The Colorimetric Detection of the Hydroxyl Radical
Abstract
:1. Introduction
2. Results
2.1. Design and Synthesis of the Probe
2.2. Development of the Assay for the Detection of •OH
2.3. Comparison of the •OH Generating Ability of Various Complexing Agents
2.4. Comparison of the •OH-Generating Ability of Various Fatty Acids
3. Discussion
4. Materials and Methods
4.1. Reagents and General Procedures
4.2. Synthesis of N’N-(5-Nitro-1,3-phenylene)-bis-glutaramide (NPBG)
4.3. Hydroxylation assay for N’N-(5-Nitro-1,3-phenylene)-bis-glutaramide (NPBG)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutteridge, J.M.C.; Stocks, J. Caeruloplasmin: Physiological and pathological perspectives. Crit. Rev. Clin. Lab. Sci. 1981, 14, 257–329. [Google Scholar] [CrossRef]
- Pippard, M.J.; Warner, G.T.; Callender, S.T.; Weatherall, D.J. Iron absorption and loading in beta-thalassaemia intermedia. Lancet 1979, 2, 819–821. [Google Scholar] [CrossRef] [PubMed]
- Koppenol, W.H.; Hider, R.C. Iron and redox cycling. Do’s and don’ts. Free Rad. Biol. Med. 2019, 133, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 3rd ed.; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Graf, E.; Mahoney, J.R.; Bryant, R.G.; Eaton, J.W. Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J. Biol. Chem. 1984, 259, 3620–3624. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, C.; Fridovich, I. A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase. J. Biol. Chem. 1970, 245, 4641–4646. [Google Scholar] [CrossRef]
- Sutton, H.C. Efficiency of chelated iron compounds as catalysts for the Haber-Weiss reaction. J. Free Rad. Biol. Med. 1985, 1, 195–202. [Google Scholar] [CrossRef]
- Bors, W.; Michel, C.; Saran, M. On the nature of biochemically generated hydroxyl radicals. Studies using the bleaching of p-nitrosodimethylaniline as a direct assay method. Eur. J. Biochem. 1979, 95, 621–627. [Google Scholar] [CrossRef]
- Richmond, R.; Halliwell, B.; Chauhan, J.; Darbre, A. Superoxide dependent formation of hydroxyl radicals: Detection of hydroxylation of aromatic compounds. Anal. Biochem. 1981, 118, 328–335. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, J.; Zhou, W.; Wang, Z.; Wu, S. Quantitative detection of hydroxyl radicals in Fenton system by UV-vis spectrophotometry. Anal. Methods 2015, 7, 5447–5453. [Google Scholar] [CrossRef]
- Bayarsaikhan, G.; Dondurmacioglu, F.; Avan, A.N.; Cekic, S.D.; Apak, R. Novel Colorimetric Assay of 2,3-Dihydroxybenzoate among Other Isomers as a Selective Indicator of Hydroxyl Radical Damage and Related Antioxidant Activity. Anal. Lett. 2018, 51, 236–253. [Google Scholar] [CrossRef]
- Buettner, G.R.; Oberley, L.W.; Leuthauser, S.W.H.C. The effect of iron on the distribution of superoxide and hydroxyl radicals as seen by spin trapping and on the superoxide dismutase assay. Photochem. Photobiol. 1978, 28, 693–695. [Google Scholar] [CrossRef] [PubMed]
- Newton, G.L.; Milligan, J.R. Fluorescence detection of hydroxyl radicals. Radiation Phys. Chem. 2006, 75, 473–478. [Google Scholar] [CrossRef]
- Meng, L.; Wu, Y.; Yi, T. A ratiometric fluorescent probe for the detection of hydroxyl radicals in living cells. Chem. Comm. 2014, 50, 4843–4845. [Google Scholar] [CrossRef] [PubMed]
- Walling, C.; Camaioni, D.M.; Kim, S.S. Aromatic hydroxylation by peroxydisulfate. J. Amer Chem. Soc. 1978, 100, 4814–4818. [Google Scholar] [CrossRef]
- Eberhardt, M.K. Radiation-Induced Homolytic Aromatic Substitution. 6. The Effect of Metal Ions on the Hydroxylation of Benzonitrile, Anisole, and Fluorobenzene. J. Phys. Chem. 1977, 81, 1051–1057. [Google Scholar] [CrossRef]
- Klein, H.W.; Bhatio, K.; Madhavan, V.; Schuler, R.H. Reaction of hydroxyl radicals with benzoic acid. Isomer distribution in the radical intermediates. J. Phys. Chem. 1975, 79, 1767–1774. [Google Scholar] [CrossRef]
- Žerjav, G.; Albreht, A.; Vovk, I.; Pintar, A. Revisiting terephthalic acid and coumarin as probes for photoluminescent determination of hydroxyl radical formation rate in heterogeneous photocatalysis. Appl. Catal. A-Gen. 2020, 598, 117566. [Google Scholar] [CrossRef]
- Anbar, M.; Meyerstein, D.; Neta, P.J. The Reactivity of Aromatic Compounds toward Hydroxyl Radical. J. Phys. Chem. 1966, 70, 2660–2662. [Google Scholar] [CrossRef]
- Bojić, M.; Sedgeman, C.A.; Nagy, L.D.; Guengerich, F.P. Aromatic hydroxylation of salicylic acid and aspirin by human cytochromes P450. Eur. J. Pharm. Sci. 2015, 73, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Taktak, S.; Flook, M.; Foxman, B.M.; Que, L., Jr.; Rybak-Akimova, E.V. Ortho-hydroxylation of benzoic acids with hydrogen peroxide at a non-heme iron center. Chem. Commun. 2005, 42, 5301–5303. [Google Scholar] [CrossRef]
- Singh, S.; Hider, R.C. Colorimetric detection of the hydroxyl radical: Comparison of the hydroxyl-radical-generating ability of various iron complexes. Anal. Biochem. 1988, 171, 47–54. [Google Scholar] [CrossRef]
- Martell, A.E.; Smith, R.M. Critical Stability Constants; Plenum Press: London, UK, 1974; Volume 1–6, pp. 1974–1989. [Google Scholar]
- Liu, Z.D.; Hider, R.C. Design of clinically useful iron(III)-selective chelators. Med. Res. Rev. 2002, 22, 26–64. [Google Scholar] [CrossRef]
- Silva, A.M.N.; Kong, X.; Parkin, M.C.; Cammack, R.; Hider, R.C. Iron(III) citrate speciation in aqueous solution. Dalton Trans. 2009, 40, 8616–8625. [Google Scholar] [CrossRef]
- Cilibrizzi, A.; Abbate, V.; Chen, Y.-L.; Ma, Y.; Zhou, T.; Hider, R.C. Hydroxypyridinone Journey into Metal Chelation. Chem. Rev. 2018, 118, 7657–7701. [Google Scholar] [CrossRef]
- Devanur, L.D.; Neubert, H.; Hider, R.C. The Fenton Activity of Iron(III) in the presence of deferiprone. J. Pharm. Sci. 2008, 97, 1454–1467. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.E.; Lukaski, H.C.; Korynta, E.D. Effects of stearic acid and beef tallow on iron utilization by the rat. Proc. Soc. Experiment. Biol. Med. 1992, 200, 480–486. [Google Scholar] [CrossRef]
- Droke, E.A.; Briske-Anderson, M.; Lukaski, H.C. Fatty acids alter monolayer integrity, paracellular transport, iron uptake and transport in Caco-2 cells. Biol. Trace. Elem. Res. 2003, 95, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Crichton, R.R.; Danielson, B.G.; Geisser, P. Iron Therapy, 3rd ed.; International Medical Publishers: Bremen, Germany, 2006. [Google Scholar]
- Burckhardt-Herold, S.; Klotz, J.; Funk, F.; Büchi, R.; Petrig-Schaffland, J.; Geisser, P. Interactions between iron(III)-hydroxide polymaltose complex and commonly used drugs. Arzneimittelforschung 2007, 57, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.J.; Moore, R.; Peters, J.J. Significance of non-esterified fatty acids in iron uptake by intestinal brush-border membrane vesicles. Biochim. Biophys. Acta Biomembr. 1988, 941, 39–47. [Google Scholar] [CrossRef]
- Qian, M.W.; Eaton, J.W. Iron translocation by free fatty acids. Amer. J. Pathol. 1991, 139, 1425–1434. [Google Scholar]
- Figgis, B.N.; Robertson, G.B. Crystal-Molecular Structure and Magnetic Properties of Cr3(CH3.COO)6O Cl·5H2O. Nature 1965, 205, 694–695. [Google Scholar] [CrossRef]
- Abrahamson, H.B.; Lukaski, H.C. Synthesis and characterization of iron stearate compounds. J. Inorg. Biochem. 1994, 54, 115–130. [Google Scholar] [CrossRef]
Chelator | Molar Ratio Chelator: Fe | Rate of Hydroxylation (10−7 mol/h) | Stability Constant of Complexes (Log K1) | ||
---|---|---|---|---|---|
FeIII | FeII | FeIII | FeII | ||
EDTA | 2 | 13.57 ± 0.38 | 13.45 ± 0.13 | 25.1 | 14.2 |
DTPA | 2 | 0.43 ± 0.09 | 10.14 ± 1.40 | 27.3 | 16.4 |
NTA | 1 | 13.52 ± 0.17 | 13.59 ± 0.50 | 15.9 | 8.8 |
NTA | 2 | 12.20 ± 1.03 | 9.46 ± 2.06 | 15.9 | 8.8 |
NTA | 5 | 2.08 ± 0.73 | 2.73 ± 1.12 | 15.9 | 8.8 |
Citrate | 5 | 0.37 ± 0.18 | 1.30 ± 0.71 | 11.4 | 4.4 |
Maltol | 5 | 3.39 ± 0.55 | 3.72 ± 2.86 | 28.7 1 | / |
Deferiprone | 5 | 1.72 ± 0.34 | 1.58 ± 0.64 | 35.7 1 | / |
Chelator | Molar Ratio Chelator: Fe(III) | Rate of Hydroxylation (10−7 mol/h) |
---|---|---|
EDTA | 2 | 13.42 ± 0.34 |
Stearic acid | 5 | <0.5 |
Myristic acid | 5 | <0.5 |
Lauric acid | 5 | <0.5 |
Hexanoic acid | 5 | <0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, Y.; Moursy, M.; Hider, R.C.; Cilibrizzi, A. The Colorimetric Detection of the Hydroxyl Radical. Int. J. Mol. Sci. 2023, 24, 4162. https://doi.org/10.3390/ijms24044162
Ran Y, Moursy M, Hider RC, Cilibrizzi A. The Colorimetric Detection of the Hydroxyl Radical. International Journal of Molecular Sciences. 2023; 24(4):4162. https://doi.org/10.3390/ijms24044162
Chicago/Turabian StyleRan, Yandong, Mohammed Moursy, Robert C. Hider, and Agostino Cilibrizzi. 2023. "The Colorimetric Detection of the Hydroxyl Radical" International Journal of Molecular Sciences 24, no. 4: 4162. https://doi.org/10.3390/ijms24044162
APA StyleRan, Y., Moursy, M., Hider, R. C., & Cilibrizzi, A. (2023). The Colorimetric Detection of the Hydroxyl Radical. International Journal of Molecular Sciences, 24(4), 4162. https://doi.org/10.3390/ijms24044162