Protective Effects of Arbutus unedo L. Honey in the Alleviation of Irinotecan-Induced Cytogenetic Damage in Human Lymphocytes—An In Vitro Study
Abstract
:1. Introduction
2. Results
2.1. Assessment of Genotoxic and Cytotoxic Properties of Strawberry Tree Honey (STH)
2.1.1. Chromosome Damage
2.1.2. Cytokinesis-Block Micronucleus Cytome (CBMN) Assay
2.2. Assessment of Genoprotective and Cytoprotective Properties of STH against IRI-Induced Cytogenetic Damage
2.2.1. Chromosomal Aberration (CA) Assay
2.2.2. Cytokinesis-Block Micronucleus Cytome (CBMN) Assay
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Strawberry Tree Honey
4.3. Blood Sampling
4.4. Experimental Schedule
4.5. Chromosomal Aberration (CA) Assay
4.6. Cytokinesis-Block Micronucleus Cytome Assay (CBMN) Assay
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Floris, I.; Pusceddu, M.; Satta, A. The Sardinian Bitter Honey: From Ancient Healing Use to Recent Findings. Antioxidants 2021, 10, 506. [Google Scholar] [CrossRef] [PubMed]
- Ulloa, P.A.; Maia, M.; Brigas, A.F. Physicochemical Parameters and Bioactive Compounds of Strawberry Tree (Arbutus unedo L.) Honey. J. Chem. 2015, 2015, 602792. [Google Scholar] [CrossRef] [Green Version]
- Tariba Lovaković, B.; Lazarus, M.; Brčić Karačonji, I.; Jurica, K.; Živković Semren, T.; Lušić, D.; Brajenović, N.; Pelaić, Z.; Pizent, A. Multi-Elemental Composition and Antioxidant Properties of Strawberry Tree (Arbutus unedo L.) Honey from the Coastal Region of Croatia: Risk-Benefit Analysis. J. Trace Elem. Med. Biol. 2018, 45, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Jurič, A.; Gašić, U.; Brčić Karačonji, I.; Jurica, K.; Milojković-Opsenica, D. The Phenolic Profile of Strawberry Tree (Arbutus unedo L.) Honey. J. Serbian Chem. Soc. 2020, 85, 1011–1019. [Google Scholar] [CrossRef] [Green Version]
- Brčić Karačonji, I.; Jurica, K. Development and Validation of a GC-MS Method for the Analysis of Homogentisic Acid in Strawberry Tree (Arbutus unedo L.) Honey. J. AOAC Int. 2017, 100, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.; Tuberoso, C.I.G.; Atzeri, A.; Melis, M.P.; Bifulco, E.; Dess, M.A. Antioxidant Profile of Strawberry Tree Honey and Its Marker Homogentisic Acid in Several Models of Oxidative Stress. Food Chem. 2011, 129, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Jurič, A.; Brčić Karačonji, I.; Kopjar, N. Homogentisic Acid, a Main Phenolic Constituent of Strawberry Tree Honey, Protects Human Peripheral Blood Lymphocytes against Irinotecan-Induced Cytogenetic Damage in Vitro. Chem. Biol. Interact. 2021, 349, 109672. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Bompadre, S.; Quiles, J.L.; Sanna, G.; Spano, N.; Giampieri, F.; Battino, M. Strawberry-Tree Honey Induces Growth Inhibition of Human Colon Cancer Cells and Increases ROS Generation: A Comparison with Manuka Honey. Int. J. Mol. Sci. 2017, 18, 613. [Google Scholar] [CrossRef] [Green Version]
- Jurič, A.; Huđek Turković, A.; Brčić Karačonji, I.; Prđun, S.; Bubalo, D.; Durgo, K. Cytotoxic Activity of Strawberry Tree (Arbutus unedo L.) Honey, Its Extract, and Homogentisic Acid on CAL 27, HepG2, and Caco-2 Cell Lines. Arh. Hig. Rada Toksikol. 2022, 73, 158–168. [Google Scholar] [CrossRef]
- Brčić Karačonji, I.; Tariba, B.; Živković, T.; Brajenović, N.; Jurica, K.; Pezer, M.; Turkalj, M.; Vihnanek Lazarus, M.; Lušić, D.; Pizent, A. Beneficial Effects of Strawberry Tree (Arbutus unedo L.) Honey Supplementation in Men. In Proceedings of the Book of Abstracts of the International Symposium on Bee Products 3rd Edition-Annual Meeting of the International Honey Commission (IHC); Brčić Karačonji, I., Lušić, D., Eds.; Faculty of Medicine, University of Rijeka: Rijeka, Croatia, 2014; p. 110. [Google Scholar]
- Jurič, A.; Mladinić, M.; Želježić, D.; Pezer, M.; Turkalj, M.; Jurica, K.; Kopjar, N.; Brčić Karačonji, I. Human Intervention Trial with Strawberry Tree (Arbutus unedo L.) Honey: Impact on DNA Stability and Haematological Parameters. In Proceedings of the Book of Abstracts of the 10th Congress of Toxicology in Developing Countries (CTDC10) & 12th Congress of the Serbian Society of Toxicology (12th SCT); Matović, V., Ed.; Society of Toxicology: Belgrade, Serbia, 2018; p. 112. [Google Scholar]
- Jurič, A.; Brčić Karačonji, I.; Žunec, S.; Katić, A.; Gašić, U.; Milojković Opsenica, D.; Kopjar, N. Protective Role of Strawberry Tree (Arbutus unedo L.) Honey against Cyto/Genotoxic Effects Induced by Ultraviolet B Radiation in Vitro. J. Apic. Res. 2022, 1–10. [Google Scholar] [CrossRef]
- Albertini, R.J.; Anderson, D.; Douglas, G.R.; Hagmar, L.; Hemminki, K.; Merlo, F.; Natarajan, A.T.; Norppa, H.; Shuker, D.E.G.; Tice, R.; et al. IPCS Guidelines for the Monitoring of Genotoxic Effects of Carcinogens in Humans. Mutat. Res. 2000, 463, 111–172. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M. The in Vitro Micronucleus Technique. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2000, 455, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Yaacob, M.; Stanis, A.J.; Rajab, N.F.; Shahar, S.; Sharif, R. Current Knowledge on Honey and Its Derivatives with Genomic Stability: A Mini Review. J. Agric. Sci. 2017, 9, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Cabras, P.; Angioni, A.; Tuberoso, C.; Floris, I.; Reniero, F.; Guillou, C.; Ghelli, S. Homogentisic Acid: A Phenolic Acid as a Marker of Strawberry-Tree (Arbutus unedo) Honey. J. Agric. Food Chem. 1999, 47, 4064–4067. [Google Scholar] [CrossRef] [PubMed]
- Tuberoso, C.I.G.; Bifulco, E.; Caboni, P.; Cottiglia, F.; Cabras, P.; Floris, I. Floral Markers of Strawberry Tree (Arbutus unedo L.) Honey. J. Agric. Food Chem. 2010, 58, 384–389. [Google Scholar] [CrossRef]
- Martin-Cordero, C.; Leon-Gonzalez, J.A.; Calderon-Montano, J.M.; Burgos-Moron, E.; Lopez-Lazaro, M. Pro-Oxidant Natural Products as Anticancer Agents. Curr. Drug Targets 2012, 13, 1006–1028. [Google Scholar] [CrossRef]
- Carocho, M.; Ferreira, I.C.F.R. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef]
- Khan, H.Y.; Hadi, S.M.; Mohammad, R.M.; Azmi, A.S. Prooxidant Anticancer Activity of Plant-Derived Polyphenolic Compounds: An Underappreciated Phenomenon. In Functional Foods in Cancer Prevention and Therapy; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 221–236. ISBN 9780128161517. [Google Scholar]
- Yen, G.C.; Der Duh, P.; Tsai, H.L.; Huang, S.L. Pro-Oxidative Properties of Flavonoids in Human Lymphocytes. Biosci. Biotechnol. Biochem. 2003, 67, 1215–1222. [Google Scholar] [CrossRef] [Green Version]
- Azmi, A.S.; Bhat, S.H.; Hanif, S.; Hadi, S.M. Plant Polyphenols Mobilize Endogenous Copper in Human Peripheral Lymphocytes Leading to Oxidative DNA Breakage: A Putative Mechanism for Anticancer Properties. FEBS Lett. 2006, 580, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.P.; Batkoff, B. Homogentisic Acid Autoxidation and Oxygen Radical Generation: Implications for the Etiology of Alkaptonuric Arthritis. Free Radic. Biol. Med. 1987, 3, 241–250. [Google Scholar] [CrossRef]
- Hiraku, Y.; Yamasaki, M.; Kawanishi, S. Oxidative DNA Damage Induced by Homogentisic Acid, a Tyrosine Metabolite. FEBS Lett. 1998, 432, 13–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, G.C.; Der Duh, P.; Tsai, H.L. Antioxidant and Pro-Oxidant Properties of Ascorbic Acid and Gallic Acid. Food Chem. 2002, 79, 307–313. [Google Scholar] [CrossRef]
- Sohi, K.K.; Mittal, N.; Hundal, M.K.; Khanduja, K.L. Gallic Acid, an Antioxidant, Exhibits Antiapoptotic Potemtial in Normal Lymphocytes : Exhibits A Bcl-2 Independent Mechanism. J. Nutr. Sci. Vitaminol. 2003, 48, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.H.; Lai, C.S.; Hsu, P.C.; Wang, Y.J. Acacetin Induces Apoptosis in Human Gastric Carcinoma Cells Accompanied by Activation of Caspase Cascades and Production of Reactive Oxygen Species. J. Agric. Food Chem. 2005, 53, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.H.; Azmi, A.S.; Hadi, S.M. Prooxidant DNA Breakage Induced by Caffeic Acid in Human Peripheral Lymphocytes: Involvement of Endogenous Copper and a Putative Mechanism for Anticancer Properties. Toxicol. Appl. Pharmacol. 2007, 218, 249–255. [Google Scholar] [CrossRef]
- Maistro, E.L.; Angeli, J.P.; Andrade, S.F.; Mantovani, M.S. In Vitro Genotoxicity Assessment of Caffeic, Cinnamic and Ferulic Acids. Genet. Mol. Res. 2011, 10, 1130–1140. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. P-Coumaric Acid Kills Bacteria through Dual Damage Mechanisms. Food Control 2012, 25, 550–554. [Google Scholar] [CrossRef]
- Mateuca, R.; Lombaert, N.; Aka, P.V.; Decordier, I.; Kirsch-Volders, M. Chromosomal Changes: Induction, Detection Methods and Applicability in Human Biomonitoring. Biochimie 2006, 88, 1515–1531. [Google Scholar] [CrossRef]
- Kumar Jaganathan, S.; Balaji, A.; Vellayappan, M.; Asokan, M.; Subramanian, A.; John, A.; Supriyanto, E.; Razak, S.; Marvibaigi, M. A Review on Antiproliferative and Apoptotic Activities of Natural Honey. Anticancer. Agents Med. Chem. 2015, 15, 48–56. [Google Scholar] [CrossRef]
- Mumtaz, P.; Bashir, S.; Rather, M.; Dar, K.; Taban, Q. Antiproliferative and Apoptotic Activities of Natural Honey. In Therapeutic Applications of Honey and Its Phytochemicals; Rehman, M., Majid, S., Eds.; Springer: Singapore, 2020; pp. 345–360. [Google Scholar]
- Imtara, H.; Kmail, A.; Touzani, S.; Khader, M.; Hamarshi, H.; Saad, B.; Lyoussi, B. Chemical Analysis and Cytotoxic and Cytostatic Effects of Twelve Honey Samples Collected from Different Regions in Morocco and Palestine. Evid.-Based Complement. Altern. Med. 2019, 2019, 8768210. [Google Scholar] [CrossRef]
- Kumar Jaganathan, S.; Mandal, M. Antiproliferative Effects of Honey and of Its Polyphenols: A Review. J. Biomed. Biotechnol. 2009, 2009, 830616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, A.; Palacios, C.; Roy, G.; Cespón, C.; Villar, M.L.; Nocito, M.; González-Porqué, P. Derivatives of Gallic Acid Induce Apoptosis in Tumoral Cell Lines and Inhibit Lymphocyte Proliferation. Arch. Biochem. Biophys. 1998, 350, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.A.; Kim, J.Y.; Lee, J.Y.; Kang, C.M.; Kwon, H.J.; Yoo, Y.D.; Kim, T.W.; Lee, Y.S.; Lee, S.J. Induction of Cell Cycle Arrest and Apoptosis in Human Breast Cancer Cells by Quercetin. Int. J. Oncol. 2001, 19, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.L.; Kuo, P.L.; Lin, C.C. Acacetin Inhibits the Proliferation of Hep G2 by Blocking Cell Cycle Progression and Inducing Apoptosis. Biochem. Pharmacol. 2004, 67, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.L.; Kuo, P.L.; Liu, C.F.; Lin, C.C. Acacetin-Induced Cell Cycle Arrest and Apoptosis in Human Non-Small Cell Lung Cancer A549 Cells. Cancer Lett. 2004, 212, 53–60. [Google Scholar] [CrossRef]
- Janicke, B.; Hegardt, C.; Krogh, M.; Onning, G.; Åkesson, B.; Cirenajwis, H.M.; Oredsson, S.M. The Antiproliferative Effect of Dietary Fiber Phenolic Compounds Ferulic Acid and P-Coumaric Acid on the Cell Cycle of Caco-2 Cells. Nutr. Cancer 2011, 63, 611–622. [Google Scholar] [CrossRef]
- Spilioti, E.; Jaakkola, M.; Tolonen, T.; Lipponen, M.; Virtanen, V.; Chinou, I.; Kassi, E.; Karabournioti, S.; Moutsatsou, P. Phenolic Acid Composition, Antiatherogenic and Anticancer Potential of Honeys Derived from Various Regions in Greece. PLoS ONE 2014, 9, e94860. [Google Scholar] [CrossRef] [Green Version]
- Samarghandian, S.; Azimi-Nezhad, M.; Borji, A.; Hasanzadeh, M.; Jabbari, F.; Farkhondeh, T.; Samini, M. Inhibitory and Cytotoxic Activities of Chrysin on Human Breast Adenocarcinoma Cells by Induction of Apoptosis. Pharmacogn. Mag. 2016, 12, S436–S440. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Gong, X.; Jiang, R.; Li, H.; Du, W.; Kuang, G. Ferulic Acid Inhibits Proliferation and Promotes Apoptosis via Blockage of PI3K/Akt Pathway in Osteosarcoma Cell. Am. J. Transl. Res. 2016, 8, 968–980. [Google Scholar]
- Hashemzaei, M.; Far, A.D.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; et al. Anticancer and Apoptosis-Inducing Effects of Quercetin in Vitro and in Vivo. Oncol. Rep. 2017, 38, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Kabała-Dzik, A.; Rzepecka-Stojko, A.; Kubina, R.; Jastrzȩbska-Stojko, Z.; Stojko, R.; Wojtyczka, R.D.; Stojko, J. Comparison of Two Components of Propolis: Caffeic Acid (CA) and Caffeic Acid Phenethyl Ester (CAPE) Induce Apoptosis and Cell Cycle Arrest of Breast Cancer Cells MDA-MB-231. Molecules 2017, 22, 1554. [Google Scholar] [CrossRef] [PubMed]
- Kandhari, K.; Mishra, J.P.N.; Singh, R.P. Acacetin Inhibits Cell Proliferation, Survival, and Migration in Human Breast Cancer Cells. Int. J. Pharm. Biol. Sci.-IJPBS 2019, 9, 443–452. [Google Scholar] [CrossRef]
- Mogib El-Dahtory, F.; Yahia, S. Cytoprotective Effect of Honey against Chromosomal Breakage in Fanconi Anemia Patients in Vitro. Indian J. Hum. Genet. 2011, 17, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argevani, L.; Hughes, C.; Schuh, M.J. Dosage Adjustment of Irinotecan in Patients with UGT1A1 Polymorphisms: A Review of Current Literature. Inov. Pharm. 2020, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Kciuk, M.; Marciniak, B.; Kontek, R. Irinotecan—Still an Important Player in Cancer Chemotherapy: A Comprehensive Overview. Int. J. Mol. Sci. 2020, 21, 4919. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Takeshima, N.; Hayasaka, Y.; Notsu, A.; Yamazaki, M.; Kawabata, T.; Yamazaki, K.; Mori, K.; Yasui, H. Comparison of Irinotecan and Oxaliplatin as the First-Line Therapies for Metastatic Colorectal Cancer: A Meta-Analysis. BMC Cancer 2021, 21, 116. [Google Scholar] [CrossRef]
- Mathijssen, R.H.J.; Van Alphen, R.J.; Verweij, J.; Loos, W.J.; Nooter, K.; Stoter, G.; Sparreboom, A. Clinical Pharmacokinetics and Metabolism of Irinotecan (CPT-11). Clin. Cancer Res. 2001, 7, 2182–2194. [Google Scholar] [CrossRef]
- de Jong, F.; de Jonge, M.; Verweij, J.; Mathijssen, R. Role of Pharmacogenetics in Irinotecan Therapy. Cancer Lett. 2006, 234, 90–106. [Google Scholar] [CrossRef]
- Fuchs, C.; Mitchell, E.P.; Hoff, P.M. Irinotecan in the Treatment of Colorectal Cancer. Cancer Treat. Rev. 2006, 32, 491–503. [Google Scholar] [CrossRef]
- Fujita, K.I.; Kubota, Y.; Ishida, H.; Sasaki, Y. Irinotecan, a Key Chemotherapeutic Drug for Metastatic Colorectal Cancer. World J. Gastroenterol. 2015, 21, 12234–12248. [Google Scholar] [CrossRef]
- Kopjar, N.; Želježić, D.; Lucić Vrdoljak, A.; Radić, B.; Ramić, S.; Milić, M.; Gamulin, M.; Pavlica, V.; Fučić, A. Irinotecan Toxicity to Human Blood Cells in Vitro: Relationship between Various Biomarkers. Basic Clin. Pharmacol. Toxicol. 2007, 100, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Takano, M.; Sugiyama, T. UGT1A1 Polymorphisms in Cancer: Impact on Irinotecan Treatment. Pharmgenomics Pers. Med. 2017, 10, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Lucić Vrdoljak, A.; Žunec, S.; Radić, B.; Fuchs, R.; Želježić, D.; Kopjar, N. Evaluation of the Cyto/Genotoxicity Profile of Oxime K048 Using Human Peripheral Blood Lymphocytes: An Introductory Study. Toxicol. In Vitro 2014, 28, 39–45. [Google Scholar] [CrossRef]
- Jurica, K.; Brčić Karačonji, I.; Mikolić, A.; Milojković-Opsenica, D.; Benković, V.; Kopjar, N. In Vitro Safety Assessment of the Strawberry Tree (Arbutus unedo L.) Water Leaf Extract and Arbutin in Human Peripheral Blood Lymphocytes. Cytotechnology 2018, 70, 1261–1278. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies; IAEA: Vienna, Austria, 2011. [Google Scholar]
- Fenech, M.; Morley, A.A. Measurement of Micronuclei in Lymphocytes. Mutat. Res. 1985, 147, 29–36. [Google Scholar] [CrossRef]
- Fenech, M. Cytokinesis-Block Micronucleus Cytome Assay. Nat. Protoc. 2007, 2, 1084–1104. [Google Scholar] [CrossRef] [Green Version]
- Fenech, M.; Chang, W.P.; Kirsch-Volders, M.; Holland, N.; Bonassi, S.; Zeiger, E. HUMN Project: Detailed Description of the Scoring Criteria for the Cytokinesis-Block Micronucleus Assay Using Isolated Human Lymphocyte Cultures. Mutat. Res. 2003, 534, 65–75. [Google Scholar] [CrossRef]
- Scarpato, R.; Bertoli, A.; Naccarati, A.; Migliore, L.; Cocchi, L.; Barale, R.; Pistelli, L. Different Effects of Newly Isolated Saponins on the Mutagenicity and Cytotoxicity of the Anticancer Drugs Mitomycin C and Bleomycin in Human Lymphocytes. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 1998, 420, 49–54. [Google Scholar] [CrossRef]
- Eastmond, D.; Tucker, J. Identification of Aneuploidy-Inducing Agents Using Cytokinesis-Blocked Human Lymphocytes and an Anti-Kinetochore Antibody. Environ. Mol. Mutagen. 1989, 13, 34–43. [Google Scholar] [CrossRef]
- Lorge, E.; Hayashi, M.; Albertini, S.; Kirkland, D. Comparison of Different Methods for an Accurate Assessment of Cytotoxicity in the in Vitro Micronucleus Test. I. Theoretical Aspects. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 2008, 655, 1–3. [Google Scholar] [CrossRef]
- OECD. Test No. 487: In Vitro Mammalian Cell Micronucleus Test; OECD: Paris, France, 2016. [Google Scholar]
Group | Chromatid Break | Chromosome Break | Acentric Fragment | Dicentric Chromosome | Total |
---|---|---|---|---|---|
Negative control | 10 1.1 ± 0.60 | - - | 3 0.3 ± 0.50 | - - | 13 1.4 ± 0.73 |
1 × STH | 10 1.1 ± 0.60 | - - | 5 0.6 ± 0.53 | - - | 15 1.7 ± 0.71 |
5 × STH | 14 1.6 ± 0.53 | - - | 4 0.4 ± 0.53 | - - | 18 2.0 ± 0.0 |
10 × STH | 12 1.3 ± 0.50 | - - | 4 0.4 ± 0.53 | - - | 16 1.8 ± 0.67 |
AH | 12 1.3 ± 0.71 | - - | 4 0.4 ± 0.73 | - - | 16 1.8 ± 0.67 |
Positive control | 157 17.4 ± 7.26 ↑ | 18 2.0 ± 1.50 ↑ | 70 7.8 ± 1.64 ↑ | 11 1.4 ± 0.74 ↑ | 256 28.4 ± 7.33 ↑ |
Group | Micronuclei (MNi) | Nuclear Buds (NBs) | Nucleoplasmic Bridges (NPBs) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean (MNi)1000 ± SD | Total (MNi)9000 | Mean (BNMN)1000 ± SD | Total (BNMN)9000 | Distribution of BNMN Cells with | Mean (NBs)1000 ± SD | Total (NBs)9000 * | Mean (NPBs)1000 ± SD | Total (NPBs)9000 * | |||
1 MN | 2 MN | 3 MN | |||||||||
Negative control | 2.4 ± 0.53 | 22 | 2.4 ± 0.53 | 22 | 22 | 0 | 0 | 1.9 ± 0.60 | 17 | 0 | 0 |
1 × STH | 2.7 ± 0.50 | 24 | 2.7 ± 0.50 | 24 | 24 | 0 | 0 | 2.4 ± 0.53 | 22 | 0 | 0 |
5 × STH | 2.8 ± 0.67 | 25 | 2.8 ± 0.67 | 25 | 25 | 0 | 0 | 2.2 ± 0.83 | 20 | 0 | 0 |
10 × STH | 2.3 ± 0.50 | 21 | 2.3 ± 0.50 | 21 | 21 | 0 | 0 | 2.8 ± 0.44 | 25 | 0 | 0 |
AH | 3.1 ± 0.60 | 28 | 3.1 ± 0.60 | 28 | 28 | 7 | 1 | 3.2 ± 0.83 N | 29 | 0 | 0 |
Positive control | 17.6 ± 2.07 ↑ | 158 | 15.6 ± 1.81 ↑ | 140 | 123 | 16 | 1 | 9.8 ± 1.86 ↑ | 88 | 1.4 ± 0.73 ↑ | 13 |
Group | Parameters of Cell Proliferation | |||||
---|---|---|---|---|---|---|
Cells with 1 to 4 Nuclei (%) | Nuclear Division Index (NDI) | Replication Index (%) | ||||
M1 | M2 | M3 | M4 | |||
Negative control | 15.4 | 73.5 | 3.7 | 7.4 | 2.031 | 100 |
1 × STH | 17.4 | 71.4 | 3.4 | 7.8 | 2.015 N | 97.8 |
5 × STH | 16.3 | 73.1 | 3.1 | 7.5 | 2.020 | 98.4 |
10 × STH | 15.6 | 73.3 | 3.5 | 7.6 | 2.030 | 99.5 |
AH | 16.4 | 74.6 | 2.9 | 6.2 | 1.989 N,α,β,γ | 96.7 |
Positive control | 40.6 | 56.8 | 1.5 | 1.1 | 1.631 ↓ | 63.5 ↓ |
Group | Cell Viability | Cytostatic Effects | |||
---|---|---|---|---|---|
No. of Cells in Apoptosis | No. of Cells In Necrosis | Total No. of Dead Cells | CBPI | Cytostasis (%) | |
Negative control | 13 | 3 | 16 | 1.954 | 0 |
1 × STH | 14 | 12 * | 26 * | 1.932 # | 2.3 |
5 × STH | 20 | 15 * | 35 * | 1.937 | 1.8 |
10 × STH | 18 | 16 * | 34 * | 1.947 | 0.7 |
AH | 19 | 16 * | 35 * | 1.920 #,α,β,γ | 3.6 |
Positive control | 118 ↑ | 81 ↑ | 199 ↑ | 1.585 ↓ | 38.7 ↑ |
Group | Chromatid Break | Chromosome Break | Acentric Fragment | Dicentric Chromosome | Quadriradial Chromosomes | Total |
---|---|---|---|---|---|---|
IRI | 59 6.6 ± 2.07 # | 5 0.6 ± 0.88 | 46 5.1 ± 2.15 # | 4 0.4 ± 0.53 α,β | 2 0.2 ± 0.67 | 116 12.9 ± 3.82 # |
1 × STH + IRI | 18 2.0 ± 0.87 | 4 0.4 ± 0.53 | 16 1.8 ± 0.83 | - - | 5 0.6 ± 0.88 | 43 4.8 ± 1.30 |
5 × STH + IRI | 24 2.7 ± 1.41 | 5 0.6 ± 0.73 | 14 1.6 ± 0.88 | - - | 5 0.6 ± 0.73 | 48 5.3 ± 1.22 |
10 × STH + IRI | 26 2.9 ± 1.54 | 3 0.3 ± 0.71 | 17 1.9 ± 0.78 | 2 0.2 ± 0.44 | 5 0.6 ± 0.73 | 53 5.9 ± 1.96 |
AH + IRI | 80 8.9 ± 2.98 I,α,β,γ | 11 1.2 ± 0.97 | 35 3.9 ± 2.26 α,β | 2 0.2 ± 0.44 | 1 0.1 ± 0.33 | 129 14.3 ± 3.43 α,β,γ |
Positive control | 157 17.4 ± 7.26 ↑ | 18 2.0 ± 1.50 ↑ | 70 7.8 ± 1.64 ↑ | 11 1.4 ± 0.74 ↑ | - - | 256 28.4 ± 7.33 ↑ |
Group | Micronuclei (MNi) | Nuclear Buds (NBs) | Nucleoplasmic Bridges (NPBs) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean (MNi)1000 ± SD | Total (MNi)9000 | Mean (BNMN)1000 ± SD | Total (BNMN)9000 | Distribution of BNMN Cells with | Mean (NBs)1000 ± SD | Total (NBs)9000 * | Mean (NPBs)1000 ± SD | Total (NPBs)9000 * | |||
1 MN | 2 MN | 3 MN | |||||||||
IRI | 13.0 ± 3.32 # | 117 | 12.0 ± 2.69 # | 108 | 100 | 7 | 1 | 7.3 ± 1.80 # | 66 | 0.7 ± 0.50 # | 6 |
1 × STH + IRI | 6.9 ± 1.36 | 62 | 6.9 ± 1.36 | 62 | 62 | 0 | 0 | 3.9 ± 1.36 | 35 | 0 | 0 |
5 × STH + IRI | 5.9 ± 0.93 | 53 | 5.9 ± 0.93 | 59 | 59 | 0 | 0 | 4.0 ± 1.12 | 36 | 0 | 0 |
10 × STH + IRI | 7.4 ± 1.13 | 67 | 7.3 ± 1.00 | 66 | 65 | 1 | 0 | 4.4 ± 1.42 | 40 | 0 | 0 |
AH + IRI | 12.1 ± 4.17 $ | 109 | 11.8 ± 3.83 $ | 106 | 103 | 3 | 0 | 7.8 ± 1.99 $ | 70 | 0.1 ± 0.33 | 1 |
Positive control | 17.6 ± 2.07 ↑ | 158 | 15.6 ± 1.81 ↑ | 140 | 123 | 16 | 1 | 9.8 ± 1.86 ↑ | 88 | 1.4 ± 0.73 ↑ | 13 |
EXPERIMENTAL DESIGN | ||||
---|---|---|---|---|
Negative control non-treated cells | Treatments without cytotoxic drug | |||
Strawberry tree honey (STH) | Artificial honey (AH) | |||
1× | 5× | 10× | ||
0.71 g/L | 3.50 g/L | 7.10 g/L | 0.71 g/L | |
Cytotoxic drug Irinotecan (IRI) | Combined treatments withcytotoxic drug | |||
1 × STH 0.71 g/L | 5 × STH 3.50 g/L | 10 × STH 7.10 g/L | AH 0.71 g/L | |
IRI 9.0 mg/L | IRI 9.0 mg/L | IRI 9.0 mg/L | IRI 9.0 mg/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurič, A.; Brčić Karačonji, I.; Gašić, U.; Milojković Opsenica, D.; Prđun, S.; Bubalo, D.; Lušić, D.; Vahčić, N.; Kopjar, N. Protective Effects of Arbutus unedo L. Honey in the Alleviation of Irinotecan-Induced Cytogenetic Damage in Human Lymphocytes—An In Vitro Study. Int. J. Mol. Sci. 2023, 24, 1903. https://doi.org/10.3390/ijms24031903
Jurič A, Brčić Karačonji I, Gašić U, Milojković Opsenica D, Prđun S, Bubalo D, Lušić D, Vahčić N, Kopjar N. Protective Effects of Arbutus unedo L. Honey in the Alleviation of Irinotecan-Induced Cytogenetic Damage in Human Lymphocytes—An In Vitro Study. International Journal of Molecular Sciences. 2023; 24(3):1903. https://doi.org/10.3390/ijms24031903
Chicago/Turabian StyleJurič, Andreja, Irena Brčić Karačonji, Uroš Gašić, Dušanka Milojković Opsenica, Saša Prđun, Dragan Bubalo, Dražen Lušić, Nada Vahčić, and Nevenka Kopjar. 2023. "Protective Effects of Arbutus unedo L. Honey in the Alleviation of Irinotecan-Induced Cytogenetic Damage in Human Lymphocytes—An In Vitro Study" International Journal of Molecular Sciences 24, no. 3: 1903. https://doi.org/10.3390/ijms24031903