Baseline Gait and Motor Function Predict Long-Term Severity of Neurological Outcomes of Viral Infection
Abstract
:1. Introduction
2. Results
2.1. DigiGait Parameters Provided Objective Measures of Gait and Motor Function
2.2. Pre-Infection DigiGait Measurements Were Significantly Associated with 90 d.p.i. Phenotype Scores
Limb | DigiGait Parameter | Parameter Category (from [46]) | Association with Response Categories (from [47]) and/or Sex |
---|---|---|---|
Left forelimb (LF) | Swing * | temporal | |
Brake #* | temporal | p = 0.0413 | |
Stance | temporal | ||
Stride * | spatial | ||
MAXdA/dT | temporal | ||
Left hindlimb (LH) | Stride # | spatial | p = 0.00573 (female resilient vs. female susceptible: p = 0.0064; female resilient vs. male susceptible: p = 0.0188) |
% Propel Stance | temporal | ||
Stride Frequency # | spatial | p = 0.0375 (female resilient vs. female susceptible: p = 0.032; female resilient vs. male susceptible: p = 0.0034) | |
Stance Width Coefficient of Variance (CV) # | intraindividual variability | p = 0.0169 (female resilient vs. male resistant: p = 0.0396; female resilient vs. male susceptible: p = 0.0077) | |
Paw Placement Positioning | spatial | ||
Paw Drag # | postural | p = 0.00425 | |
Hind Limb Shared Stance Time #* | temporal | p = 0.0287 | |
Right forelimb (RF) | Brake * | temporal | |
Propel # | temporal | p = 0.0222 | |
Stride # | spatial | p = 0.0373 | |
Stride Frequency * | spatial | ||
Paw Area at Peak Stance | postural | ||
MAXdA/dT | temporal | ||
Paw Placement Positioning | spatial | ||
Midline Distance | postural | ||
Right hindlimb (RH) | % Propel Stance * | temporal | |
% Propel Stride | temporal | ||
Stance/Swing * | temporal | ||
Stride Frequency | spatial | ||
Paw Angle | postural | ||
Paw Angle Variability | intraindividual variability | ||
Overlap Distance | spatial | ||
Paw Placement Positioning | spatial | ||
Midline Distance | postural | ||
Axis Distance | postural | ||
Paw Drag #* | postural | p = 0.0242 |
Phenotype | Sex | SNP ID (gQTL) | rsID (MPD) | p-Value | Location (chr:bp) | Prox-Dist (Mb) | Number of Genes in Region | Significant DEGs in Region | Protein-Coding DEGs |
---|---|---|---|---|---|---|---|---|---|
Swing LF | both | UNC23682331 | rs30743246 | 1.59 × 10−6 | 14:21992279 | 9.17–25.50 | 376 | 7 | 0 |
Brake LF | both | UNC27374397 | rs4217379 | 2.03 × 10−6 | 16:90390967 | 86.46–90.56 | 100 | 1 | 0 |
Stride LF | both | UNC855090 | rs51387167 | 9.18 × 10−9 | 1:67861707 | 64.57–67.96 | 400 | 4 | 3 |
Hindlimb Shared Stance Time LH | both | UNC30823189 | rs30323288 | 2.41 × 10−7 | X:51777164 | 50.67–51.84 | 687 | 5 | 0 |
Brake RF | F | JAX00139829 | rs29969310 | 1.40 × 10−10 | 6:36890310 | 34.85–36.99 | 53 | 1 | 1 |
Stride Frequency RF | both | UNC19870031 | rs224655440 | 2.18 × 10−6 | 11:69589978 | 64.57–67.96 | 942 | 18 | 13 |
% Propel Stance RH | F | UNC26076456 | rs30829258 | 9.86 × 10−8 | 15:89682500 | 89.59–91.33 | 70 | 2 | 2 |
Stance/Swing RH | M | UNC16337966 | rs37517810 | 2.34 × 10−7 | 9:49759868 | 49.70–52.20 | 950 | 12 | 9 |
Paw Drag RH | F | UNC30588773 | rs50371642 | 7.41 × 10−8 | 19:59415570 | 59.05–61.26 | 57 | 0 | 0 |
2.3. Relationships between Strain Categories and Baseline DigiGait Measurements
2.4. Quantitative Trait Loci (QTL) Mapping
3. Discussion
4. Materials and Methods
4.1. Mice
4.2. DigiGait
4.3. 90 d.p.i. Phenotype Score
4.4. Statistical Analyses
4.5. Identification of Significant Quantitative Trait Loci (QTL)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bu, X.L.; Wang, X.; Xiang, Y.; Shen, L.L.; Wang, Q.H.; Liu, Y.H.; Jiao, S.S.; Wang, Y.R.; Cao, H.Y.; Yi, X.; et al. The association between infectious burden and Parkinson’s disease: A case-control study. Park. Relat. Disord. 2015, 21, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Marosova, L.; Neradil, P.; Zilka, N. How can viruses influence the neuroinflammation and neurodegeneration in the aged human brain. Acta Virol. 2013, 57, 273–281. [Google Scholar] [PubMed]
- De Chiara, G.; Marcocci, M.E.; Sgarbanti, R.; Civitelli, L.; Ripoli, C.; Piacentini, R.; Garaci, E.; Grassi, C.; Palamara, A.T. Infectious agents and neurodegeneration. Mol. Neurobiol. 2012, 46, 614–638. [Google Scholar] [CrossRef]
- Takahashi, M.; Yamada, T. Viral etiology for Parkinson’s disease—A possible role of influenza A virus infection. Jpn. J. Infect. Dis. 1999, 52, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Mattock, C.; Marmot, M.; Stern, G. Could Parkinson’s disease follow intra-uterine influenza?: A speculative hypothesis. J. Neurol. Neurosurg. Psychiatry 1988, 51, 753–756. [Google Scholar] [CrossRef]
- Rohn, T.T.; Catlin, L.W. Immunolocalization of influenza A virus and markers of inflammation in the human Parkinson’s disease brain. PLoS ONE 2011, 6, e20495. [Google Scholar] [CrossRef]
- Bryson, K.J.; Ligertwood, Y.; Quigg-Nicol, M.; Dutia, B.M.; Manson, J.; Nash, A.A. Influenza A virus infection contributes to Parkinson’s disease by driving pathological CD4(+) T cell responses in the brain. Immunology 2013, 140, 127. [Google Scholar]
- Jang, H.; Boltz, D.A.; Webster, R.G.; Smeyne, R.J. Viral parkinsonism. Biochim. Biophys. Acta 2009, 1792, 714–721. [Google Scholar] [CrossRef]
- Ingre, C.; Roos, P.M.; Piehl, F.; Kamel, F.; Fang, F. Risk factors for amyotrophic lateral sclerosis. Clin. Epidemiol. 2015, 7, 181–193. [Google Scholar] [CrossRef]
- Rowland, L.P.; Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 2001, 344, 1688–1700. [Google Scholar] [CrossRef]
- Xue, Y.C.; Feuer, R.; Cashman, N.; Luo, H. Enteroviral Infection: The Forgotten Link to Amyotrophic Lateral Sclerosis? Front. Mol. Neurosci. 2018, 11, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascherio, A.; Munger, K.L. Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors. Ann. Neurol. 2007, 61, 504–513. [Google Scholar] [PubMed]
- Ascherio, A.; Munger, K. Epidemiology of multiple sclerosis: From risk factors to prevention. Semin. Neurol. 2008, 28, 17–28. [Google Scholar] [CrossRef]
- Pugliatti, M.; Harbo, H.F.; Holmoy, T.; Kampman, M.T.; Myhr, K.M.; Riise, T.; Wolfson, C. Environmental risk factors in multiple sclerosis. Acta Neurol. Scand. Suppl. 2008, 188, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Danzer, C.; Mattner, J. Impact of microbes on autoimmune diseases. Arch. Immunol. Ther. Exp. 2013, 61, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Disanto, G.; Morahan, J.M.; Ramagopalan, S.V. Multiple sclerosis: Risk factors and their interactions. CNS Neurol. Disord. Drug Targets 2012, 11, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Steelman, A.J. Infection as an Environmental Trigger of Multiple Sclerosis Disease Exacerbation. Front. Immunol. 2015, 6, 520. [Google Scholar] [CrossRef]
- Acheson, E.D. Epidemiology of multiple sclerosis. Br. Med. Bull. 1977, 33, 9–14. [Google Scholar] [CrossRef]
- Noseworthy, J.H.; Lucchinetti, C.; Rodriguez, M.; Weinshenker, B.G. Multiple sclerosis. N. Engl. J. Med. 2000, 343, 938–952. [Google Scholar] [CrossRef]
- Thacker, E.L.; Mirzaei, F.; Ascherio, A. Infectious mononucleosis and risk for multiple sclerosis: A meta-analysis. Ann. Neurol. 2006, 59, 499–503. [Google Scholar] [CrossRef]
- Moon, Y.; Sung, J.; An, R.; Hernandez, M.E.; Sosnoff, J.J. Gait variability in people with neurological disorders: A systematic review and meta-analysis. Hum. Mov. Sci. 2016, 47, 197–208. [Google Scholar] [CrossRef]
- Shulman, L.M.; Gruber-Baldini, A.L.; Anderson, K.E.; Vaughan, C.G.; Reich, S.G.; Fishman, P.S.; Weiner, W.J. The evolution of disability in Parkinson disease. Mov. Disord. 2008, 23, 790–796. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Cudkowicz, M.E.; Firtion, R.; Wei, J.Y.; Goldberger, A.L. Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov. Disord. 1998, 13, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M. Gait dynamics in Parkinson’s disease: Common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos 2009, 19, 026113. [Google Scholar] [CrossRef]
- Achanta, S.D.M.; Karthikeyan, T.; Kanna, R.V. Wearable sensor based acoustic gait analysis using phase transition-based optimization algorithm on IoT. Int. J. Speech Technol. 2021, 1–11. [Google Scholar] [CrossRef]
- Sampath Dakshina Murthy, A.; Karthikeyan, T.; Omkar Lakshmi Jagan, B.; Usha Kumari, C. Novel deep neural network for individual re recognizing physically disabled individuals. Mater. Today Proc. 2020, 33, 4323–4328. [Google Scholar] [CrossRef]
- Churchill, G.A.; Airey, D.C.; Allayee, H.; Angel, J.M.; Attie, A.D.; Beatty, J.; Beavis, W.D.; Belknap, J.K.; Bennett, B.; Berrettini, W.; et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat. Genet. 2004, 36, 1133–1137. [Google Scholar] [CrossRef]
- Threadgill, D.W.; Hunter, K.W.; Williams, R.W. Genetic dissection of complex and quantitative traits: From fantasy to reality via a community effort. Mamm. Genome 2002, 13, 175–178. [Google Scholar] [CrossRef]
- Threadgill, D.W.; Miller, D.R.; Churchill, G.A.; de Villena, F.P. The collaborative cross: A recombinant inbred mouse population for the systems genetic era. ILAR J. 2011, 52, 24–31. [Google Scholar] [CrossRef]
- Brinkmeyer-Langford, C.L.; Rech, R.; Amstalden, K.; Kochan, K.J.; Hillhouse, A.E.; Young, C.; Welsh, C.J.; Threadgill, D.W. Host genetic background influences diverse neurological responses to viral infection in mice. Sci. Rep. 2017, 7, 12194. [Google Scholar] [CrossRef]
- Eldridge, R.; Osorio, D.; Amstalden, K.; Edwards, C.; Young, C.R.; Cai, J.J.; Konganti, K.; Hillhouse, A.; Threadgill, D.W.; Welsh, C.J.; et al. Antecedent presentation of neurological phenotypes in the Collaborative Cross reveals four classes with complex sex-dependencies. Sci. Rep. 2020, 10, 7918. [Google Scholar] [CrossRef]
- McGavern, D.B.; Zoecklein, L.; Drescher, K.M.; Rodriguez, M. Quantitative assessment of neurologic deficits in a chronic progressive murine model of CNS demyelination. Exp. Neurol. 1999, 158, 171–181. [Google Scholar] [CrossRef] [PubMed]
- McGavern, D.B.; Zoecklein, L.; Sathornsumetee, S.; Rodriguez, M. Assessment of hindlimb gait as a powerful indicator of axonal loss in a murine model of progressive CNS demyelination. Brain Res. 2000, 877, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xie, Z.; Turkson, S.; Zhuang, X. A53T human alpha-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J. Neurosci. 2015, 35, 890–905. [Google Scholar] [CrossRef] [PubMed]
- Samantaray, S.; Knaryan, V.H.; Shields, D.C.; Cox, A.A.; Haque, A.; Banik, N.L. Inhibition of Calpain Activation Protects MPTP-Induced Nigral and Spinal Cord Neurodegeneration, Reduces Inflammation, and Improves Gait Dynamics in Mice. Mol. Neurobiol. 2015, 52, 1054–1066. [Google Scholar] [CrossRef]
- Mead, R.J.; Bennett, E.J.; Kennerley, A.J.; Sharp, P.; Sunyach, C.; Kasher, P.; Berwick, J.; Pettmann, B.; Battaglia, G.; Azzouz, M.; et al. Optimised and rapid pre-clinical screening in the SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS). PLoS ONE 2011, 6, e23244. [Google Scholar] [CrossRef]
- Hampton, T.G.; Amende, I. Treadmill gait analysis characterizes gait alterations in Parkinson’s disease and amyotrophic lateral sclerosis mouse models. J. Mot. Behav. 2010, 42, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Campbell, T.; Meagher, M.W.; Sieve, A.; Scott, B.; Storts, R.; Welsh, T.H.; Welsh, C.J. The effects of restraint stress on the neuropathogenesis of Theiler’s virus infection: I. Acute disease. Brain Behav. Immun. 2001, 15, 235–254. [Google Scholar] [CrossRef]
- Welsh, C.J.; Tonks, P.; Nash, A.A.; Blakemore, W.F. The effect of L3T4 T cell depletion on the pathogenesis of Theiler’s murine encephalomyelitis virus infection in CBA mice. J. Gen. Virol. 1987, 68 Pt 6, 1659–1667. [Google Scholar] [CrossRef]
- Perez Gomez, A.A.; Karmakar, M.; Carroll, R.J.; Lawley, K.; Amstalden, K.; Young, C.; Threadgill, D.; Welsh, C.J.; Brinkmeyer-Langford, C. Genetic and immunological contributors to virus-induced paralysis. BBI-Health 2021, 18, 100395. [Google Scholar] [CrossRef]
- Perez Gomez, A.A.; Karmakar, M.; Carroll, R.J.; Lawley, K.S.; Amstalden, K.; Young, C.R.; Threadgill, D.W.; Welsh, C.J.; Brinkmeyer-Langford, C. Serum Cytokines Predict Neurological Damage in Genetically Diverse Mouse Models. Cells 2022, 11, 2044. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Garrido, E.; Pena-Philippides, J.C.; Galochkina, Z.; Erhardt, E.; Roitbak, T. Characterization of long-term gait deficits in mouse dMCAO, using the CatWalk system. Behav. Brain Res. 2017, 331, 282–296. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.S.; Darmohray, D.M.; Fayad, J.; Marques, H.G.; Carey, M.R. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice. Elife 2015, 4, e07892. [Google Scholar] [CrossRef]
- Piochon, C.; Kloth, A.D.; Grasselli, G.; Titley, H.K.; Nakayama, H.; Hashimoto, K.; Wan, V.; Simmons, D.H.; Eissa, T.; Nakatani, J.; et al. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nat. Commun. 2014, 5, 5586. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Lertratanakul, A.; Cudkowicz, M.E.; Peterson, A.L.; Kaliton, D.; Goldberger, A.L. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J. Appl. Physiol. 2000, 88, 2045–2053. [Google Scholar] [CrossRef] [PubMed]
- Akula, S.; McCullough, K.B.; Weichselbaum, C.; Dougherty, J.D.; Maloney, S.E. The trajectory of gait development in mice. Brain Behav. 2020, 10, e01636. [Google Scholar] [CrossRef]
- Brinkmeyer-Langford, C.; Amstalden, K.; Konganti, K.; Hillhouse, A.; Lawley, K.; Perez-Gomez, A.; Young, C.; Welsh, J.; Threadgill, D. Resilience in Long-Term Viral Infection: Genetic Determinants and Interactions. Int. J. Mol. Sci. 2021, 22, 11379. [Google Scholar] [CrossRef]
- Morgan, A.P.; Fu, C.P.; Kao, C.Y.; Welsh, C.E.; Didion, J.P.; Yadgary, L.; Hyacinth, L.; Ferris, M.T.; Bell, T.A.; Miller, D.R.; et al. The Mouse Universal Genotyping Array: From Substrains to Subspecies. G3 (Bethesda) 2015, 6, 263–279. [Google Scholar] [CrossRef]
- University of North Carolina Systems Genetics Collaborative Cross Viewer. Available online: http://csbio.unc.edu/CCstatus/index.py?run=CCV (accessed on 5 May 2022).
- Wang, J.R.; de Villena, F.P.; McMillan, L. Comparative analysis and visualization of multiple collinear genomes. BMC Bioinform. 2012, 13, S13. [Google Scholar] [CrossRef]
- Zhan, J.; Yakimov, V.; Ruhling, S.; Fischbach, F.; Nikolova, E.; Joost, S.; Kaddatz, H.; Greiner, T.; Frenz, J.; Holzmann, C.; et al. High Speed Ventral Plane Videography as a Convenient Tool to Quantify Motor Deficits during Pre-Clinical Experimental Autoimmune Encephalomyelitis. Cells 2019, 8, 1439. [Google Scholar] [CrossRef]
- Abeyratne, E.; Reshamwala, R.; Shelper, T.; Liu, X.; Zaid, A.; Mahalingam, S.; Taylor, A. Altered Spatial and Temporal Gait Parameters in Mice Infected with Ross River Virus. mSphere 2021, 6, e0065921. [Google Scholar] [CrossRef]
- Clarke, K.A.; Still, J. Gait analysis in the mouse. Physiol. Behav. 1999, 66, 723–729. [Google Scholar] [CrossRef]
- James, R.S.; Altringham, J.D.; Goldspink, D.F. The mechanical properties of fast and slow skeletal muscles of the mouse in relation to their locomotory function. J. Exp. Biol. 1995, 198, 491–502. [Google Scholar] [CrossRef]
- Danion, F.; Varraine, E.; Bonnard, M.; Pailhous, J. Stride variability in human gait: The effect of stride frequency and stride length. Gait Posture 2003, 18, 69–77. [Google Scholar] [CrossRef] [PubMed]
- MacKay-Lyons, M. Variability in spatiotemporal gait characteristics over the course of the L-dopa cycle in people with advanced Parkinson disease. Phys. Ther. 1998, 78, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Lawley, K.; Rech, R.; Perez Gomez, A.A.; Hopkins, L.; Han, G.; Amstalden, K.; Welsh, C.J.; Young, C.R.; Jones-Hall, Y.; Threadgill, D.W.; et al. Acute viral infection elicits brain pathologies and viral mRNA expression patterns that are significantly influenced by host genetic background. Int. J. Mol. Sci. 2022, 23, 10482. [Google Scholar] [CrossRef] [PubMed]
- Lawley, K.S.; Rech, R.R.; Elenwa, F.; Han, G.; Perez Gomez, A.A.; Amstalden, K.; Welsh, C.J.; Young, C.R.; Threadgill, D.W.; Brinkmeyer-Langford, C.L. Host genetic diversity drives variable central nervous system lesion distribution in chronic phase of Theiler’s Murine Encephalomyelitis Virus (TMEV) infection. PLoS ONE 2021, 16, e0256370. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.A.; Steadman, P. Abnormal locomotion in the rat after administration of a TRH analogue. Neuropeptides 1989, 14, 65–70. [Google Scholar] [CrossRef]
- Sheppard, K.; Gardin, J.; Sabnis, G.S.; Peer, A.; Darrell, M.; Deats, S.; Geuther, B.; Lutz, C.M.; Kumar, V. Stride-level analysis of mouse open field behavior using deep-learning-based pose estimation. Cell Rep. 2022, 38, 110231. [Google Scholar] [CrossRef] [PubMed]
- Antzoulatos, E.; Jakowec, M.W.; Petzinger, G.M.; Wood, R.I. Sex differences in motor behavior in the MPTP mouse model of Parkinson’s disease. Pharmacol. Biochem. Behav. 2010, 95, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Rahn, R.M.; Weichselbaum, C.T.; Gutmann, D.H.; Dougherty, J.D.; Maloney, S.E. Shared developmental gait disruptions across two mouse models of neurodevelopmental disorders. J. Neurodev. Disord. 2021, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Gelfond, J.A.; Airey, D.C.; Lu, L.; Manly, K.F.; Williams, R.W.; Threadgill, D.W. Quantitative trait locus analysis using recombinant inbred intercrosses: Theoretical and empirical considerations. Genetics 2005, 170, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tian, N.X.; Bai, Q.Y.; Chen, Q.; Sun, X.H.; Wang, Y. Gait Assessment of Pain and Analgesics: Comparison of the DigiGait and CatWalk Gait Imaging Systems. Neurosci. Bull. 2019, 35, 401–418. [Google Scholar] [CrossRef]
- Konganti, K.; Ehrlich, A.; Rusyn, I.; Threadgill, D.W. gQTL: A Web Application for QTL Analysis Using the Collaborative Cross Mouse Genetic Reference Population. G3 (Bethesda) 2018, 8, 2559–2562. [Google Scholar] [CrossRef] [PubMed]
- Bogue, M.A.; Philip, V.M.; Walton, D.O.; Grubb, S.C.; Dunn, M.H.; Kolishovski, G.; Emerson, J.; Mukherjee, G.; Stearns, T.; He, H.; et al. Mouse Phenome Database: A data repository and analysis suite for curated primary mouse phenotype data. Nucleic Acids Res. 2020, 48, D716–D723. [Google Scholar] [CrossRef] [PubMed]
Strain | Infected F | Infected M | Sham F | Sham M | Total n | 90 d.p.i. Phenotype Score |
---|---|---|---|---|---|---|
CC002 * | 3 | 1 | 1 | 2 | 7 | 1.01 |
CC002 × CC023 | 0 | 0 | 2 | 2 | 4 | 0.14 |
CC005 | 0 | 1 | 1 | 1 | 3 | 0.14 |
CC011 | 1 | 2 | 1 | 1 | 5 | 0.43 |
CC012 × CC032 | 3 | 3 | 7 | 7 | 20 | 0.26 |
CC015 ** | 1 | 2 | 1 | 2 | 6 | 0.22 |
CC017 | 4 | 0 | 1 | 1 | 6 | 0.41 |
CC023 *** | 6 | 8 | 2 | 2 | 18 | 2.31 |
CC023 × CC002 | 0 | 0 | 0 | 3 | 3 | 0.21 |
CC024 | 1 | 1 | 1 | 1 | 4 | 0.48 |
CC025 | 3 | 2 | 1 | 0 | 6 | 1.15 |
CC027 ** | 4 | 4 | 4 | 4 | 16 | 0.30 |
CC036 * | 0 | 1 | 1 | 0 | 2 | 0.34 |
CC037 ** | 1 | 0 | 0 | 0 | 1 | 0.47 |
CC041 | 1 | 4 | 0 | 2 | 7 | 0.92 |
CC043 ** | 0 | 2 | 1 | 1 | 4 | 0.38 |
CC051 * | 0 | 1 | 0 | 1 | 2 | 0.31 |
CC057 | 0 | 2 | 2 | 2 | 6 | 0.30 |
CC058 | 1 | 0 | 0 | 1 | 2 | 0.90 |
CC072 | 0 | 2 | 1 | 0 | 3 | 1.38 |
CC078 | 0 | 1 | 0 | 0 | 1 | 1.58 |
SJL/J | 3 | 4 | 6 | 3 | 16 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karmakar, M.; Pérez Gómez, A.A.; Carroll, R.J.; Lawley, K.S.; Amstalden, K.A.Z.; Welsh, C.J.; Threadgill, D.W.; Brinkmeyer-Langford, C. Baseline Gait and Motor Function Predict Long-Term Severity of Neurological Outcomes of Viral Infection. Int. J. Mol. Sci. 2023, 24, 2843. https://doi.org/10.3390/ijms24032843
Karmakar M, Pérez Gómez AA, Carroll RJ, Lawley KS, Amstalden KAZ, Welsh CJ, Threadgill DW, Brinkmeyer-Langford C. Baseline Gait and Motor Function Predict Long-Term Severity of Neurological Outcomes of Viral Infection. International Journal of Molecular Sciences. 2023; 24(3):2843. https://doi.org/10.3390/ijms24032843
Chicago/Turabian StyleKarmakar, Moumita, Aracely A. Pérez Gómez, Raymond J. Carroll, Koedi S. Lawley, Katia A. Z. Amstalden, C. Jane Welsh, David W. Threadgill, and Candice Brinkmeyer-Langford. 2023. "Baseline Gait and Motor Function Predict Long-Term Severity of Neurological Outcomes of Viral Infection" International Journal of Molecular Sciences 24, no. 3: 2843. https://doi.org/10.3390/ijms24032843
APA StyleKarmakar, M., Pérez Gómez, A. A., Carroll, R. J., Lawley, K. S., Amstalden, K. A. Z., Welsh, C. J., Threadgill, D. W., & Brinkmeyer-Langford, C. (2023). Baseline Gait and Motor Function Predict Long-Term Severity of Neurological Outcomes of Viral Infection. International Journal of Molecular Sciences, 24(3), 2843. https://doi.org/10.3390/ijms24032843