–4927. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, E.; Orsi, D.; Cristofolini, L.; Liggieri, L.; Ravera, F. Two-Dimensional DPPC Based Emulsion-like Structures Stabilized by Silica Nanoparticles. Langmuir 2014, 30, 11504–11512. [Google Scholar] [CrossRef] [PubMed]
- Quan, X.; Peng, C.; Dong, J.; Zhou, J. Structural properties of polymer-brush-grafted gold nanoparticles at the oil–water interface: Insights from coarse-grained simulations. Soft Matter 2016, 12, 3352–3359. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.Y.; Zhou, Y.; Arya, G. Interfacial Assembly of Tunable Anisotropic Nanoparticle Architectures. ACS Nano 2019, 13, 4111–4123. [Google Scholar] [CrossRef] [PubMed]
- Garbin, V.; Crocker, J.C.; Stebe, K.J. Forced Desorption of Nanoparticles from an Oil–Water Interface. Langmuir 2012, 28, 1663–1667. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Glogowski, E.; Emrick, T.; Russell, T.P.; Dinsmore, A.D. Adsorption Energy of Nano- and Microparticles at Liquid-Liquid Interfaces. Langmuir 2010, 26, 12518–12522. [Google Scholar] [CrossRef] [PubMed]
- Tay, K.A.; Bresme, F. Wetting Properties of Passivated Metal Nanocrystals at Liquid-Vapor Interfaces: A Computer Simulation Study. J. Am. Chem. Soc. 2006, 128, 14166–14175. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhu, Y.L.; Zhao, Y.; Li, C.Y.; Mukhopadhyay, A.; Sun, Z.Y.; Koynov, K.; Butt, H.J. Brownian Diffusion of Individual Janus Nanoparticles at Water/Oil Interfaces. ACS Nano 2020, 14, 10095–10103. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kwon, S.J.; Chang, J.B.; Ross, C.A.; Hatton, T.A.; Stellacci, F. Two-Dimensional Nanoparticle Supracrystals: A Model System for Two-Dimensional Melting. Nano Lett. 2016, 16, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Isa, L.; Calzolari, D.C.E.; Pontoni, D.; Gillich, T.; Nelson, A.; Zirbs, R.; Sánchez-Ferrer, A.; Mezzenga, R.; Reimhult, E. Core–shell nanoparticle monolayers at planar liquid–liquid interfaces: Effects of polymer architecture on the interface microstructure. Soft Matter 2013, 9, 3789–3797. [Google Scholar] [CrossRef]
- Fujii, S.; Ryan, A.J.; Armes, S.P. Long-Range Structural Order, Moiré Patterns, and Iridescence in Latex-Stabilized Foams. J. Am. Chem. Soc. 2006, 128, 7882–7886. [Google Scholar] [CrossRef] [PubMed]
- Bykov, A.; Loglio, G.; Miller, R.; Noskov, B. Dilational surface elasticity of monolayers of charged polystyrene nano- and microparticles at liquid/fluid interfaces. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 485, 42–48. [Google Scholar] [CrossRef]
- Noskov, B.; Bykov, A. Dilational rheology of monolayers of nano- and micropaticles at the liquid-fluid interfaces. Curr. Opin. Colloid Interface Sci. 2018, 37, 1–12. [Google Scholar] [CrossRef]
- Velikov, K.P.; Durst, F.; Velev, O.D. Direct Observation of the Dynamics of Latex Particles Confined inside Thinning Water-Air Films. Langmuir 1998, 14, 1148–1155. [Google Scholar] [CrossRef]
- Costa, L.; Li-Destri, G.; Thomson, N.H.; Konovalov, O.; Pontoni, D. Real Space Imaging of Nanoparticle Assembly at Liquid–Liquid Interfaces with Nanoscale Resolution. Nano Lett. 2016, 16, 5463–5468. [Google Scholar] [CrossRef] [PubMed]
- Anyfantakis, M.; Vialetto, J.; Best, A.; Auernhammer, G.K.; Butt, H.J.; Binks, B.P.; Baigl, D. Adsorption and Crystallization of Particles at the Air–Water Interface Induced by Minute Amounts of Surfactant. Langmuir 2018, 34, 15526–15536. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.M.D.; Grest, G.S. Spontaneous Asymmetry of Coated Spherical Nanoparticles in Solution and at Liquid-Vapor Interfaces. Phys. Rev. Lett. 2010, 104, 235501. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.M.D.; Grest, G.S. Assembly of responsive-shape coated nanoparticles at water surfaces. Nanoscale 2014, 6, 5132–5137. [Google Scholar] [CrossRef]
- Salerno, K.M.; Bolintineanu, D.S.; Lane, J.M.D.; Grest, G.S. High Strength, Molecularly Thin Nanoparticle Membranes. Phys. Rev. Lett. 2014, 113, 258301. [Google Scholar] [CrossRef]
- Salerno, K.M.; Bolintineanu, D.S.; Lane, J.M.D.; Grest, G.S. Ligand structure and mechanical properties of single-nanoparticle-thick membranes. Phys. Rev. E 2015, 91, 062403. [Google Scholar] [CrossRef]
- Gupta, U.; Escobedo, F.A. Ligand Interactions and Nanoparticle Shapes Guide the Pathways toward Interfacial Self-Assembly. Langmuir 2022, 38, 1738–1747. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tang, T.Y.; Lee, B.H.j.; Arya, G. Tunable Orientation and Assembly of Polymer-Grafted Nanocubes at Fluid–Fluid Interfaces. ACS Nano 2022, 16, 7457–7470. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Huang, Z.; Xu, Z.; Yan, L.T. Tailoring Interfacial Nanoparticle Organization through Entropy. Accounts Chem. Res. 2018, 51, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Guo, R.; Xu, G.; Huang, Z.; Yan, L.T. Entropy-Mediated Mechanical Response of the Interfacial Nanoparticle Patterning. Nano Lett. 2014, 14, 6910–6916. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Lu, C.; Dong, B.; Xu, G.; Ji, C.; Zhao, K.; Yan, L.T. Chain stiffness regulates entropy-templated perfect mixing at single-nanoparticle level. Nanoscale 2016, 8, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, P.; Cao, Y.; Huang, Z.; Zhu, G.; Xu, Z.; Dai, X.; Chen, S.; Miao, B.; Yan, L.T. How Implementation of Entropy in Driving Structural Ordering of Nanoparticles Relates to Assembly Kinetics: Insight into Reaction-Induced Interfacial Assembly of Janus Nanoparticles. Langmuir 2018, 34, 9477–9488. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Wang, Y.; Gao, L.; Xu, Z.; Zhang, X.; Dai, X.; Dai, L.; Hou, C.; Yan, L.T. Entropy-driven self-assembly of tethered Janus nanoparticles on a sphere. Fundam. Res. 2021, 1, 641–648. [Google Scholar] [CrossRef]
Fluid–Fluid Interfaces: | |
---|---|
Issues under Consideration | Representative References |
Phenomenological models: | |
- homogeneous particles | [1,2,3,4,5,6,60,67,78,79,80,81] |
- Janus particles | [138,139,140,141,143,144,146,147,149,150,151,152] |
Attachement energy: | |
- homogeneous particles | [1,2,3,4,5,6,60,67,78,79,80,81,94,95] |
- Janus particles | [138,139,140,141,143,144,146,147,149,150,151,152] |
Line tension effects | [1,60,65,68,69,71] |
Particle shape effects | [83,84,85,86,87,88,89,90,91,92,93,94,95] |
Capillary effects | [3,60,72,73,148] |
Partricle roughness effects | [60,74,75,76] |
Self-assembly of homogeneous particles | |
- experiments | [2,3,93,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133] |
- simulations | [100,101,102,103,106,134,136,137] |
Molecular simulations of Janus particles | [153,156,157,158,160,161,162,163] |
Self-assembly of Janus particles | |
- experiments | [144,164,165,166,167,168,169] |
- simulations | [156,157,158,170] |
Molecular simulations of hairy particles | [189,213,214,215,216,217,218] |
Self-assembly of hairy particles | |
- experiments | [108,125,219,220,221,222,223,224,225,226] |
- simulations | [182,215,227,228,229,230,231,232,233,234,235,236,237] |
Application of hybrid particles | [7,8,9,10,11,13,14,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,58] |
Relevant reviews | [1,2,3,4,5,6,10,11,13,14,54,55,59,60,61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borówko, M.; Staszewski, T. Hybrid Nanoparticles at Fluid–Fluid Interfaces: Insight from Theory and Simulation. Int. J. Mol. Sci. 2023, 24, 4564. https://doi.org/10.3390/ijms24054564
Borówko M, Staszewski T. Hybrid Nanoparticles at Fluid–Fluid Interfaces: Insight from Theory and Simulation. International Journal of Molecular Sciences. 2023; 24(5):4564. https://doi.org/10.3390/ijms24054564
Chicago/Turabian StyleBorówko, Małgorzata, and Tomasz Staszewski. 2023. "Hybrid Nanoparticles at Fluid–Fluid Interfaces: Insight from Theory and Simulation" International Journal of Molecular Sciences 24, no. 5: 4564. https://doi.org/10.3390/ijms24054564
APA StyleBorówko, M., & Staszewski, T. (2023). Hybrid Nanoparticles at Fluid–Fluid Interfaces: Insight from Theory and Simulation. International Journal of Molecular Sciences, 24(5), 4564. https://doi.org/10.3390/ijms24054564