# Charge Transfer and Electron Production in Proton Collisions with Uracil: A Classical and Semiclassical Study

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

_{2}[18]. The application of the method involves the calculation of the energies of several electronic states of the supermolecule along each trajectory.

## 2. Results and Discussion

#### 2.1. Semiclassical Results

#### 2.2. CTMC Results

## 3. Materials and Methods

#### 3.1. Semiclassical Method

#### 3.2. CTMC Method

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

U | Uracil |

CT | Charge transfer |

EP | Electron production |

CTMC | classical-trajectory Monte Carlo |

MO | Molecular orbital |

CASSCF | Complete active space self consistent-field |

PEC | Potential energy curve |

IPM | Independent particle model |

EC | Entrance channel |

## References

- Tabet, J.; Eden, S.; Feil, S.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Ouaskit, S.; Märk, T.D. Absolute total and partial cross sections for ionization of nucleobases by proton impact in the Bragg peak velocity range. Phys. Rev. A
**2010**, 82, 022703. [Google Scholar] [CrossRef][Green Version] - Moretto-Capelle, P.; Le Padellec, A. Electron spectroscopy in proton collisions with dry gas-phase uracil base. Phys. Rev. A
**2006**, 74, 062705. [Google Scholar] [CrossRef] - Itoh, A.; Iriki, Y.; Imai, M.; Champion, C.; Rivarola, R.D. Cross sections for ionization of uracil by MeV-energy-proton impact. Phys. Rev. A
**2013**, 88, 052711. [Google Scholar] [CrossRef][Green Version] - Chowdhury, M.R.; Monti, J.M.; Misra, D.; Weck, P.F.; Rivarola, R.D.; Tribedi, L.C. Electron emission from bromouracil and uracil induced by protons and radiosensitization. New J. Phys.
**2022**, 24, 073035. [Google Scholar] [CrossRef] - Bacchus-Montabonel, M.C.; Łabuda, M.; Tergiman, Y.S.; Sienkiewicz, J.E. Theoretical treatment of charge-transfer processes induced by collision of C
^{q+}ions with uracil. Phys. Rev. A**2005**, 72, 052706. [Google Scholar] [CrossRef] - Bacchus-Montabonel, M.C.; Tergiman, Y.S. Anisotropic effect in the charge transfer of C
^{q+}ions with uracil. Phys. Rev. A**2006**, 74, 054702. [Google Scholar] [CrossRef] - Bacchus-Montabonel, M.C.; Tergiman, Y.S. Charge transfer dynamics of carbon ions with uracil and halouracil targets at low collision energies. Chem. Phys. Lett.
**2011**, 503, 45–48. [Google Scholar] [CrossRef] - Blanco, F.; García, G. Screening corrections for calculation of electron scattering from polyatomic molecules. Phys. Lett. A
**2003**, 317, 458–462. [Google Scholar] [CrossRef] - Paredes, S.; Illescas, C.; Méndez, L. On the use of additivity rules to estimate electron production cross sections in proton-biomolecule collisions. Eur. Phys. J. D
**2015**, 69, 178. [Google Scholar] [CrossRef][Green Version] - Lüdde, H.J.; Horbatsch, M.; Kirchner, T. Proton-impact-induced electron emission from biologically relevant molecules studied with a screened independent atom model. J. Phys. B At. Mol. Opt. Phys.
**2019**, 52, 195203. [Google Scholar] [CrossRef] - Lüdde, H.J.; Kalkbrenner, T.; Horbatsch, M.; Kirchner, T. Nonperturbative scaling behavior for net ionization of biologically relevant molecules by multiply charged heavy-ion impact. Phys. Rev. A
**2020**, 101, 062709. [Google Scholar] [CrossRef] - Lekadir, H.; Abbas, I.; Champion, C.; Fojón, O.; Rivarola, R.D.; Hanssen, J. Single-electron-loss cross sections of DNA and RNA bases impacted by energetic multicharged ions: A classical Monte Carlo approximation. Phys. Rev. A
**2009**, 79, 062710. [Google Scholar] [CrossRef] - Sarkadi, L. Classical treatment of the electron emission from collisions of uracil molecules with fast protons. Phys. Rev. A
**2015**, 92, 062704. [Google Scholar] [CrossRef] - Galassi, M.E.; Champion, C.; Weck, P.F.; Rivarola, R.D.; Fojón, O.; Hanssen, J. Quantum-mechanical predictions of DNA and RNA ionization by energetic proton beams. Phys. Med. Biol.
**2012**, 57, 2081. [Google Scholar] [CrossRef] [PubMed] - Purkait, K.; Samaddar, S.; Purkait, M.; Jana, D. Ionization and Electron Capture Cross Sections for Single-Electron Removal from Biological Molecules by Swift Ion. Braz. J. Phys.
**2021**, 51, 1–12. [Google Scholar] [CrossRef] - Covington, C.; Hartig, K.; Russakoff, A.; Kulpins, R.; Varga, K. Time-dependent density-functional-theory investigation of the collisions of protons and α particles with uracil and adenine. Phys. Rev. A
**2017**, 95, 052701. [Google Scholar] [CrossRef][Green Version] - Rabadán, I.; Méndez, L. Orientation effects in ion-molecule collisions. J. Phys. Conf. Ser.
**2017**, 875, 012009. [Google Scholar] [CrossRef] - Rai, S.; Bijlsma, K.I.; Rabadán, I.; Méndez, L.; Wolff, P.A.J.; Salverda, M.; Versolato, O.O.; Hoekstra, R. Charge exchange in collisions of 1–100-keV Sn
^{3+}ions with H_{2}and D_{2}. Phys. Rev. A**2022**, 106, 012804. [Google Scholar] [CrossRef] - Willis, S.L.; Peach, G.; McDowell, M.R.C.; Banerji, J. Charge transfer and ionisation processes in collisions involving atoms and ions of hydrogen and helium. J. Phys. B At. Mol. Phys.
**1985**, 18, 3939. [Google Scholar] [CrossRef] - Lüdde, H.J.; Horbatsch, M.; Kirchner, T. Electron capture and ionization cross-section calculations for proton collisions with methane and the DNA and RNA nucleobases. Eur. Phys. J. D
**2019**, 73, 249. [Google Scholar] [CrossRef] - Shukla, M.K.; Leszczynski, J. Tautomerism in nucleic acid bases and base pairs: A brief overview. WIREs Comput. Mol. Sci.
**2013**, 3, 637–649. [Google Scholar] [CrossRef] - Schneiderman, S.B.; Russek, A. Velocity-Dependent Orbitals in Proton-On-Hydrogen-Atom Collisions. Phys. Rev.
**1969**, 181, 311–321. [Google Scholar] [CrossRef] - Errea, L.F.; Gorfinkiel, J.D.; Macías, A.; Méndez, L.; Riera, A. Implementation of the sudden approximation eikonal method in ion - diatom collisions. J. Phys. B At. Mol. Opt. Phys.
**1997**, 30, 3855. [Google Scholar] [CrossRef] - Werner, H.J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M. Molpro: A general-purpose quantum chemistry program package. WIREs Comput. Mol. Sci.
**2012**, 2, 242–253. [Google Scholar] [CrossRef] - Widmark, P.O.; Malmqvist, P.Å.; Roos, B.O. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor. Chim. Acta
**1990**, 77, 291–306. [Google Scholar] [CrossRef] - Errea, L.F.; Mendez, L.; Riera, A. On the choice of translation factors for approximate molecular wavefunctions. J. Phys. B At. Mol. Phys.
**1982**, 15, 101. [Google Scholar] [CrossRef] - Abrines, R.; Percival, I.C. Classical theory of charge transfer and ionization of hydrogen atoms by protons. Proc. Phys. Soc.
**1966**, 88, 861. [Google Scholar] [CrossRef] - Errea, L.F.; Illescas, C.; Méndez, L.; Pons, B.; Rabadán, I.; Riera, A. Classical calculation of ionization and electron-capture total cross sections in H
^{+}+H_{2}O collisions. Phys. Rev. A**2007**, 76, 040701. [Google Scholar] [CrossRef] - Hardie, D.J.W.; Olson, R.E. Charge transfer and ionisation processes involving multiply charged ions in collision with atomic hydrogen. J. Phys. B At. Mol. Phys.
**1983**, 16, 1983. [Google Scholar] [CrossRef] - Illescas, C.; Riera, A. Classical study of single-electron capture and ionization processes in A
^{q+}+(H,H_{2}) collisions. Phys. Rev. A**1999**, 60, 4546–4560. [Google Scholar] [CrossRef] - Kirchner, T.; Gulyás, L.; Lüdde, H.J.; Engel, E.; Dreizler, R.M. Influence of electronic exchange on single and multiple processes in collisions between bare ions and noble-gas atoms. Phys. Rev. A
**1998**, 58, 2063–2076. [Google Scholar] [CrossRef]

**Figure 1.**Potential energy curves along the trajectory t2d with impact parameter $b=7$ ${a}_{0}$. The states are labeled according to the electronic state of ${\mathrm{U}}^{+}$ when the projectile is at an asymptotic distance. The energy curve of the entrance channel, corresponding to ${\mathrm{H}}^{+}$+uracil(X A′), is shown with a black solid line. The CT channels are shown with dashed lines.

**Figure 2.**Projectile trajectories characterized by the set {$\widehat{\mathit{b}}$, $\widehat{\mathit{v}}$}. Taking into account the planar geometry of the molecule, the 24 trajectories of a 6-point Cotes formula are reduced to the 16 trajectories represented in the figure. The trajectories are classified in families attending to whether $\widehat{\mathit{v}}$ is perpendicular (t1), contained in (t2) or parallel to (t3) the molecular plane, and subfamilies t1x, t2x, and t3x that share the same unitary vectors ($\widehat{\mathit{v}},\widehat{\mathit{b}}$).

**Figure 3.**Total single charge transfer cross section in collisions of protons with uracil molecules as functions of the collision energy. Broken lines correspond to the averages of the subfamilies within a family, Equations (3)–(5), labeled in the figure; the solid line is the average of the three families and corresponds to the orientation average of Equation (6).

**Figure 4.**Branching-ratio for production of uracil cations by CT in collisions of protons with uracil molecules. Broken lines correspond to ions in A${}^{\u2033}$ state, while solid ones are those in a A${}^{\prime}$ state.

**Figure 5.**Natural orbitals of the uracil cation obtained with the CASSCF calculations when the projectile is at asymptotic distances along the t2d trajectory. The labels underneath each orbital refer to the sequence number of the orbital within its symmetry in the Cs point group, and the bracket contains the ${\mathrm{U}}^{+}$ electronic state of the uracil cation (see Table 1).

**Figure 6.**Electron production cross sections from individual MO of uracil after collision with protons, given by their ionization energy ${I}_{k}$. The different symbols correspond to different collision energies specified in the figure with numbers in keV. The lines are the fitted Equation (7).

**Figure 7.**Same as in Figure 6, but for the single charge transfer process.

**Figure 8.**Total cross sections for electron production in proton–uracil collisions as functions of the collision energy. The present CTMC results (solid lines marked with 21 MO and 10 MO) are compared with those of previous calculations Paredes et al. [9], Lüdde et al. [11], Lekadir et al. [12], Sarkadi [13], and the experimental results of Itoh et al. [3] and Chowdhury et al. [4],as indicated in the figure. An estimation of the Auger contribution to ionization is added with a gray shade.

**Table 1.**Electronic states of ${\mathrm{U}}^{+}$ with specification of the main electronic configuration (see molecular orbitals in Figure 5) and the electronic energies (in eV) referred to its ground state.

Electronic State | Dominant Configuration | Energy (eV) |
---|---|---|

1A${}^{\u2033}$ | ${\left(23{a}^{\prime}\right)}^{2}{\left(2{a}^{\u2033}\right)}^{2}{\left(3{a}^{\u2033}\right)}^{2}{\left(4{a}^{\u2033}\right)}^{2}{\left(24{a}^{\prime}\right)}^{2}{\left(5{a}^{\u2033}\right)}^{1}$ | 0.0 |

1A${}^{\prime}$ | ${\left(23{a}^{\prime}\right)}^{2}{\left(2{a}^{\u2033}\right)}^{2}{\left(3{a}^{\u2033}\right)}^{2}{\left(4{a}^{\u2033}\right)}^{2}{\left(24{a}^{\prime}\right)}^{1}{\left(5{a}^{\u2033}\right)}^{2}$ | 0.75 |

2A${}^{\u2033}$ | ${\left(23{a}^{\prime}\right)}^{2}{\left(2{a}^{\u2033}\right)}^{2}{\left(3{a}^{\u2033}\right)}^{2}{\left(4{a}^{\u2033}\right)}^{1}{\left(24{a}^{\prime}\right)}^{2}{\left(5{a}^{\u2033}\right)}^{2}$ | 1.40 |

2A${}^{\prime}$ | ${\left(23{a}^{\prime}\right)}^{1}{\left(2{a}^{\u2033}\right)}^{2}{\left(3{a}^{\u2033}\right)}^{2}{\left(4{a}^{\u2033}\right)}^{2}{\left(24{a}^{\prime}\right)}^{2}{\left(5{a}^{\u2033}\right)}^{2}$ | 2.95 |

3A${}^{\u2033}$ | ${\left(23{a}^{\prime}\right)}^{2}{\left(2{a}^{\u2033}\right)}^{2}{\left(3{a}^{\u2033}\right)}^{1}{\left(4{a}^{\u2033}\right)}^{2}{\left(24{a}^{\prime}\right)}^{2}{\left(5{a}^{\u2033}\right)}^{2}$ | 4.28 |

4A${}^{\u2033}$ | ${\left(23{a}^{\prime}\right)}^{2}{\left(2{a}^{\u2033}\right)}^{1}{\left(3{a}^{\u2033}\right)}^{2}{\left(4{a}^{\u2033}\right)}^{2}{\left(24{a}^{\prime}\right)}^{2}{\left(5{a}^{\u2033}\right)}^{2}$ | 4.47 |

3A${}^{\prime}$ | ${\left(23{a}^{\prime}\right)}^{2}{\left(2{a}^{\u2033}\right)}^{2}{\left(3{a}^{\u2033}\right)}^{2}{\left(4{a}^{\u2033}\right)}^{2}{\left(24{a}^{\prime}\right)}^{1}{\left(5{a}^{\u2033}\right)}^{1}{\left(6{a}^{\u2033}\right)}^{1}$ | 4.91 |

4A${}^{\prime}$ | ${\left(23{a}^{\prime}\right)}^{2}{\left(2{a}^{\u2033}\right)}^{2}{\left(3{a}^{\u2033}\right)}^{2}{\left(4{a}^{\u2033}\right)}^{2}{\left(24{a}^{\prime}\right)}^{1}{\left(5{a}^{\u2033}\right)}^{1}{\left(6{a}^{\u2033}\right)}^{1}$ | 6.22 |

**Table 2.**Molecular orbital ionization energies (in Hartree) of uracil at the Hartree–Fock level, ${I}_{k}$. A${}^{\prime}$ MO from 20 to 24 and all A${}^{\u2033}$ are used in the CTMC calculations, while A${}^{\prime}$ orbitals from 9 to 19 are only used to compute the final CTMC cross sections.

MO (A${}^{\prime}$) | ${\mathit{I}}_{\mathit{k}}$ | MO (A${}^{\u2033}$) | ${\mathit{I}}_{\mathit{k}}$ |
---|---|---|---|

24 | $0.4563$ | 5 | $0.3752$ |

23 | $0.4910$ | 4 | $0.4432$ |

22 | $0.6097$ | 3 | $0.5321$ |

21 | $0.6236$ | 2 | $0.5776$ |

20 | $0.6613$ | 1 | $0.6759$ |

19 | 0.6860 | ||

18 | 0.7224 | ||

17 | 0.7742 | ||

16 | 0.8153 | ||

15 | 0.9109 | ||

14 | 0.9416 | ||

13 | 1.0954 | ||

12 | 1.2528 | ||

11 | 1.3211 | ||

10 | 1.4068 | ||

9 | 1.4442 |

**Table 3.**Parameters of Equation (7) for the fit of the electron production and charge transfer at a given collision energy as a function of the ionization potential of the first 10 MOs (20–24 A${}^{\prime}$ and 1–5 A${}^{\u2033}$, see Table 2) of uracil.

Electron Production | Charge Transfer | |||
---|---|---|---|---|

E (keV) | a | b | a | b |

20 | $0.8298$ | $2.0$ | $3.557$ | $0.790$ |

30 | $1.1820$ | $2.0$ | $3.145$ | $0.138$ |

50 | $1.5294$ | $1.5$ | $1.385$ | $-0.305$ |

100 | $1.3643$ | $1.0$ | $0.266$ | $-0.772$ |

225 | $0.6584$ | $1.0$ | $0.030$ | $-1.815$ |

500 | $0.2993$ | $1.0$ | ||

1000 | $0.1571$ | $1.0$ | ||

2000 | $0.0769$ | $1.0$ | ||

2500 | $0.0615$ | $1.0$ |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Illescas, C.; Méndez, L.; Bernedo, S.; Rabadán, I. Charge Transfer and Electron Production in Proton Collisions with Uracil: A Classical and Semiclassical Study. *Int. J. Mol. Sci.* **2023**, *24*, 2172.
https://doi.org/10.3390/ijms24032172

**AMA Style**

Illescas C, Méndez L, Bernedo S, Rabadán I. Charge Transfer and Electron Production in Proton Collisions with Uracil: A Classical and Semiclassical Study. *International Journal of Molecular Sciences*. 2023; 24(3):2172.
https://doi.org/10.3390/ijms24032172

**Chicago/Turabian Style**

Illescas, Clara, Luis Méndez, Santiago Bernedo, and Ismanuel Rabadán. 2023. "Charge Transfer and Electron Production in Proton Collisions with Uracil: A Classical and Semiclassical Study" *International Journal of Molecular Sciences* 24, no. 3: 2172.
https://doi.org/10.3390/ijms24032172