Impaired Organokine Regulation in Non-Diabetic Obese Subjects: Halfway to the Cardiometabolic Danger Zone
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patient Enrollment
4.2. Sample Collection
4.3. Measurement of Afamin
4.4. Measurement of RBP4 and PAI-1
4.5. LDL Subfraction Analysis
4.6. HDL Subfraction Analysis
4.7. Statistical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navarro-González, D.; Sánchez-Íñigo, L.; Fernández-Montero, A.; Pastrana-Delgado, J.; Alfredo Martínez, J. Are all metabolically healthy individuals with obesity at the same risk of diabetes onset? Obesity 2016, 24, 2615–2623. [Google Scholar] [CrossRef] [Green Version]
- Meigs, J.B.; Wilson, P.W.; Fox, C.S.; Vasan, R.S.; Nathan, D.M.; Sullivan, L.M.; D’Agostino, R.B. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J. Clin. Endocrinol. Metab. 2006, 91, 2906–2912. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, A.C.; Cantin, B.; Mauriège, P.; Bergeron, J.; Dagenais, G.R.; Després, J.P.; Lamarche, B. Insulin resistance syndrome, body mass index and the risk of ischemic heart disease. Can. Med. Assoc. J. 2005, 172, 1301–1305. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhang, M.; Wang, S.; Wang, C.; Wang, J.; Li, L.; Zhang, L.; Ren, Y.; Han, C.; Zhao, Y.; et al. Dynamic status of metabolically healthy overweight/obesity and metabolically unhealthy and normal weight and the risk of type 2 diabetes mellitus: A cohort study of a rural adult Chinese population. Obes. Res. Clin. Pract. 2018, 12, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Caleyachetty, R.; Thomas, G.N.; Toulis, K.A.; Mohammed, N.; Gokhale, K.M.; Balachandran, K.; Nirantharakumar, K. Metabolically Healthy Obese and Incident Cardiovascular Disease Events Among 3.5 Million Men and Women. J. Am. Coll. Cardiol. 2017, 70, 1429–1437. [Google Scholar] [CrossRef]
- Tsatsoulis, A.; Paschou, S.A. Metabolically Healthy Obesity: Criteria, Epidemiology, Controversies, and Consequences. Curr. Obes. Rep. 2020, 9, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Pan, Y.; Chen, H. The Harm of Metabolically Healthy Obese and the Effect of Exercise on Their Health Promotion. Front. Physiol. 2022, 13, 924649. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, F.; Kollerits, B.; Kiechl, S.; Lamina, C.; Kedenko, L.; Meisinger, C.; Willeit, J.; Huth, C.; Wietzorrek, G.; Altmann, M.E.; et al. Plasma concentrations of afamin are associated with the prevalence and development of metabolic syndrome. Circ. Cardiovasc. Genet. 2014, 7, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Kollerits, B.; Lamina, C.; Huth, C.; Marques-Vidal, P.; Kiechl, S.; Seppälä, I.; Cooper, J.; Hunt, S.C.; Meisinger, C.; Herder, C.; et al. Plasma Concentrations of Afamin Are Associated with Prevalent and Incident Type 2 Diabetes: A Pooled Analysis in More Than 20,000 Individuals. Diabetes Care 2017, 40, 1386–1393. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.T.; Wei, W.J.; Qiu, Z.L.; Song, H.J.; Luo, Q.Y. Afamin promotes glucose metabolism in papillary thyroid carcinoma. Mol. Cell Endocrinol. 2016, 434, 108–115. [Google Scholar] [CrossRef]
- Pitkänen, N.; Finkenstedt, A.; Lamina, C.; Juonala, M.; Kähönen, M.; Mäkelä, K.M.; Dieplinger, B.; Viveiros, A.; Melmer, A.; Leitner, I.; et al. Afamin predicts the prevalence and incidence of nonalcoholic fatty liver disease. Clin. Chem. Lab. Med. 2022, 60, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Medina-Santillán, R.; López-Velázquez, J.A.; Chávez-Tapia, N.; Torres-Villalobos, G.; Uribe, M.; Méndez-Sánchez, N. Hepatic manifestations of metabolic syndrome. Diabetes Metab. Res. Rev. 2013. [Google Scholar] [CrossRef]
- Altalhi, R.; Pechlivani, N.; Ajjan, R.A. PAI-1 in Diabetes: Pathophysiology and Role as a Therapeutic Target. Int. J. Mol. Sci. 2021, 22, 3170. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Liu, Z.; Liu, Y.; Luo, M.; Chen, N.; Deng, X.; Luo, Y.; He, J.; Zhang, L.; et al. PAI-1 Exacerbates White Adipose Tissue Dysfunction and Metabolic Dysregulation in High Fat Diet-Induced Obesity. Front. Pharmacol. 2018, 9, 1087. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.A.; Oleaga, C.; Eren, M.; Amaral, A.P.; Shang, M.; Lux, E.; Khan, S.S.; Shah, S.J.; Omura, Y.; Pamir, N.; et al. Role of PAI-1 in hepatic steatosis and dyslipidemia. Sci. Rep. 2021, 11, 430. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Burgess, S.; Eicher, J.D.; O’Donnell, C.J.; Johnson, A.D. Causal Effect of Plasminogen Activator Inhibitor Type 1 on Coronary Heart Disease. J. Am. Heart Assoc. 2017, 6, e004918. [Google Scholar] [CrossRef]
- Newcomer, M.E.; Ong, D.E. Plasma retinol binding protein: Structure and function of the prototypic lipocalin. Biochim. Biophys. Acta. 2000, 1482, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Kotnik, P.; Fischer-Posovszky, P.; Wabitsch, M. RBP4: A controversial adipokine. Eur. J. Endocrinol. 2011, 165, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Lőrincz, H.; Csige, I.; Harangi, M.; Szentpéteri, A.; Seres, I.; Szabó, Z.; Paragh, G.; Somodi, S. Low Levels of Serum Fetuin-A and Retinol-Binding Protein 4 Correlate with Lipoprotein Subfractions in Morbid Obese and Lean Non-Diabetic Subjects. Life 2021, 11, 881. [Google Scholar] [CrossRef]
- Wong, Y.K.; Tse, H.F. Circulating Biomarkers for Cardiovascular Disease Risk Prediction in Patients With Cardiovascular Disease. Front. Cardiovasc. Med. 2021, 8, 713191. [Google Scholar] [CrossRef]
- Juhász, I.; Ujfalusi, S.; Seres, I.; Lőrincz, H.; Varga, V.E.; Paragh, G., Jr.; Somodi, S.; Harangi, M.; Paragh, G. Afamin Levels and Their Correlation with Oxidative and Lipid Parameters in Non-diabetic, Obese Patients. Biomolecules 2022, 12, 116. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Min, S.H.; Lee, D.H.; Oh, T.J.; Kim, K.M.; Moon, J.H.; Choi, S.H.; Park, K.S.; Jang, H.C.; Lim, S. Comprehensive assessment of lipoprotein subfraction profiles according to glucose metabolism status, and association with insulin resistance in subjects with early-stage impaired glucose metabolism. Int. J. Cardiol. 2016, 225, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Mora, S.; Franks, P.W.; Orho-Melander, M.; Ridker, P.M.; Hu, F.B.; Chasman, D.I. Adiposity and Genetic Factors in Relation to Triglycerides and Triglyceride-Rich Lipoproteins in the Women’s Genome Health Study. Clin. Chem. 2018, 64, 231–241. [Google Scholar] [CrossRef]
- Janac, J.M.; Zeljkovic, A.; Jelic-Ivanovic, Z.D.; Dimitrijevic-Sreckovic, V.S.; Vekic, J.; Miljkovic, M.M.; Stefanovic, A.; Kotur-Stevuljevic, J.M.; Ivanisevic, J.M.; Spasojevic-Kalimanovska, V.V. Increased Oxidized High-Density Lipoprotein/High-Density Lipoprotein-Cholesterol Ratio as a Potential Indicator of Disturbed Metabolic Health in Overweight and Obese Individuals. Lab. Med. 2020, 51, 24–33. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, H.W.; Zhang, Y.; Li, S.; Xu, R.X.; Sun, J.; Zhu, C.G.; Wu, N.Q.; Gao, Y.; Guo, Y.L.; et al. Analysis of Lipoprotein Subfractions in 920 Patients With and Without Type 2 Diabetes. Heart Lung. Circ. 2017, 26, 211–218. [Google Scholar] [CrossRef]
- Thakkar, H.; Vincent, V.; Sen, A.; Singh, A.; Roy, A. Changing Perspectives on HDL: From Simple Quantity Measurements to Functional Quality Assessment. J. Lipids 2021, 2021, 5585521. [Google Scholar] [CrossRef]
- Santos-Gallego, C.G. HDL: Quality or quantity? Atherosclerosis 2015, 243, 121–123. [Google Scholar] [CrossRef]
- Stakhneva, E.M.; Kashtanova, E.V.; Polonskaya, Y.V.; Striukova, E.V.; Shramko, V.S.; Sadovski, E.V.; Kurguzov, A.V.; Murashov, I.S.; Chernyavskii, A.M.; Ragino, Y.I. The Search for Associations of Serum Proteins with the Presence of Unstable Atherosclerotic Plaque in Coronary Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 12795. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, Z.; Cen, L.; Wang, J.; Zhang, J.; Zhang, X.; Xu, C. Association Between Serum Afamin Levels with Nonalcoholic Associated Fatty Liver Disease. Can. J. Gastroenterol. Hepatol. 2022, 2022, 7175108. [Google Scholar] [CrossRef]
- Nowicki, G.J.; Ślusarska, B.; Polak, M.; Naylor, K.; Kocki, T. Relationship between Serum Kallistatin and Afamin and Anthropometric Factors Associated with Obesity and of Being Overweight in Patients after Myocardial Infarction and without Myocardial Infarction. J. Clin. Med. 2021, 10, 5792. [Google Scholar] [CrossRef]
- Jerkovic, L.; Voegele, A.F.; Chwatal, S.; Kronenberg, F.; Radcliffe, C.M.; Wormald, M.R.; Lobentanz, E.M.; Ezeh, B.; Eller, P.; Dejori, N.; et al. Afamin is a novel human vitamin E-binding glycoprotein characterization and in vitro expression. J. Proteome Res. 2005, 4, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Paragh, G.; Seres, I.; Harangi, M.; Fülöp, P. Dynamic interplay between metabolic syndrome and immunity. Adv. Exp. Med. Biol. 2014, 824, 171–190. [Google Scholar] [CrossRef]
- Morrow, G.B.; Mutch, N.J. Past, Present, and Future Perspectives of Plasminogen Activator Inhibitor 1 (PAI-1). Semin. Thromb. Hemost. 2022. [Google Scholar] [CrossRef] [PubMed]
- Palella, E.; Cimino, R.; Pullano, S.A.; Fiorillo, A.S.; Gulletta, E.; Brunetti, A.; Foti, D.P.; Greco, M. Laboratory Parameters of Hemostasis, Adhesion Molecules, and Inflammation in Type 2 Diabetes Mellitus: Correlation with Glycemic Control. Int. J. Environ. Res. Public Health 2020, 17, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohd Nor, N.S.; Saimin, H.; Rahman, T.; Abdul Razak, S.; Mohd Nasir, N.; Ismail, Z.; Mohd Nawawi, H. Comparable Enhanced Prothrombogenesis in Simple Central Obesity and Metabolic Syndrome. J. Obes. 2018, 2018, 8508549. [Google Scholar] [CrossRef]
- Somodi, S.; Seres, I.; Lőrincz, H.; Harangi, M.; Fülöp, P.; Paragh, G. Plasminogen Activator Inhibitor-1 Level Correlates with Lipoprotein Subfractions in Obese Nondiabetic Subjects. Int. J. Endocrinol. 2018, 2018, 9596054. [Google Scholar] [CrossRef] [Green Version]
- Małecki, P.; Tracz, J.; Łuczak, M.; Figlerowicz, M.; Mazur-Melewska, K.; Służewski, W.; Mania, A. Serum proteome assessment in nonalcoholic fatty liver disease in children: A preliminary study. Expert. Rev. Proteom. 2020, 17, 623–632. [Google Scholar] [CrossRef]
- Araumi, A.; Osaki, T.; Ichikawa, K.; Kudo, K.; Suzuki, N.; Watanabe, S.; Watanabe, M.; Konta, T. Urinary and plasma proteomics to discover biomarkers for diagnosing between diabetic nephropathy and minimal change nephrotic syndrome or membranous nephropathy. Biochem. Biophys. Rep. 2021, 27, 101102. [Google Scholar] [CrossRef]
- Olsen, T.; Blomhoff, R. Retinol, Retinoic Acid, and Retinol-Binding Protein 4 are Differentially Associated with Cardiovascular Disease, Type 2 Diabetes, and Obesity: An Overview of Human Studies. Adv. Nutr. 2020, 11, 644–666. [Google Scholar] [CrossRef]
- Yang, Q.; Graham, T.E.; Mody, N.; Preitner, F.; Peroni, O.D.; Zabolotny, J.M.; Kotani, K.; Quadro, L.; Kahn, B.B. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005, 436, 356–362. [Google Scholar] [CrossRef]
- Fan, J.; Yin, S.; Lin, D.; Liu, Y.; Chen, N.; Bai, X.; Ke, Q.; Shen, J.; You, L.; Lin, X.; et al. Association of Serum Retinol-Binding Protein 4 Levels and the Risk of Incident Type 2 Diabetes in Subjects with Prediabetes. Diabetes Care 2019, 42, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Schiborn, C.; Weber, D.; Grune, T.; Biemann, R.; Jäger, S.; Neu, N.; Müller von Blumencron, M.; Fritsche, A.; Weikert, C.; Schulze, M.B.; et al. Retinol and Retinol Binding Protein 4 Levels and Cardiometabolic Disease Risk. Circ. Res. 2022, 131, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Perumalsamy, S.; Ahmad, W.A.W.; Huri, H.Z. Retinol-Binding Protein-4-A Predictor of Insulin Resistance and the Severity of Coronary Artery Disease in Type 2 Diabetes Patients with Coronary Artery Disease. Biology 2021, 10, 858. [Google Scholar] [CrossRef]
- Hu, C.; Jia, W.; Zhang, R.; Wang, C.; Lu, J.; Wu, H.; Fang, Q.; Ma, X.; Xiang, K. Effect of RBP4 gene variants on circulating RBP4 concentration and type 2 diabetes in a Chinese population. Diabet. Med. 2008, 25, 11–18. [Google Scholar] [CrossRef] [PubMed]
Controls (n = 49) | NDO (n = 106) | T2DM (n = 62) | |
---|---|---|---|
Anthropometric parameters | |||
Male/Female (n) | 13/36 | 23/83 | 22/40 |
Age (yrs) | 43.2 ± 9.1 | 44.3 ± 12.5 | 47.6 ± 7.7 |
BMI (kg/m2) | 24.7 ± 2.8 | 42.6 ± 8.1 * | 43.1 ± 9.1 § |
Waist circumference (cm) | 85.2 ± 12.3 | 123.7 ± 17.4 * | 128.3 ± 18.5 § |
Medication | |||
Metformin (n, %) | 0; 0 | 11; 10.4 | 45; 72.8 |
Insulin (n, %) | 0; 0 | 0; 0 | 14; 35.5 |
GLP-1 RA (n, %) | 0; 0 | 0; 0 | 14; 35.5 |
Statin (n, %) | 0; 0 | 12; 11.3 | 26; 41.9 |
ACEI/ARB (n, %) | 1; 2 | 41; 38.7 | 28; 45.2 |
CCB (n, %) | 1; 2 | 15; 14.2 | 14; 22.6 |
Diuretics (n, %) | 0; 0 | 22; 20.8 | 8; 12.9 |
Laboratory parameters | |||
afamin (μg/mL) | 56 ± 20.3 | 82.6 ± 19.7 * | 109.2 ± 21.4§,# |
hsCRP (mg/L) | 1.3 (0.6–2.5) | 8 (3.4–15.7) * | 6.8 (3.1–13.7) § |
Glucose (mmol/L) | 4.8 (4.5–5.1) | 5.2 (4.9–5.8) * | 6.4 (5.5–10.5) §,# |
HbA1C (%) | 5.1 ± 0.3 | 5.7 ± 0.8 * | 7.2 ± 1.7 §,# |
Insulin (mU/L) | 10.9 (6.6–12.9) (n = 16) | 15 (11.2–21.6) * | 25.4 (14.1–31.5) (n = 16) § |
GFR (mL/1.73 m2) | 90 (90–90) | 90 (90–90) | 90 (90–90) |
AST (U/L) | 19 (17–24) | 20 (17–27) | 25 (17–30) |
ALT (U/L) | 17.5 (13–25) | 26 (18–35) * | 28 (21–44) § |
γ-GTP (U/L) | 19 (16–28) | 28.5 (19–44) * | 35 (25–53) § |
sTSH (mU/L) | 1.65 (1.18–2.11) | 1.95 (1.46–2.67) | 2.29 (1.34–15.2) (n = 33) # |
Triglyceride (mmol/L) | 1.1 (0.9–1.5) | 1.45 (1.1–1.9) * | 1.7 (1.2–2.7) §,# |
Total cholesterol (mmol/L) | 5 ± 0.8 | 5 ± 0.8 | 5 ± 1.2 |
HDL-C (mmol/L) | 1.5 ± 0.4 | 1.3 ± 0.3 | 1.2 ± 0.3 § |
LDL-C (mmol/L) | 2.9 ± 0.5 | 3.2 ± 0.7 | 3 ± 0.9 |
Controls (n = 49) | NDO (n = 106) | T2DM (n = 62) | |
---|---|---|---|
VLDL (%) | 17.69 ± 3.2 | 19.9 ± 4.1 * | 20.8 ± 5.2 § |
IDL (%) | 26.6 ± 6.3 | 25.3 ± 4 | 24.6 ± 3.9 |
large LDL (%) | 23.2 ± 6.1 | 28 ± 4.7 * | 26.9 ± 5.4 § |
small-dense LDL (%) | 0.6 (0–1.9) | 1.15 (0–2.4) | 1.65 (0–3.3) § |
mean LDL size (nm) | 27.3 (27–27.4) | 27.1 (26.9–27.3) * | 26.9 (26.9–27.3) §,# |
large HDL (%) | 29 ± 8.7 | 22.9 ± 7 * | 18.9 ± 6.5 §,# |
intermediate HDL (%) | 50.3 ± 4.6 | 51.1 ± 3.7 | 48.8 ± 4.1 |
small HDL (%) | 20.7 ± 6.3 | 26 ± 6.8 * | 32.2 ± 7.7 §,# |
VLDL (mmol/L) | 0.89 ± 0.19 | 1.0 ± 0.24 * | 1.1 ± 0.49 § |
IDL (mmol/L) | 1.34 ± 0.41 | 1.25 ± 0.30 | 1.23 ± 0.33 |
large LDL (mmol/L) | 1.17 ± 0.38 | 1.41 ± 0.36 * | 1.33 ± 0.41 |
small-dense LDL (mmol/L) | 0.032 (0–0.093) | 0.058 (0–0.13) | 0.075 (0–0.185) |
large HDL (mmol/L) | 0.46 ± 0.26 | 0.30 ± 0.14 * | 0.24 ± 0.12 § |
intermediate HDL (mmol/L) | 0.73 ± 0.17 | 0.67 ± 0.17 | 0.58 ± 0.14 §,# |
small HDL (mmol/L) | 0.29 ± 0.07 | 0.34 ± 0.10 * | 0.37 ± 0.10 § |
Afamin vs. | r | p |
---|---|---|
HDL-1 (%) | −0.404 | <0.001 |
HDL-2 (%) | −0.298 | <0.001 |
HDL-3 (%) | −0.462 | <0.001 |
HDL-4 (%) | −0.491 | <0.001 |
HDL-5 (%) | −0.521 | <0.001 |
HDL-6 (%) | 0.069 | 0.3 |
HDL-7 (%) | 0.408 | 0.001 |
HDL-8 (%) | 0.221 | <0.001 |
HDL-9 (%) | 0.391 | <0.001 |
HDL-10 (%) | 0.483 | <0.001 |
Large HDL (%) | −0.47 | <0.001 |
Intermediate HDL (%) | −0.28 | <0.001 |
Small HDL (%) | 0.61 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lőrincz, H.; Ratku, B.; Csiha, S.; Seres, I.; Szabó, Z.; Paragh, G.; Harangi, M.; Somodi, S. Impaired Organokine Regulation in Non-Diabetic Obese Subjects: Halfway to the Cardiometabolic Danger Zone. Int. J. Mol. Sci. 2023, 24, 4115. https://doi.org/10.3390/ijms24044115
Lőrincz H, Ratku B, Csiha S, Seres I, Szabó Z, Paragh G, Harangi M, Somodi S. Impaired Organokine Regulation in Non-Diabetic Obese Subjects: Halfway to the Cardiometabolic Danger Zone. International Journal of Molecular Sciences. 2023; 24(4):4115. https://doi.org/10.3390/ijms24044115
Chicago/Turabian StyleLőrincz, Hajnalka, Balázs Ratku, Sára Csiha, Ildikó Seres, Zoltán Szabó, György Paragh, Mariann Harangi, and Sándor Somodi. 2023. "Impaired Organokine Regulation in Non-Diabetic Obese Subjects: Halfway to the Cardiometabolic Danger Zone" International Journal of Molecular Sciences 24, no. 4: 4115. https://doi.org/10.3390/ijms24044115