Gene Expression Profile as a Predictor of Seizure Liability
Abstract
:1. Introduction
2. Results
2.1. Highest Tolerated Concentration (Cytotoxicity)
2.2. Number of Differentially Expressed (DE) Genes in Rat Cortical Neuronal Cell Cultures Is Dose-Dependent
2.3. All Compounds, except Paroxetine, Induced Alterations in Gene Expression in Rat Cortical Neuronal Cultures
2.4. Similarities in Gene Expression between the Tool, FAERS-Positive, and FAERS-Negative Compounds
2.5. Pathways Enriched by Tool, FAERS-Positive, and FAERS-Negative Compounds
2.6. Gene Ontology of Tool, FAERS-Positive, and FAERS-Negative Compounds
2.7. Machine-Learning Using Normalized RNA-Sequencing (RNA-Seq) Read Counts Differentiates Tool Compounds from Other Compounds, but Not FAERS-Positive or FAERS-Negative Compounds
2.8. Machine-Learning Separated FAERS-Positive from FAERS-Negative Compounds Utilizing Differential Gene Expression Shared with Tool Compounds
2.9. Alikeness-% and Gene Set Enrichment Analysis (GSEA) Score
3. Discussion
3.1. Gene Expression in Rat Cortical Cell Cultures by Tool, FAERS-Positive, and FAERS-Negative Compounds Was Not Associated with Neurotoxicity
3.2. The Tool, FAERS-Positive, and FAERS-Negative Compounds Induce Category-Specific Gene Expression, but Pathway and GO Analyses Revealed No Specific Markers for Seizure Liability
3.3. From a Common to Drug-Specific Ictogenic Signature
4. Materials and Methods
4.1. Rat Primary Cortical Cell Cultures
4.1.1. Production of Embryos
4.1.2. Dissection of the Cerebral Cortex and Cell Plating
4.2. Compound Selection
4.3. Assessment of Cytotoxicity
4.4. Effect of Compound Dose on Gene Expression and the Compound-Induced Gene Expression Profile
4.4.1. Extraction of Total RNA
4.4.2. Quality Control of Extracted RNA
4.4.3. mRNA-seq Library and Sequencing
4.5. Bioinformatics
4.5.1. Quality Control and Mapping of mRNA Sequencing Data
4.5.2. Identification of DE Genes
4.5.3. Comparison of the Number of DE Genes between the Tool, FAERS-Positive, and FAERS-Negative Compounds
4.5.4. Identification of Enriched Pathways
4.5.5. Gene Ontology Analysis of DE Genes
4.5.6. Alikeness-% and GSEA Score
4.5.7. Machine-Learning Analysis
Classification Using Normalized RNA-Seq Counts
Data Visualization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Easter, A.; Bell, M.E.; Damewood, J.R.; Redfern, W.S.; Valentin, J.P.; Winter, M.J.; Fonck, C.; Bialecki, R.A. Approaches to Seizure Risk Assessment in Preclinical Drug Discovery. Drug Discov. Today 2009, 14, 876–884. [Google Scholar] [CrossRef]
- Authier, S.; Arezzo, J.; Delatte, M.S.; Kallman, M.J.; Markgraf, C.; Paquette, D.; Pugsley, M.K.; Ratcliffe, S.; Redfern, W.S.; Stevens, J.; et al. Safety Pharmacology Investigations on the Nervous System: An Industry Survey. J. Pharmacol. Toxicol. Methods 2016, 81, 37–46. [Google Scholar] [CrossRef] [Green Version]
- DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the Pharmaceutical Industry: New Estimates of R&D Costs. J. Health Econ. 2016, 47, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Roberts, R.; Authier, S.; Mellon, R.D.; Morton, M.; Suzuki, I.; Tjalkens, R.B.; Valentin, J.-P.; Pierson, J.B. Can We Panelize Seizure? Toxicol. Sci. 2021, 179, 3–13. [Google Scholar] [CrossRef]
- Kreir, M.; Van Deuren, B.; Versweyveld, S.; De Bondt, A.; Van den Wyngaert, I.; Van der Linde, H.; Lu, H.R.; Teuns, G.; Gallacher, D.J. Do in Vitro Assays in Rat Primary Neurons Predict Drug-Induced Seizure Liability in Humans? Toxicol. Appl. Pharmacol. 2018, 346, 45–57. [Google Scholar] [CrossRef]
- Bradley, J.A.; Strock, C.J. Screening for Neurotoxicity with Microelectrode Array. Curr. Protoc. Toxicol. 2019, 79, e67. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.A.; Luithardt, H.H.; Metea, M.R.; Strock, C.J. In Vitro Screening for Seizure Liability Using Microelectrode Array Technology. Toxicol. Sci. 2018, 163, 240–253. [Google Scholar] [CrossRef]
- Tukker, A.M.; Wijnolts, F.M.J.; de Groot, A.; Westerink, R.H.S. Human IPSC-Derived Neuronal Models for in Vitro Neurotoxicity Assessment. Neurotoxicology 2018, 67, 215–225. [Google Scholar] [CrossRef]
- Tukker, A.M.; Wijnolts, F.M.J.; de Groot, A.; Wubbolts, R.W.; Westerink, R.H.S. In Vitro Techniques for Assessing Neurotoxicity Using Human IPSC-Derived Neuronal Models. In Neuromethods; Humana Press Inc.: Totowa, NJ, USA, 2019; Volume 145, pp. 17–35. [Google Scholar]
- Tukker, A.M.; van Kleef, R.G.D.M.; Wijnolts, F.M.J.; de Groot, A.; Westerink, R.H.S. Towards Animal-Free Neurotoxicity Screening: Applicability of HiPSC-Derived Neuronal Models for in Vitro Seizure Liability Assessment. ALTEX 2020, 37, 121–135. [Google Scholar] [CrossRef]
- Fan, J.; Thalody, G.; Kwagh, J.; Burnett, E.; Shi, H.; Lewen, G.; Chen, S.J.; Levesque, P. Assessing Seizure Liability Using Multi-Electrode Arrays (MEA). Toxicol. Vitr. 2019, 55, 93–100. [Google Scholar] [CrossRef]
- Zhai, J.; Zhou, Y.Y.; Lagrutta, A. Sensitivity, Specificity and Limitation of in Vitro Hippocampal Slice and Neuron-Based Assays for Assessment of Drug-Induced Seizure Liability. Toxicol. Appl. Pharmacol. 2021, 430, 115725. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, Y.; Odawara, A.; Kinoshita, K.; Okamura, A.; Shirakawa, T.; Suzuki, I. Principal Component Analysis to Distinguish Seizure Liability of Drugs in Human IPS Cell-Derived Neurons. Toxicol. Sci. 2021, 184, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, N.; Odawara, A.; Kinoshita, K.; Okamura, A.; Shirakawa, T.; Suzuki, I. Raster Plots Machine Learning to Predict the Seizure Liability of Drugs and to Identify Drugs. Sci. Rep. 2022, 12, 2281. [Google Scholar] [CrossRef] [PubMed]
- Koseki, N.; Deguchi, J.; Yamashita, A.; Miyawaki, I.; Funabashi, H. Establishment of a Novel Experimental Protocol for Drug-Induced Seizure Liability Screening Based on a Locomotor Activity Assay in Zebrafish. J. Toxicol. Sci. 2014, 39, 579–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, M.J.; Redfern, W.S.; Hayfield, A.J.; Owen, S.F.; Valentin, J.P.; Hutchinson, T.H. Validation of a Larval Zebrafish Locomotor Assay for Assessing the Seizure Liability of Early-Stage Development Drugs. J. Pharmacol. Toxicol. Methods 2008, 57, 176–187. [Google Scholar] [CrossRef]
- Gao, M.; Igata, H.; Takeuchi, A.; Sato, K.; Ikegaya, Y. Machine Learning-Based Prediction of Adverse Drug Effects: An Example of Seizure-Inducing Compounds. J. Pharmacol. Sci. 2017, 133, 70–78. [Google Scholar] [CrossRef]
- Becker, A.J. Review: Animal Models of Acquired Epilepsy: Insights into Mechanisms of Human Epileptogenesis. Neuropathol. Appl. Neurobiol. 2018, 44, 112–129. [Google Scholar] [CrossRef]
- Crino, P.B. Gene Expression, Genetics, and Genomics in Epilepsy: Some Answers, More Questions. Epilepsia 2007, 48, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, R.; Yasuda, R.; Pankratz, D.G.; Carter, T.A.; Del Rio, J.A.; Wodicka, L.; Mayford, M.; Lockhart, D.J.; Barlow, C. Regional and Strain-Specific Gene Expression Mapping in the Adult Mouse Brain. Proc. Natl. Acad. Sci. USA 2000, 97, 11038–11043. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Lu, A.; Aronow, B.J.; Wagner, K.R.; Sharp, F.R. Genomic Responses of the Brain to Ischemic Stroke, Intracerebral Haemorrhage, Kainate Seizures, Hypoglycemia, and Hypoxia. Eur. J. Neurosci. 2002, 15, 1937–1952. [Google Scholar] [CrossRef]
- Andreadis, J.D.; Mann, T.T.; Russell, A.C.; Stenger, D.A.; Pancrazio, J.J. Identification of Differential Gene Expression Profiles in Rat Cortical Cells Exposed to the Neuroactive Agents Trimethylolpropane Phosphate and Bicuculline. Biosens. Bioelectron. 2001, 16, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Mourlevat, S.; Galizzi, J.P.; Guigal-Stéphan, N.; Courtade-Gaïani, S.; Rolland-Valognes, G.; Rodriguez, M.; Barbet, F.; Bourrier, C.; Catesson, S.; Chomel, A.; et al. Molecular Characterization of the AMPA-Receptor Potentiator S70340 in Rat Primary Cortical Culture: Whole-Genome Expression Profiling. Neurosci. Res. 2011, 70, 349–360. [Google Scholar] [CrossRef] [PubMed]
- De Deyn, P.P.; D’Hooge, R.; Marescau, B.; Pei, Y.Q. Chemical Models of Epilepsy with Some Reference to Their Applicability in the Development of Anticonvulsants. Epilepsy Res. 1992, 12, 87–110. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.I.; Rogawski, M.A. Effects of Anticonvulsant Drugs on 4-Aminopyridine-Induced Seizures in Mice. Epilepsy Res. 1992, 11, 9–16. [Google Scholar] [CrossRef]
- Kumlien, E.; Lundberg, P.O. Seizure Risk Associated with Neuroactive Drugs: Data from the WHO Adverse Drug Reactions Database. Seizure 2010, 19, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Jutkiewicz, E.M.; Rice, K.C.; Traynor, J.R.; Woods, J.H. Separation of the Convulsions and Antidepressant-like Effects Produced by the Delta-Opioid Agonist SNC80 in Rats. Psychopharmacology 2005, 182, 588–596. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food & Drug Administration (FDA). FDA Adverse Event Reporting System (FAERS) Public Dashboard. Available online: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard (accessed on 28 June 2022).
- Organization World Health VigiAccess. Available online: https://www.vigiaccess.org (accessed on 12 October 2022).
- Astashkina, A.; Mann, B.; Grainger, D.W. A Critical Evaluation of in Vitro Cell Culture Models for High-Throughput Drug Screening and Toxicity. Pharmacol. Ther. 2012, 134, 82–106. [Google Scholar] [CrossRef]
- Brooks, E.A.; Galarza, S.; Gencoglu, M.F.; Cornelison, R.C.; Munson, J.M.; Peyton, S.R. Applicability of Drug Response Metrics for Cancer Studies Using Biomaterials. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180226. [Google Scholar] [CrossRef] [Green Version]
- Moldrich, R.X.; Beart, P.M.; Pascoe, C.J.; Cheung, N.S. Low-Affinity Kainate Receptor Agonists Induce Insult-Dependent Apoptosis and Necrosis in Cultured Murine Cortical Neurons. J. Neurosci. Res. 2000, 59, 788–796. [Google Scholar] [CrossRef]
- Jan, C.R.; Su, J.A.; Teng, C.C.; Sheu, M.L.; Lin, P.Y.; Chi, M.C.; Chang, C.H.; Liao, W.C.; Kuo, C.C.; Chou, C.T. Mechanism of Maprotiline-Induced Apoptosis: Role of [Ca2+]i, ERK, JNK and Caspase-3 Signaling Pathways. Toxicology 2013, 304, 1–12. [Google Scholar] [CrossRef]
- Grabenstatter, H.L.; Russek, S.J.; Brooks-Kayal, A.R. Molecular Pathways Controlling Inhibitory Receptor Expression. Epilepsia 2012, 53, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gastaldi, M.; Bartolomei, F.; Massacrier, A.; Planells, R.; Robaglia-Schlupp, A.; Cau, P. Increase in MRNAs Encoding Neonatal II and III Sodium Channel α-Isoforms during Kainate-Induced Seizures in Adult Rat Hippocampus. Mol. Brain Res. 1997, 44, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Yu, N.; Cai, J.Q.; Quinn, T.; Zong, Z.H.; Zeng, Y.J.; Hao, L.Y. Voltage-Gated Sodium Channel Nav1.1, Nav1.3 and Β1 Subunit Were up-Regulated in the Hippocampus of Spontaneously Epileptic Rat. Brain Res. Bull. 2008, 75, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Fonseca, E.; Ettcheto, M.; Sánchez-López, E.; de Rojas, I.; Alonso-Lana, S.; Morató, X.; Souto, E.B.; Toledo, M.; Boada, M.; et al. Epilepsy in Neurodegenerative Diseases: Related Drugs and Molecular Pathways. Pharmaceuticals 2021, 14, 1057. [Google Scholar] [CrossRef] [PubMed]
- Gorter, J.A.; Van Vliet, E.A.; Aronica, E.; Breit, T.; Rauwerda, H.; Lopes Da Silva, F.H.; Wadman, W.J. Potential New Antiepileptogenic Targets Indicated by Microarray Analysis in a Rat Model for Temporal Lobe Epilepsy. J. Neurosci. 2006, 26, 11083–11110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitkänen, A.; Lukasiuk, K. Molecular and Cellular Basis of Epileptogenesis in Symptomatic Epilepsy. Epilepsy Behav. 2009, 14 (Suppl. 1), 16–25. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Cheng, Z.; Wang, R.; Yu, F. Indication of Dynamic Peroxynitrite Fluctuations in the Rat Epilepsy Model with a Near-Infrared Two-Photon Fluorescent Probe. Anal. Chem. 2021, 93, 2490–2499. [Google Scholar] [CrossRef]
- Gresa-Arribas, N.; Viéitez, C.; Dentesano, G.; Serratosa, J.; Saura, J.; Solà, C.; Glass, C.; Saijo, K.; Winner, B.; Marchetto, M.; et al. Modelling Neuroinflammation In Vitro: A Tool to Test the Potential Neuroprotective Effect of Anti-Inflammatory Agents. PLoS ONE 2012, 7, e45227. [Google Scholar] [CrossRef] [Green Version]
- Lipponen, A.; Natunen, T.; Hujo, M.; Ciszek, R.; Hämäläinen, E.; Tohka, J.; Hiltunen, M.; Paananen, J.; Poulsen, D.; Kansanen, E.; et al. In Vitro and in Vivo Pipeline for Validation of Disease-Modifying Effects of Systems Biology-Derived Network Treatments for Traumatic Brain Injury—Lessons Learned. Int. J. Mol. Sci. 2019, 20, 5395. [Google Scholar] [CrossRef] [Green Version]
- Andronis, C.; Silva, J.P.; Lekka, E.; Virvilis, V.; Carmo, H.; Bampali, K.; Ernst, M.; Hu, Y.; Loryan, I.; Richard, J.; et al. Molecular Basis of Mood and Cognitive Adverse Events Elucidated via a Combination of Pharmacovigilance Data Mining and Functional Enrichment Analysis. Arch. Toxicol. 2020, 94, 2829–2845. [Google Scholar] [CrossRef]
- Natunen, T.A.; Gynther, M.; Rostalski, H.; Jaako, K.; Jalkanen, A.J. Extracellular Prolyl Oligopeptidase Derived from Activated Microglia Is a Potential Neuroprotection Target. Basic Clin. Pharmacol. Toxicol. 2019, 124, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Lipponen, A.; Paananen, J.; Puhakka, N.; Pitkänen, A. Analysis of Post-Traumatic Brain Injury Gene Expression Signature Reveals Tubulins, Nfe2l2, Nfkb, Cd44, and S100a4 as Treatment Targets. Sci. Rep. 2016, 6, 31570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, S. FastQC, a Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 13 December 2022).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Chen, H. R Package, Version 1.7.0. VennDiagram: Generate High-Resolution Venn and Euler Plots. The Comprehensive R Archive Network: Vienna, Austria, 2021.
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B.; et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018, 46, D649–D655. [Google Scholar] [CrossRef]
- Kinsella, R.J.; Kähäri, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; et al. Ensembl BioMarts: A Hub for Data Retrieval across Taxonomic Space. Database 2011, 2011, bar030. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [Green Version]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Baroukh, C.; Jenkins, S.; Dannenfelser, R.; Ma’ayan, A. Genes2WordCloud: A Quick Way to Identify Biological Themes from Gene Lists and Free Text. Source Code Biol. Med. 2011, 6, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolde, R.; Vilo, J. GOsummaries: An R Package for Visual Functional Annotation of Experimental Data. F1000Research 2015, 4, 574. [Google Scholar] [CrossRef]
- Korotkevich, G.; Sukhov, V.; Budin, N.; Shpak, B.; Artyomov, M.N.; Sergushichev, A. Fast Gene Set Enrichment Analysis. BioRxiv 2021, 060012. [Google Scholar] [CrossRef] [Green Version]
- Zwiener, I.; Frisch, B.; Binder, H. Transforming RNA-Seq Data to Improve the Performance of Prognostic Gene Signatures. PLoS ONE 2014, 9, e85150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Zhu, A.; Ibrahim, J.G.; Love, M.I. Heavy-Tailed Prior Distributions for Sequence Count Data: Removing the Noise and Preserving Large Differences. Bioinformatics 2019, 35, 2084–2092. [Google Scholar] [CrossRef] [Green Version]
Compound | Concentration (µM) | Number of DE Genes |
---|---|---|
4-aminopyridine | 1 | 0 |
100 | 88 | |
aminophylline | 1 | 0 |
100 | 0 | |
bupropion | 1 | 0 |
100 | 25 | |
kainic acid | 0.1 | 0 |
10 | 7 | |
pentylenetetrazol | 1000 | 0 |
20,000 | 851 |
Drug | Concentration (µM) | Number of DE Genes | Group |
---|---|---|---|
4-aminopyridine | 100 | 340 | tool |
amoxapine | 30 | 2659 | tool |
bicuculline | 100 | 657 | tool |
chlorpromazine | 10 | 305 | tool |
donepezil | 10 | 141 | tool |
kainic acid | 10 | 162 | tool |
picrotoxin | 30 | 273 | tool |
pilocarpine HCl | 10 | 21 | tool |
pentylenetetrazol | 20,000 | 1014 | tool |
SNC80 | 30 | 2308 | tool |
strychnine | 10 | 60 | tool |
amitriptyline | 10 | 346 | FAERS-positive |
aminophylline | 100 | 158 | FAERS-positive |
bupropion | 100 | 202 | FAERS-positive |
clozapine | 30 | 3695 | FAERS-positive |
diphenhydramine | 10 | 3 | FAERS-positive |
isoniazid | 100 | 32 | FAERS-positive |
maprotiline | 10 | 141 | FAERS-positive |
mirtazapine | 30 | 827 | FAERS-positive |
paroxetine | 10 | 0 | FAERS-positive |
temozolomide | 30 | 21 | FAERS-positive |
theophylline | 100 | 200 | FAERS-positive |
tramadol | 30 | 100 | FAERS-positive |
venlafaxine hydrochloride | 10 | 151 | FAERS-positive |
azelastine | 10 | 84 | FAERS-negative |
darifenacin | 1 | 23 | FAERS-negative |
imiquimod | 1 | 2214 | FAERS-negative |
miconazole | 10 | 332 | FAERS-negative |
minoxidil | 30 | 36 | FAERS-negative |
niacin | 30 | 15 | FAERS-negative |
ospemifene | 30 | 259 | FAERS-negative |
roflumilast | 10 | 7 | FAERS-negative |
rosiglitazone * | 100 | 1827 | FAERS-negative |
valdecoxib | 30 | 479 | FAERS-negative |
DMSO 0.1% | 1% | 1686 | Vehicle |
4-Aminopyridine | Amoxapine | Bicuculline | Chlorpromazine | Donepezil | Kainic Acid | Picrotoxin | Pilocarpine HCl | Pentylenetetrazole | SNC80 | Strychnine | Amitriptyline | Aminophyline | Bupropion | Clozapine | Diphenhydramine | Isoniazid | Maprotiline | Mirtazapine | Paroxetine | Temozolomide | Theophylline | Tramadol HCl | Venlafaxine HCl | Azelastine | Darifenacin | Imiquimod | Miconazole | Minoxidil | Niacin | Ospemifene | Roflumilast | Rosiglitazone | Valdecoxib | DMSO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4-aminopyridine | 340 | 109 | 60 | 30 | 14 | 70 | 41 | 1 | 95 | 77 | 10 | 41 | 72 | 50 | 128 | 1 | 4 | 22 | 45 | 0 | 6 | 22 | 19 | 9 | 10 | 5 | 92 | 34 | 4 | 0 | 21 | 1 | 81 | 21 | 79 |
amoxapine | 109 | 2659 | 388 | 202 | 86 | 56 | 137 | 15 | 278 | 1560 | 32 | 172 | 54 | 71 | 2006 | 1 | 15 | 116 | 555 | 0 | 11 | 90 | 48 | 71 | 48 | 12 | 1190 | 232 | 19 | 12 | 135 | 3 | 1274 | 315 | 1173 |
bicuculline | 60 | 388 | 657 | 93 | 67 | 33 | 173 | 10 | 133 | 372 | 38 | 98 | 38 | 47 | 475 | 2 | 7 | 53 | 274 | 0 | 3 | 64 | 43 | 39 | 44 | 15 | 297 | 130 | 16 | 8 | 93 | 2 | 371 | 153 | 387 |
chlorpromazine | 30 | 202 | 93 | 305 | 53 | 24 | 28 | 16 | 70 | 200 | 24 | 96 | 18 | 34 | 200 | 2 | 17 | 92 | 148 | 0 | 8 | 52 | 20 | 33 | 26 | 11 | 114 | 113 | 10 | 14 | 77 | 4 | 147 | 133 | 149 |
donepezil | 14 | 86 | 67 | 53 | 141 | 13 | 20 | 7 | 41 | 91 | 8 | 42 | 12 | 8 | 88 | 2 | 4 | 32 | 78 | 0 | 4 | 26 | 20 | 10 | 25 | 14 | 57 | 66 | 7 | 7 | 25 | 2 | 77 | 51 | 78 |
kainic acid | 70 | 56 | 33 | 24 | 13 | 162 | 17 | 2 | 50 | 45 | 8 | 26 | 59 | 40 | 56 | 1 | 2 | 15 | 36 | 0 | 4 | 14 | 10 | 5 | 14 | 7 | 46 | 30 | 7 | 2 | 22 | 1 | 39 | 22 | 40 |
picrotoxin | 41 | 137 | 173 | 28 | 20 | 17 | 273 | 1 | 60 | 132 | 30 | 46 | 23 | 35 | 169 | 2 | 7 | 18 | 93 | 0 | 3 | 46 | 32 | 34 | 23 | 10 | 118 | 43 | 13 | 3 | 48 | 2 | 120 | 51 | 137 |
pilocarpine HCl | 1 | 15 | 10 | 16 | 7 | 2 | 1 | 21 | 3 | 11 | 1 | 6 | 0 | 1 | 13 | 0 | 1 | 11 | 11 | 0 | 2 | 4 | 2 | 1 | 3 | 2 | 4 | 10 | 0 | 9 | 4 | 0 | 18 | 10 | 13 |
pentylenetetrazol | 95 | 278 | 133 | 70 | 41 | 50 | 60 | 3 | 1014 | 255 | 15 | 70 | 61 | 83 | 381 | 1 | 9 | 41 | 121 | 0 | 11 | 50 | 22 | 35 | 26 | 9 | 229 | 94 | 11 | 5 | 67 | 4 | 182 | 92 | 197 |
SNC80 | 77 | 1560 | 372 | 200 | 91 | 45 | 132 | 11 | 255 | 2308 | 34 | 188 | 44 | 60 | 1970 | 0 | 16 | 97 | 603 | 0 | 10 | 104 | 52 | 92 | 56 | 16 | 1408 | 206 | 20 | 6 | 153 | 3 | 1216 | 355 | 1179 |
strychnine | 10 | 32 | 38 | 24 | 8 | 8 | 30 | 1 | 15 | 34 | 60 | 10 | 7 | 13 | 39 | 1 | 7 | 14 | 24 | 0 | 4 | 26 | 17 | 22 | 11 | 10 | 23 | 16 | 9 | 1 | 22 | 3 | 33 | 29 | 33 |
amitriptyline | 41 | 172 | 98 | 96 | 42 | 26 | 46 | 6 | 70 | 188 | 10 | 346 | 17 | 22 | 220 | 0 | 9 | 48 | 151 | 0 | 2 | 47 | 28 | 27 | 39 | 9 | 176 | 85 | 10 | 6 | 68 | 0 | 109 | 110 | 125 |
aminophylline | 72 | 54 | 38 | 18 | 12 | 59 | 23 | 0 | 61 | 44 | 7 | 17 | 158 | 49 | 58 | 2 | 5 | 18 | 29 | 0 | 4 | 14 | 9 | 9 | 10 | 5 | 45 | 25 | 7 | 0 | 19 | 2 | 51 | 18 | 41 |
bupropion | 50 | 71 | 47 | 34 | 8 | 40 | 35 | 1 | 83 | 60 | 13 | 22 | 49 | 202 | 94 | 2 | 2 | 24 | 25 | 0 | 4 | 17 | 7 | 11 | 12 | 7 | 62 | 36 | 5 | 3 | 31 | 1 | 55 | 28 | 48 |
clozapine | 128 | 2006 | 475 | 200 | 88 | 56 | 169 | 13 | 381 | 1970 | 39 | 220 | 58 | 94 | 3695 | 0 | 18 | 103 | 659 | 0 | 9 | 114 | 62 | 90 | 64 | 16 | 1730 | 257 | 24 | 10 | 165 | 4 | 1392 | 372 | 1295 |
diphenhydramine | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 0 | 3 | 1 | 0 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 3 | 0 | 3 | 1 | 1 | 3 | 0 | 2 | 2 | 2 |
isoniazid | 4 | 15 | 7 | 17 | 4 | 2 | 7 | 1 | 9 | 16 | 7 | 9 | 5 | 2 | 18 | 1 | 32 | 8 | 8 | 0 | 7 | 18 | 6 | 14 | 5 | 5 | 16 | 6 | 4 | 2 | 14 | 4 | 7 | 21 | 11 |
maprotiline | 22 | 116 | 53 | 92 | 32 | 15 | 18 | 11 | 41 | 97 | 14 | 48 | 18 | 24 | 103 | 0 | 8 | 141 | 72 | 0 | 8 | 29 | 16 | 15 | 18 | 7 | 53 | 68 | 4 | 11 | 48 | 2 | 77 | 75 | 76 |
mirtazapine | 45 | 555 | 274 | 148 | 78 | 36 | 93 | 11 | 121 | 603 | 24 | 151 | 29 | 25 | 659 | 2 | 8 | 72 | 827 | 0 | 4 | 73 | 40 | 46 | 49 | 14 | 474 | 184 | 18 | 6 | 113 | 2 | 472 | 227 | 508 |
paroxetine | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
temozolomide | 6 | 11 | 3 | 8 | 4 | 4 | 3 | 2 | 11 | 10 | 4 | 2 | 4 | 4 | 9 | 0 | 7 | 8 | 4 | 0 | 21 | 10 | 1 | 6 | 3 | 4 | 7 | 5 | 2 | 1 | 6 | 4 | 7 | 7 | 5 |
theophylline | 22 | 90 | 64 | 52 | 26 | 14 | 46 | 4 | 50 | 104 | 26 | 47 | 14 | 17 | 114 | 1 | 18 | 29 | 73 | 0 | 10 | 200 | 31 | 52 | 23 | 14 | 107 | 45 | 16 | 5 | 58 | 5 | 58 | 71 | 90 |
tramadol HCl | 19 | 48 | 43 | 20 | 20 | 10 | 32 | 2 | 22 | 52 | 17 | 28 | 9 | 7 | 62 | 1 | 6 | 16 | 40 | 0 | 1 | 31 | 100 | 22 | 16 | 10 | 56 | 26 | 12 | 2 | 25 | 1 | 42 | 37 | 57 |
venlafaxine HCl | 9 | 71 | 39 | 33 | 10 | 5 | 34 | 1 | 35 | 92 | 22 | 27 | 9 | 11 | 90 | 1 | 14 | 15 | 46 | 0 | 6 | 52 | 22 | 151 | 14 | 7 | 75 | 20 | 12 | 1 | 38 | 3 | 34 | 60 | 63 |
azelastine | 10 | 48 | 44 | 26 | 25 | 14 | 23 | 3 | 26 | 56 | 11 | 39 | 10 | 12 | 64 | 2 | 5 | 18 | 49 | 0 | 3 | 23 | 16 | 14 | 84 | 11 | 37 | 38 | 10 | 4 | 28 | 1 | 42 | 37 | 47 |
darifenacin | 5 | 12 | 15 | 11 | 14 | 7 | 10 | 2 | 9 | 16 | 10 | 9 | 5 | 7 | 16 | 3 | 5 | 7 | 14 | 0 | 4 | 14 | 10 | 7 | 11 | 23 | 11 | 12 | 6 | 2 | 14 | 3 | 12 | 10 | 13 |
imiquimod | 92 | 1190 | 297 | 114 | 57 | 46 | 118 | 4 | 229 | 1408 | 23 | 176 | 45 | 62 | 1730 | 0 | 16 | 53 | 474 | 0 | 7 | 107 | 56 | 75 | 37 | 11 | 2214 | 124 | 25 | 4 | 123 | 3 | 956 | 242 | 930 |
miconazole | 34 | 232 | 130 | 113 | 66 | 30 | 43 | 10 | 94 | 206 | 16 | 85 | 25 | 36 | 257 | 3 | 6 | 68 | 184 | 0 | 5 | 45 | 26 | 20 | 38 | 12 | 124 | 332 | 10 | 9 | 80 | 2 | 185 | 125 | 196 |
minoxidil | 4 | 19 | 16 | 10 | 7 | 7 | 13 | 0 | 11 | 20 | 9 | 10 | 7 | 5 | 24 | 1 | 4 | 4 | 18 | 0 | 2 | 16 | 12 | 12 | 10 | 6 | 25 | 10 | 36 | 1 | 8 | 2 | 14 | 12 | 18 |
niacin | 0 | 12 | 8 | 14 | 7 | 2 | 3 | 9 | 5 | 6 | 1 | 6 | 0 | 3 | 10 | 1 | 2 | 11 | 6 | 0 | 1 | 5 | 2 | 1 | 4 | 2 | 4 | 9 | 1 | 15 | 7 | 0 | 12 | 9 | 8 |
ospemifene | 21 | 135 | 93 | 77 | 25 | 22 | 48 | 4 | 67 | 153 | 22 | 68 | 19 | 31 | 165 | 3 | 14 | 48 | 113 | 0 | 6 | 58 | 25 | 38 | 28 | 14 | 123 | 80 | 8 | 7 | 259 | 3 | 105 | 116 | 138 |
roflumilast | 1 | 3 | 2 | 4 | 2 | 1 | 2 | 0 | 4 | 3 | 3 | 0 | 2 | 1 | 4 | 0 | 4 | 2 | 2 | 0 | 4 | 5 | 1 | 3 | 1 | 3 | 3 | 2 | 2 | 0 | 3 | 7 | 3 | 4 | 2 |
rosiglitazone | 81 | 1274 | 371 | 147 | 77 | 39 | 120 | 18 | 182 | 1216 | 33 | 109 | 51 | 55 | 1392 | 2 | 7 | 77 | 472 | 0 | 7 | 58 | 42 | 34 | 42 | 12 | 956 | 185 | 14 | 12 | 105 | 3 | 1827 | 236 | 1267 |
valdecoxib | 21 | 315 | 153 | 133 | 51 | 22 | 51 | 10 | 92 | 355 | 29 | 110 | 18 | 28 | 372 | 2 | 21 | 75 | 227 | 0 | 7 | 71 | 37 | 60 | 37 | 10 | 242 | 125 | 12 | 9 | 116 | 4 | 236 | 479 | 280 |
DMSO | 79 | 1173 | 387 | 149 | 78 | 40 | 137 | 13 | 197 | 1179 | 33 | 125 | 41 | 48 | 1295 | 2 | 11 | 76 | 508 | 0 | 5 | 90 | 57 | 63 | 47 | 13 | 930 | 196 | 18 | 8 | 138 | 2 | 1267 | 280 | 1686 |
Task | Classifier | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|
Tool vs. FAER +/− | SVM | 0.76 | 0.61 | 0.83 | 0.76 |
LR | 0.79 | 0.64 | 0.87 | 0.78 | |
FAERS+ vs. tool/FAERS− | SVM | 0.54 | 0.42 | 0.62 | 0.55 |
LR | 0.49 | 0.42 | 0.59 | 0.53 | |
FAERS− vs. tool/FAERS+ | SVM | 0.59 | 0.31 | 0.77 | 0.59 |
LR | 0.72 | 0.49 | 0.76 | 0.72 | |
FAERS+ vs. FAERS− | SVM | 0.43 | 0.57 | 0.25 | 0.41 |
LR | 0.43 | 0.50 | 0.33 | 0.39 |
Tool Compounds (11) | FAERS-Positive Compounds (13) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amitriptyline | Aminophylline | Bupropion | Clozapine | Diphenhydramine | Isoniazid | Maprotiline | Mirtazapine | Paroxetine | Temozolomide | Theophylline | Tramadol | Venlafaxine Hydrochloride | |
4-aminopyridine | 2.9 | 18.4 | 9.8 | 9.8 | 0 | 0 | 1.1 | 1.7 | 0 | 0.6 | 1.7 | 0.6 | 0 |
amoxapine | 2.1 | 0.3 | 0.8 | 50.2 | 0 | 0.1 | 1.5 | 4.3 | 0 | 0.1 | 0.9 | 0.2 | 1.0 |
bicuculline | 4.7 | 2.0 | 2.0 | 28 | 0 | 0 | 2.0 | 17.3 | 0 | 0 | 1.3 | 1.3 | 0.7 |
chlorpromazine | 16.4 | 0 | 4.9 | 29.5 | 0 | 0 | 18.0 | 11.5 | 0 | 3.3 | 6.6 | 1.6 | 1.6 |
donepezil | 0 | 0 | 9.1 | 18.2 | 0 | 0 | 0 | 9.1 | 0 | 0 | 4.5 | 4.5 | 0 |
kainic acid | 0 | 36.5 | 17.6 | 4.7 | 0 | 0 | 0 | 1.2 | 0 | 0 | 0 | 0 | 0 |
picrotoxin | 3.5 | 0 | 1.2 | 11.8 | 0 | 0 | 1.2 | 9.4 | 0 | 0 | 5.9 | 2.4 | 1.2 |
pilocarpine HCl | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
pentylenetetrazol | 1.1 | 4.4 | 5.2 | 7.4 | 0 | 0.2 | 0.3 | 1.1 | 0 | 0.3 | 0.2 | 0 | 0.5 |
SNC80 | 3.3 | 0.5 | 1.9 | 61.9 | 0 | 0 | 1.7 | 11.1 | 0 | 0.5 | 2.1 | 0.7 | 2.4 |
strychnine | 0 | 0 | 0 | 0 | 0 | 0 | 12.5 | 0 | 0 | 12.5 | 12.5 | 0 | 0 |
alikeness-% (sum) | 34 | 62.1 | 52.5 | 221.5 | 0 | 0.3 | 38.3 | 66.7 | 0 | 17.3 | 35.7 | 11.3 | 7.4 |
FAERS-Positive Compound | Number of Significant Gene Sets in Enrichment Analysis | Sum of Significant NES Scores (GSEA Score) | Upregulated Genes Similar to Tool Compounds | Downregulated Genes Similar to Tool Compounds |
---|---|---|---|---|
clozapine | 14 | 28.8 | amoxapine bicuculline chlorpromazine donepezil pentylenetetrazol picrotoxin SNC80 strychnine | bicuculline chlorpromazine donepezil picrotoxin SNC80 strychnine |
mirtazapine | 11 | 20.1 | 4-aminopyridine amoxapine bicuculline chlorpromazine donepezil picrotoxin SNC80 | amoxapine bicuculline chlorpromazine SNC80 |
bupropion | 7 | 11.9 | 4-aminopyridine chlorpromazine donepezil kainic acid pentylenetetrazol | 4-aminopyridine kainic acid |
amitriptyline | 5 | 8.5 | chlorpromazine donepezil | amoxapine chlorpromazine SNC80 |
aminophylline | 4 | 7.8 | - | 4-aminopyridine kainic acid pentylenetetrazol pilocarpine HCl |
theophylline | 3 | 5.1 | - | amoxapine SNC80 strychnine |
maprotiline | 3 | 4.9 | chlorpromazine | chlorpromazine SNC80 |
venlafaxine HCl | 2 | 3.4 | - | SNC80 strychnine |
FAERS-Positive (11 Left) | Nr of DE Genes | Alikeness-% | GSEA Score | Machine Learning | ||
---|---|---|---|---|---|---|
Correct Categorization | Rank | Correct Categorization | Rank | |||
amitriptyline | 346 | Yes | 7 | Yes | 4 | Yes |
aminophylline | 158 | Yes | 3 | Yes | 5 | Yes |
bupropion | 202 | Yes | 4 | Yes | 3 | Yes |
clozapine | 3 695 | Yes | 1 | Yes | 1 | Yes |
isoniazid | 32 | No | No | Yes | ||
maprotiline | 141 | Yes | 5 | Yes | 7 | Yes |
mirtazapine | 827 | Yes | 2 | Yes | 2 | Yes |
temozolomide | 21 | Yes | 8 | No | Yes | |
theophylline | 200 | Yes | 6 | Yes | 6 | Yes |
tramadol | 100 | Yes | 9 | No | Yes | |
venlafaxine hydrochloride | 151 | No | Yes | 8 | No | |
9/11 (85%) | 8/11 (73%) | 10/11 (91%) |
Type | Compound | Concentrations Tested (µM) | Cytotoxicity (µM) | Highest Tolerated/ Tested Concentration (µM) | Compound- Induced Gene Expression Experiment (µM) | Vendor | Product Number |
---|---|---|---|---|---|---|---|
Tool | 4-aminopyridine | 0.1; 1; 10; 100 | none | 100 | 100 | Sigma | 275875 |
compounds | amoxapine | 0.1; 1; 10; 30 | none | 30 | 30 | Sigma | A129 |
(11) | bicuculline | 1; 10; 30; 100 | none | 100 | 100 | Sigma | 14340 |
chlorpromazine hydrochloride | 0.1;1;10;100 | 100 | 10 | 10 | Sigma | 31679 | |
donepezil | 0.01; 0.1; 1; 10 | none | 10 | 10 | Sigma | D6821 | |
kainic acid | 0.1; 1; 10; 100 | 100 | 10 | 10 | Sigma | 420318 | |
pentylenetetrazol | 100; 1000; 2500; 5000; 10,000; 20,000 | none | 20,000 | 20,000 | Sigma | P6500 | |
picrotoxin | 0.1; 1; 10; 30 | none | 30 | 30 | Sigma | P1675 | |
pilocarpine hydrochloride | 0.01; 0.1; 1; 10 | none | 10 | 10 | Sigma | P6503 | |
SNC80 | 0.1; 1; 10; 30 | none | 30 | 30 | Sigma | S2812 | |
strychnine hydrochloride | 0.01; 0.1; 1; 10 | none | 10 | 10 | Sigma | S8753 | |
FAERS- | aminophylline | 0.1; 1; 10; 100 | none | 100 | 100 | Sigma | A1755 |
positive | amitriptyline hydrochloride | 0.01; 0.1; 1; 10 | none | 10 | 10 | Sigma | A8404 |
compounds | bupropion hydrochloride | 0.1; 1; 10; 100 | none | 100 | 100 | Sigma | B102 |
(13) | clozapine | 0.1; 1; 10; 30 | none | 30 | 30 | Sigma | C6305 |
diphenhydramine hydrochloride | 0.01; 0.1; 1; 10 | none | 10 | 10 | Sigma | D3630 | |
isoniazid | 1; 10; 30; 100 | none | 100 | 100 | Sigma | I3377 | |
maprotiline hydrochloride | 0.1; 1; 10; 30 | 30 | 10 | 10 | Sigma | M9651 | |
mirtazapine | 0.1; 1; 10; 30 | none | 30 | 30 | Sigma | M0443 | |
paroxetine hydrochloride hemihydrate | 0.01; 0.1; 1; 10 | none | 10 | 10 | Sigma | P9623 | |
temozolomide | 1; 10; 30; 100 | 100 | 30 | 30 | Sigma | T2577 | |
theophylline | 10; 30; 100; 1000 | 1000 * | 100 | 100 | Sigma | T1633 | |
tramadol hydrochloride | 0.1; 1; 10; 30 | none | 30 | 30 | Sigma | 42965 | |
venlafaxine hydrochloride | 0.01; 0.1; 1; 10 | none | 10 | 10 | Sigma | V7264 | |
FAERS- | azelastine hydrochloride | 0.01; 0.1; 1; 10 | none | 10 | 10 | Sigma | A7611 |
negative | darifenacin hydrobromide | 0.001; 0.01; 0.1; 1 | none | 1 | 1 | Sigma | SML1102 |
compounds | imiquimod | 0.001; 0.01; 0.1; 1 | none | 1 | 1 | Sigma | 401020 |
(10) | miconazole | 1; 10; 30; 100 | 30 and 100 | 10 | 10 | Sigma | 1443409 |
minoxidil | 0.1; 1; 10; 30 | none | 30 | 30 | Sigma | M4145 | |
niacin | 0.1; 1; 10; 30 | none | 30 | 30 | Sigma | N4126 | |
ospemifene | 0.1; 1; 10; 30 | none | 30 | 30 | Sigma | SML0996 | |
roflumilast | 0.01; 0.1; 1; 10 | none | 10 | 10 | Sigma | SML1099 | |
rosiglitazone | 1; 10; 30; 100 | none | 100 | 100 | Sigma | R2408 | |
valdecoxib | 0.1; 1; 10; 30 | none | 30 | 30 | Sigma | PZ0179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipponen, A.; Kajevu, N.; Natunen, T.; Ciszek, R.; Puhakka, N.; Hiltunen, M.; Pitkänen, A. Gene Expression Profile as a Predictor of Seizure Liability. Int. J. Mol. Sci. 2023, 24, 4116. https://doi.org/10.3390/ijms24044116
Lipponen A, Kajevu N, Natunen T, Ciszek R, Puhakka N, Hiltunen M, Pitkänen A. Gene Expression Profile as a Predictor of Seizure Liability. International Journal of Molecular Sciences. 2023; 24(4):4116. https://doi.org/10.3390/ijms24044116
Chicago/Turabian StyleLipponen, Anssi, Natallie Kajevu, Teemu Natunen, Robert Ciszek, Noora Puhakka, Mikko Hiltunen, and Asla Pitkänen. 2023. "Gene Expression Profile as a Predictor of Seizure Liability" International Journal of Molecular Sciences 24, no. 4: 4116. https://doi.org/10.3390/ijms24044116
APA StyleLipponen, A., Kajevu, N., Natunen, T., Ciszek, R., Puhakka, N., Hiltunen, M., & Pitkänen, A. (2023). Gene Expression Profile as a Predictor of Seizure Liability. International Journal of Molecular Sciences, 24(4), 4116. https://doi.org/10.3390/ijms24044116