Involvement of Type 10 17β-Hydroxysteroid Dehydrogenase in the Pathogenesis of Infantile Neurodegeneration and Alzheimer’s Disease
Abstract
:1. Introduction
2. Dehydration of Straight or Branched Chain Acyl-CoA Derivatives
3. 17β-HSD10 as a Multitask Enzyme Involved in Different Metabolic Pathways
4. Enzymatic Activities Regulated by Deacetylation
5. Additional Functions Irrelevant to Its Dehydrogenase Catalytic Activities
6. Re-Discovery of ABAD/ERAB in Mitochondria
7. An Erroneous Story of Aβ-Binding Alcohol Dehydrogenase
7.1. Kinetic Constants of ABAD/ERAB Not Based upon Experiments
7.2. ‘Competitive Inhibition’ of Aβ Defined by a Single Concentration of Substrate
7.3. Non-Reproducibility of Reported ABAD Assays
7.4. Importance of ABAD for Brain Cells’ Resistance to Oxidative and Nutritional Stress?
8. HSD17B10 Gene-Related Disorders (OMIM:#300438)
8.1. About Half Cases of HSD10 Deficiency Resulting from a p.R130C Mutation
8.2. Few Female Cases of HSD10 Disease Because of X-Inactivation
8.3. Elevated Levels of 17β-HSD10 in Brain Cells of AD Patients or down Syndrome Patients with AD Pathology
8.4. HSD10 Inhibitors as Potential Candidates for Treatment of Senile Neurodegeneration
9. Perspective
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABAD | Aβ-binding protein alcohol dehydrogenase |
AD | Alzheimer’s disease |
ERAB | Endoplasmic Reticulum-associated Aβ-binding protein |
HADH | L-3-hydroxyacyl-CoA dehydrogenase |
HADII | type II 3-hydroxyacyl-CoA dehydrogenase |
HSD | hydroxysteroid dehydrogenase |
17β-HSD10 | 17β-hydroxysteroid dehydrogenase type 10 |
Me2SO | dimethyl sulphoxide |
mt | mitochondrial |
MRPP | mitochondrial ribonuclease P protein |
MRXS10 | mental retardation |
X-linked | syndromic 10 |
PD | Parkinson’s disease |
PDI | protein disulfide isomerase (an ER marker) |
PRORP | protein only RNase P |
OMIM | Online Mendelian Inheritance in Man |
SCHAD | short-chain 3-hydroxyacyl-CoA dehydrogenase |
SM | Supplementary materials |
TRMT10C | methyltransferase 10C |
VDAC | anti-voltage-dependent anion channel (a mitochondrial marker) |
References
- He, X.Y.; Schulz, H.; Yang, S.Y. A human brain L-3-hydroxyacyl coenzyme A dehydrogenase is identical with an amyloid β-peptide binding protein involved in Alzheimer’s disease. J. Biol. Chem. 1998, 273, 10741–10746. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Merz, G.; Mehta, P.; Schulz, H.; Yang, S.Y. Human brain short chain L-3-hydroxyacyl coenzyme A dehydrogenase is a single-domain multifunctional enzyme. Characterization of a novel 17β-hydroxysteroid dehydrogenase. J. Biol. Chem. 1999, 274, 15014–15019. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Merz, G.; Yang, Y.Z.; Schulz, H.; Yang, S.Y. Characterization and localization of human type 10 17β-hydroxysteroid. dehydrogenase. Eur. J. Biochem. 2001, 268, 4899–4907. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Yang, Y.Z.; Schulz, H.; Yang, S.Y. Intrinsic alcohol dehydrogenase and hydroxysteroid dehydrogenase activities of human mitochondrial short chain L-3-hydroxyacyl-CoA dehydrogenase. Biochem. J. 2000, 345, 139–143. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Merz, G.; Yang, Y.Z.; Pullakart, R.; Mehta, P.; Schulz, H.; Yang, S.Y. Function of human brain short chain L-3-hydroxyacyl coenzyme A dehydrogenase in androgen metabolism. Biochim. Biophys. Acta 2000, 1484, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Jornvall, H.; Persson, B.; Krook, M.; Atrian, S.; Gonzalez-Duarte, R.; Jeffery, J. Short-chain dehydrogenase/reductases (SDR). Biochemistry 1995, 34, 6003–6013. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.J.; Mao, L.F.; Schulz, H. Short-chain 3-hydroxy-2-methylacyl-CoA dehydrogenase from rat liver: Purification and characterization of a novel enzyme of isoleucine metabolism. Arch. Biochem. Biophys. 1995, 321, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Zschocke, J.; Ruiter, J.P.; Brand, J.; Lindner, M.; Hoffmann, G.F.; Wanders, R.J.; Mayatepek, E. Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: A novel inborn error of branched-chain fatty acid and isoleucine metabolism. Pediatr. Res. 2000, 48, 852–855. [Google Scholar] [CrossRef]
- Poll-The, B.T.; Duran, M.; Ruiter, J.P.N.; Wanders, R.J.A.; Barth, P.G. Mild cerebral white matter disease associated with 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiencccy. J. Inherit. Metab. Dis. 2001, 24, 59. [Google Scholar]
- Olpin, S.E.; Pollitt, R.J.; McMenamin, J.; Manning, N.J.; Besley, G.; Ruiter, J.P.N.; Wanders, R.J.A. 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency in a 23-year-old man. J. Inherit. Metab. Dis. 2002, 25, 477–482. [Google Scholar] [CrossRef]
- Ensenauer, R.; Niederhoff, H.; Ruiter, J.P.N.; Wanders, R.J.A.; Schwab, O.; Brandis, M.; Lehnert, W. Clinical variability in 3-hydroxy-2-methylbutyryl-CoA dehydrogenase deficiency. Ann. Neurol. 2002, 51, 656–659. [Google Scholar] [CrossRef] [PubMed]
- Ofman, R.; Ruiter, P.J.; Feenstra, M.; Duran, M.; Zschocke, J.; Ensenauer, R.; Wanders, J.R. 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency is caused by mutations in the HADH2 gene. Am. J. Hum. Genet. 2003, 72, 1300–1307. [Google Scholar] [CrossRef] [PubMed]
- Sutton, V.R.; O’Brien, W.E.; Clark, G.D.; Kim, J.; Wanders, R.J.A. 3-Hydroxy-2-methylbutyryl-CoA dehydrogenase deficiency. J. Inherit. Metab. Dis. 2003, 26, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Sass, J.O.; Forstner, R.; Sperl, W. 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: Impaired catabolism of isoleucine presenting as neurodegenerative disease. Brain Dev. 2004, 26, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cerda, C.; García-Villoria, J.; Ofman, R.; Sala, P.R.; Merinero, B.; Ramos, J.; Ribes, A. 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiency: An X-linked inborn error of isoleucine metabolism that may mimic a mitochondrial disease. Pediatr. Res. 2005, 58, 488–491. [Google Scholar] [CrossRef] [PubMed]
- García-Villoria, J.; Navarro-Sastre, A.; Fons, C.; Pérez-Cerdá, C.; Baldellou, A.; Fuentes-Castelló, M.Á.; Ribes, A. Study of patients and carriers with 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiency: Difficulties in the diagnosis. Clin. Biochem. 2009, 42, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Amar, D.; Gay, N.R.; Jimenez-Morales, D.; Beltran, P.M.J.; Ramaker, M.E.; Raja, A.N.; MoTrPAC Study Group. The mitochondrial multiomic response to exercise training across tissues. bioRxiv 2023, 13. [Google Scholar] [CrossRef]
- Du Yan, S.; Fu, J.; Soto, C.; Chen, X.; Zhu, H.; Al-Mohanna, F.; Stern, D. An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer’s disease. Nature 1997, 389, 689–695. [Google Scholar] [CrossRef]
- Beyreuther, K.; Masters, C.L. The ins and outs of amyloid-β. Nature 1997, 389, 677–678. [Google Scholar] [CrossRef]
- Sambamurti, K.; Lahiri, D.K. ERAB contains a putative noncleavable signal peptide. Biochim. Biophys. Res. Commun. 1998, 249, 546–549. [Google Scholar] [CrossRef]
- Du Yan, S.; Shi, Y.; Zhu, A.; Fu, J.; Zhu, H.; Zhu, Y.; Stern, D.M. Role of ERAB/L-3-hydroxyacyl-coenzyme A dehydrogenase type II activity in Abeta-induced cytotoxicity. J. Biol. Chem. 1999, 274, 2145–2156. [Google Scholar] [CrossRef]
- Du Yan, S.; Zhu, Y.; Stern, E.D.; Hwang, Y.C.; Hori, O.; Ogawa, S.; Ramasamy, R. Amyloid β-peptide-binding alcohol dehydrogenase is a component of the cellular response to nutritional stress. J. Biol. Chem. 2000, 275, 27100–27109. [Google Scholar] [CrossRef] [PubMed]
- Lustbader, J.W.; Cirilli, M.; Lin, C.; Xu, H.W.; Takuma, K.; Wang, N.; Caspersen, C.; Chen, X.; Pollak, S.; Chaney, M. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 2004, 304, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.D.; Stern, D.M. Mitochondrial dysfunction and Alzheimer’s disease: Role of amyloid-β peptide alcohol dehydrogenase (ABAD). Int. J. Exp. Path 2005, 86, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Vangavaragu, J.R.; Valasani, K.R.; Fang, D.; Williams, T.D.; Yan, S.S. Determination of small molecule ABAD inhibitors crossing blood brain barrier and pharmacokinetics. J. Alzheimers Dis. 2014, 42, 333–344. [Google Scholar] [CrossRef] [PubMed]
- R Valaasani, K.; Sun, Q.; Hu, G.; Li, J.; Du, F.; Guo, Y.; Yan, S. Identification of human ABAD inhibitors for rescuing Aβ-mediated mitochondrial dysfunction. Curr. Alzheimer Res. 2014, 11, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Hroch, L.; Guest, P.; Benek, O.; Soukup, O.; Janockova, J.; Dolezal, R.; Musilek, K. Synthesis and evaluation of frentizole-based indolyl thiourea analogues as MAO/ABAD inhibitors for Alzheimer’s disease treatment. Bioorg. Med. Chem. 2017, 25, 1143–1152. [Google Scholar] [CrossRef]
- Morsy, A.; Trippier, P.C. Amyloid-Binding Alcohol Dehydrogenase (ABAD) Inhibitors for the Treatment of Alzheimer’s Disease. J. Med. Chem. 2019, 62, 4252–4264. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, Q.; Zhu, X.; Wang, Y. ABAD/17β-HSD10 reduction contributes to the protective mechanism of huperzine a on the cerebral mitochondrial function in APP/PS1 mice. Neurobiol. Aging. 2019, 81, 77–87. [Google Scholar] [CrossRef]
- Powell, A.J.; Read, J.A.; Banfield, M.J.; Gunn-Moore, F.; Yan, S.D.; Lustbader, J.; Brady, R.L. Recognition of structurally diverse substrates by type II 3-hydroxyacyl-CoA dehydrogenase (HADII)/amyloid-β binding alcohol dehydrogenase (ABAD). J. Mol. Biol. 2000, 303, 311–327. [Google Scholar] [CrossRef]
- Yang, S.Y.; He, X.Y. Role of type 10 17beta-hydroxysteroid dehydrogenase in the pathogenesis of Alzheimer’s disease. In Neuropathology and Genetics of Dementia; Tolnay, M., Probst, A., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2001; pp. 101–110. [Google Scholar]
- He, X.Y.; Merz, G.; Chu, C.H.; Lin, D.; Yang, Y.Z.; Mehta, P.; Yang, S.Y. Molecular cloning, modeling, and localization of rat type 10, 17β-hydroxysteroid dehydrogenase. Mol. Cell. Endocrinol. 2001, 171, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; He, X.Y.; Schulz, H. Multiple functions of type 10 17beta-hydroxysteroid dehydrogenase. Trends Endocrinol. Metab. 2005, 16, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; He, X.Y.; Schulz, H. 3-Hydroxyacyl-CoA dehydrogenase and short-chain 3-hydroxyacyl-CoA dehydrogenase in human health and disease. FEBS J. 2005, 272, 4874–4883. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Isaacs, C.; Yang, S.Y. Roles of mitochondrial 17beta-hydroxysteroid dehydrogenase type 10 in Alzheimer’s disease. J. Alzhaimer Dis. 2018, 62, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Vinklarova, L.; Schmidt, M.; Benek, O.; Kuca, K.; Gunn-Moore, F.; Musilek, K. Friend or enemy? Review of 17β-HSD10 and its role in human health or disease. J. Neurochem. 2020, 155, 231–249. [Google Scholar] [CrossRef] [PubMed]
- Vilardo, E.; Rossmanith, W. The amyloid-β-SDR5C1(ABAD) interaction does not mediate a specific inhibition of mitochondrial RNase P. PLoS ONE 2013, 8, e65609. [Google Scholar] [CrossRef]
- Yang, S.Y.; He, X.Y. Hadh2 and 3-hydroxyacyl-CoA dehydrogenase. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E987. [Google Scholar] [CrossRef]
- Kobayashi, A.; Jiang, L.L.; Hashimoto, T. Two mitochondrial 3-hydroxyacyl-CoA dehydrogenases in bovine liver. J. Biochem. 1996, 119, 775–782. [Google Scholar] [CrossRef]
- Schulz, H. Fatty acid oxidation. In Encyclopedia of Biological Chemistry; Lennarz, W., Lane, M.D., Eds.; Elsevier: San Diego, CA, USA, 2004; pp. 90–94. [Google Scholar]
- He, X.Y.; Yang, S.Y. 3-Hydroxyacyl-CoA dehydrogenase (HAD) deficiency replaces short-chain hydroxyacyl-CoA dehydrogenase (SCHAD) deficiency as well as medium- and short-chain hydroxyacyl-CoA dehydrogenase (M/SCHAD) deficiency as the consensus name of this fatty acid oxidation disorder. Mol. Genet. Metab. 2007, 91, 205–206. [Google Scholar]
- Birktoft, J.J.; Holden, H.M.; Hamlin, R.; Xuong, N.C.; Banaszak, L.J. Structure of L-3-hydroxyacyl-CoA dehydrogenase. Preliminary chain tracing at 2.8 A resolution. Proc. Natl. Acad. Sci. USA 1987, 84, 8262–8266. [Google Scholar] [CrossRef]
- He, X.Y.; Yang, Y.X.; Yang, S.Y. Changes of the HSD17B10 gene expression levels in ulcerative colitis. Inflamm. Bowel Dis. 2013, 19, E23–E24. [Google Scholar] [CrossRef] [PubMed]
- Shafqat, N.; Marschall, H.U.; Filling, C.; Nordling, E.; Wu, X.Q.; Björk, L.; Oppermann, U. Expended substrate screenings of human and Drosophila type 10 17β-hydroxysteroid dehydrogenase reveal multiple apecificities in bile acid and steroid hormone metabolism. Characterization of multifunctional 3α/7α/7β/20β/21-hydroxysteroid dehydrogenase. Biochem. J. 2003, 376, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Hiltunen, J.K.; Kastaniotis, A.J.; Autio, K.J.; Jiang, G.; Chen, Z.; Glumoff, T. 17B-hydroxysteroid dehydrogenases as acyl thioester metabolizing enzymes. Mol. Cell. Endocrinol. 2019, 489, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sang, Y.M. Genetic pathogenesis, diagnosis, and treatment of short-chain 3-hydroxyacyl-coenzyme A dehydrogenase hyperinsulinism. Orphanet. J. Rare Dis. 2021, 16, 467. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Dobkin, C.; Brown, W.T.; Yang, S.Y. 3-Hydroxyacyl-CoA and alcohol dehydrogenase activities of mitochondrial type 10 17beta-hydroxysteroid dehydrogenase in neurodegeneration study. J. Alzheimer Dis. 2022, 88, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Adamski, J.; Jacob, F.J. A guide to 17β-hydroxysteroid dehydrogenases. Mol. Cell. Endocrinol. 2001, 171, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Korman, S.H.; Yang, S.Y. HSD17B10 replaces HADH2 as the approved designation for the gene mutated in 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency. Mol. Genet. Metab. 2007, 91, 115. [Google Scholar] [CrossRef]
- Yang, S.Y.; He, X.Y.; Isaacs, C.; Dobkin, C.; Miller, D.; Philipp, M. Roles of 17β-hydroxysteroid dehydrogenase type 10 in neurodegenerative disorders. J. Steroid Biochem. Mol. Biol. 2014, 143, 460–472. [Google Scholar] [CrossRef]
- He, X.Y.; Dobkin, C.; Yang, S.Y. 17beta-Hydroxysteroid dehydrogenases and neurosteroid metabolism in the central nervous system. Mol. Cell. Endocrinol. 2019, 489, 92–97. [Google Scholar] [CrossRef]
- Yang, S.Y.; He, X.Y.; Olpin, S.E.; Sutton, V.R.; McMenamin, J.; Philipp, M.; Malik, M. Mental retardation linked to mutations in the HSD17B10 gene interfering with neurosteroid and isoleucine metabolism. Proc. Natl. Acad. Sci. USA 2009, 106, 14820–14824. [Google Scholar] [CrossRef]
- Trauger, J.W.; Jiang, A.; Stearns, B.A.; LoGrasso, P.V. Kinetics of allopregnanolone formation catalyzed by human 3α-hydroxysteroid dehydrogenase type III (AKR1C2). Biochemistry 2002, 41, 13451–13459. [Google Scholar] [CrossRef] [PubMed]
- Boynton, T.O.; Shimkets, L.J. Myxococcus CsgA, Drosophila Sniffer, and human HSD10 are cardiolipin phospholipases. Genes Dev. 2015, 29, 1903–1914. [Google Scholar] [CrossRef] [PubMed]
- Wohlfarter, Y.; Eidelpes, R.; Yu, R.D.; Sailer, S.; Koch, J.; Karall, D.; Keller, M.A. Lost in promiscuity? An evolutionary and biochemical evaluation of HSD10 function in cardiolipin metabolism. Cell. Mol. Life Sci. 2022, 79, 562. [Google Scholar] [CrossRef] [PubMed]
- Haines, T.H. A new look at cardiolipin, editorial. Biochim. Biophys. Acta 2009, 1788, 1997–2002. [Google Scholar] [CrossRef] [PubMed]
- Bertolin, G.; Jacoupy, M.; Traver, S.; Ferrando-Miguel, R.; Saint Georges, T.; Grenier, K.; Corti, O. Parkin maintains mitochondrial levels of the protective Parkinson’s disease-related enzyme 17-β hydroxysteroid dehydrogenase type 10. Cell Death Differ. 2015, 22, 1563–1576. [Google Scholar] [CrossRef]
- He, X.Y.; Wegiel, J.; Kooy, R.F.; Brown, W.T.; Yang, S.Y. HSD17B10 gene-related disorders are associated with abnormalities of mitochondrial function, morphology, dynamics and clearance. Ann. Genet. Genom. 2021, 1, 1005. [Google Scholar]
- Holzmann, J.; Frank, P.; Löffler, E.; Bennett, K.L.; Gerner, C.; Rossmanith, W. RNase P without RNA: Identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 2008, 135, 462–474. [Google Scholar] [CrossRef]
- Yang, S.Y.; He, X.Y.; Miller, D. Hydroxysteroid (17β) dehydrogenase X in human health and disease. Mol. Cell. Endocrinol. 2011, 343, 1–6. [Google Scholar] [CrossRef]
- Oerum, S.; Roovers, M.; Leichsenring, M.; Acquaviva-Bourdain, C.; Beermann, F.; Gemperle-Britschgi, C.; Yue, W.W. Novel patient missense mutations in the HSD17B10 gene affect dehydrogenase and mitochondrial tRNA modification functions of the encoded protein. Biochim. Biophys. Acta 2017, 1863, 3294–3302. [Google Scholar] [CrossRef]
- Oerum, S.; Roovers, M.; Rambo, R.P.; Kopec, J.; Bailey, H.J.; Fitzpatrick, F.; Yue, W.W. Structural insight into the human mitochondrial tRNA purine N1-methyltransferase and ribonuclease P complexes. J. Biol. Chem. 2018, 293, 12862–12876. [Google Scholar] [CrossRef]
- Bhatta, A.; Dienemann, C.; Cramer, P.; Hillen, H.S. Structural basis of RNA processing by human mitochondrial RNase P. Nat. Struct. Mol. Biol. 2021, 28, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Vilardo, E.; Nachbagauer, C.; Buzet, A.; Taschner, A.; Holzmann, J.; Rossmanith, W. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase--extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acid Res. 2012, 40, 11583–11593. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.T.; Antunes, A.; Fernandes, P.A.; Ramos, M.J. Comparative evolutionary genomics of the HADH2 gene encoding Abeta-binding alcohol dehydrogenase/17beta-hydroxysteroid dehydrogenase type 10 (ABAD/HSD10). BMC Genom. 2006, 7, 202. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.; Berry, G.T.; Garganta, C.; Abbott, M.A. Hydroxysteroid 17-Beta Dehydrogenase Type 10 Disease in Siblings. JIMD Rep. 2017, 32, 25–32. [Google Scholar] [PubMed]
- Rauschenberger, K.; Schöler, K.; Sass, J.O.; Sauer, S.; Djuric, Z.; Rumig, C.; Zschocke, J. A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival. EMBO Mol. Med. 2010, 2, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Fukao, T.; Akiba, K.; Goto, M.; Kuwayama, N.; Morita, M.; Hori, T.; Hasegawa, Y. The first case in Asia of 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency (HSD10 disease) with atypical presentation. J. Hum. Genet. 2014, 59, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Seaver, L.H.; He, X.Y.; Abe, K.; Cowan, T.; Enns, G.M.; Sweetman, L.; Yang, S.Y. A novel mutation in the HSD17B10 gene of a 10-year-old boy with refractory epilepsy, choreoathetosis and learning disability. PLoS ONE 2011, 6, e27348. [Google Scholar] [CrossRef]
- Zschocke, J. HSD10 disease: Clinical consequences of mutations in the HSD17B10 gene. J. Inherit. Metab. Dis. 2012, 35, 81–89. [Google Scholar] [CrossRef]
- Upadia, J.; Walano, N.; Noh, G.S.; Liu, J.; Li, Y.; Deputy, S.; Andersson, H.C. HSD10 disease in a female: A case report and review of literature. JIMD Rep. 2021, 62, 35–43. [Google Scholar] [CrossRef]
- He, X.Y.; Dobkin, C.; Brown, W.T.; Yang, S.Y. Infantile neurodegeneration results from mutants of 17β-hydroxysteroid dehydrogenase type 10 rather than Aβ-binding alcohol dehydrogenase. Int. J. Mol. Sci. 2023, 24, 8487. [Google Scholar] [CrossRef]
- Vilardo, E.; Rossmanith, W. Molecular insights into HSD10 disease: Impact of SDR5C1 mutations on the human mitochondrial RNase P complex. Nucleic Acids Res. 2015, 43, 5112–5119. [Google Scholar] [CrossRef] [PubMed]
- Akagawa, S.; Fukao, T.; Akagawa, Y.; Sasai, H.; Kohdera, U.; Kino, M.; Kaneko, K. Japanese male siblings with 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency (HSD10 disease) without neurological regression. JIMD Rep. 2017, 32, 81–85. [Google Scholar] [PubMed]
- Falk, M.J.; Gai, X.; Shigematsu, M.; Vilardo, E.; Takase, R.; McCormick, E.; Hou, Y.M. A novel HSD17B10 mutation impairing the activities of the mitochondrial RNase P complex causes X-linked intractable epilepsy and neurodevelopmental regression. RNA Biol. 2016, 13, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Li, X.; Lin, R.; Sheng, H.; Feng, Z.; Liu, L. Clinical and molecular analysis of 6 Chinese patients with isoleucine metabolism defects: Identification of 3 novel mutations in the HSD17B10 and ACAT1 gene. Metab. Brain Dis. 2017, 32, 2063–2071. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, I.; Demain, L.A.; Richer, J.; Thompson, K.; Urquhart, J.E.; Rea, A.; Newman, W.G. Bi-allelic variants in the mitochondrial RNase P subunit PRORP cause mitochondrial tRNA processing defects and pleiotropic multisystem presentations. Am. J. Hum. Genet. 2021, 108, 2195–2204. [Google Scholar] [CrossRef] [PubMed]
- Waters, P.J.; Lace, B.; Buhas, D.; Gravel, S.; Cyr, D.; Boucher, R.M.; Maranda, B. HSD10 mitochondrial disease: P.Leu122Val variant, mild clinical phenotype, and founder effect in French-Canadian patients from Quebec. Mol. Genet. Genom. Med. 2019, 7, e1000. [Google Scholar] [CrossRef] [PubMed]
- Reyniers, E.; Van Bogaert, P.; Peeters, N.; Vits, L.; Pauly, F.; Fransen, E.; Kooy, R.F. A new neurological syndrome with mental retardation, choreoathetosis, and abnormal behavior maps to chromosome Xp11. Am. J. Hum. Genet. 1999, 65, 1406–1412. [Google Scholar] [CrossRef]
- Lenski, C.; Kooy, F.; Reyniers, R.F.; Loessner, E.D.; Wanders, R.J.; Winnepenninckx, B.; Hellerand, H.; Engert, S.; Schwartz, C.E.; Meindl, A.; et al. The reduced expression of the HADH2 protein causes X-linked mental retardation, choreoathetosis, and abnormal behavior. Am. J. Hum. Genet. 2007, 80, 372–377. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, P.; Liu, J.; Lou, J.; Liu, Y.; Yuan, H. Xp11.22 duplications in four unrelated Chinese families: Delineating the genotype-phenotype relationship for HSD17B10 and FGD1. BMC Med. Genom. 2020, 13, 66. [Google Scholar] [CrossRef]
- Shafik, A.M.; Zhou, H.; Lim, J.; Dickinson, B.; Jin, P. Dysregulated mitochondrial and cytosolic tRNA m1A methylation in Alzheimer’s disease. Hum. Mol. Genet. 2022, 13, ddab357. [Google Scholar] [CrossRef]
- Oppermann, U.C.; Salim, S.; Tjernberg, L.O.; Terenius, L.; Jornvall, H. Binding of amyloid β-peptide to mitochondrialhydroxyacyl-CoA dehydrogenase (ERAB): Regulation of an SDR enzyme activity with implication for apoptosis in Alzheimer’s disease. FEBS Lett. 1999, 451, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Aitken, L.; Quinn, S.D.; Perez-Gonzalez, C.; Samuel, I.D.W.; Penedo, J.C.; Gunn-Moore, F.J. Morphology-specific inhibition of β-amyloid aggregates by 17β-hydroxysteroid dehydrogenase type 10. ChemBioChem 2016, 17, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Kristofikova, Z.; Springer, T.; Gedeonova, E.; Hofmannova, A.; Ricny, J.; Hromadkova, L.; Homola, J. Interaction of 17β-hydroxysteroid dehydrogenase type 10 and cyclophilin D in Alzheimer’s disease. Neurochem. Res. 2020, 45, 915–927. [Google Scholar] [CrossRef] [PubMed]
- Wen, G.Y.; Yang, S.Y.; Kaczmarski, W.; He, X.Y.; Pappas, K.S. Presence of hydroxysteroid dehydrogenase type 10 in amyloid plaques (Aps) of Hsiao’s APP-Sw transgenic mouse brains, but absence in Aps of Alzheimer’s disease brains. Brain Res. 2002, 954, 115–122. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Wen, G.Y.; Merz, G.; Lin, D.; Yang, Y.Z.; Mehta, P.; Schulz, H.; Yang, S.Y. Abundant type 10 17β-hydroxysteroid dehydrogenase in the hippocampus of mouse Alzheimer’s disease model. Mol. Brain Res. 2002, 99, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; He, X.Y.; Dobkin, C.; Isaacs, C.; Brown, W.T. Mental retardation and isoleucine metabolism. In Branched Chain Amino Acids in Clinical Nutrition: Volume I, Nutrition and Health; Rajendram, R., Preedy, V.R., Patel, V.B., Eds.; Springer: New York, NY, USA, 2015; pp. 157–170. [Google Scholar]
- Seshadri, A.; Alladi, P.A. Divergent expression patterns of Drp1 and HSD10 in the nigro-striatum of two mice strains based on their MPTP susceptibility. Neurotox. Res. 2019, 36, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Tieu, K.; Perier, C.; Vila, M.; Caspersen, C.; Zhang, H.P.; Teismann, P.; Przedborski, S. L-3-hydroxyacyl-CoA dehydrogenase II protects a model of Parkinson’s disease. Ann. Neurol. 2004, 56, 51–60. [Google Scholar] [CrossRef]
- Liu, L.; Chen, S.; Yu, M.; Ge, C.; Ren, M.; Liu, B.; Luo, J. Deacetylation of HSD17B10 by SIRT3 regulates cell growth and cell resistance under oxidative and starvation stresses. J. Cell Death Dis. 2020, 11, 563. [Google Scholar] [CrossRef]
- He, X.Y.; Yang, Y.Z.; Peehl, D.M.; Lauderdale, A.; Schulz, H.; Yang, S.Y. Oxidative 3α-hydroxysteroid dehydrogenase activity of human type 10 17β-hydroxysteroid dehydrogenase. J. Steroid Biochem. Mol. Biol. 2003, 87, 191–198. [Google Scholar] [CrossRef]
- Hemmerova, E.; Springer, T.; Kristofikova, Z.; Homola, J. In vitro study of interaction of 17β-hydroxysteroid dehydrogenase type 10 and cyclophilin D and its potential implications for Alzheimer’s disease. Sci. Rep. 2019, 9, 16700. [Google Scholar] [CrossRef]
- Burry, R.W. Specificity controls for immunocytochemical methods. J. Histochem. Cytochem. 2000, 48, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Fišar, Z.; Musílek, K.; Benek, O.; Hroch, L.; Vinklářová, L.; Schmidt, M.; Raboch, J. Effects of novel 17β-hydroxysteroid dehydrogenase type 10 inhibitors on mitochondrial respiration. Toxicol. Lett. 2021, 339, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Binstock, J.F.; Schulz, H. Fatty acid oxidation complex from Escherichia coli. Methods Enzymol. 1981, 71, 403–411. [Google Scholar] [PubMed]
- He, X.Y.; Yang, S.Y.; Schulz, H. Assay of L-3-hydroxyacyl-coenzyme A dehydrogenase with substrates of different chain lengths. Anal. Biochem. 1989, 180, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Schulz, H. Kinetics of coupled enzyme kinetics. Biochemistry 1987, 26, 5579–5584. [Google Scholar] [CrossRef]
- Segel, I.H. Enzyme Kinetics, Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme System; Wiley-Interscience: New York, NY, USA, 1975. [Google Scholar]
- Schmidt, M.; Benek, O.; Vinklarova, L.; Hrabinova, M.; Zemanova, L.; Chribek, M.; Musilek, K. Benzothiazolyl Ureas are Low Micromolar and Uncompetitive Inhibitors of 17β-HSD10 with Implications to Alzheimer’s Disease Treatment. Int. J. Mol. Sci. 2020, 21, 2059. [Google Scholar] [CrossRef]
- Kissinger, C.R.; Rejto, P.A.; Pelletier, L.A.; Thomson, J.A.; Showalter, R.E.; Abreo, M.A.; Villafranca, J.E. Crystal structure of human ABAD/HSD10 with a bound inhibitor: Implications for design of Alzheimer’s disease therapeutics. J. Mol. Biol. 2004, 342, 943–952. [Google Scholar] [CrossRef]
- Klotz, I.M.; Hunston, D.L. Mathematical models for ligand-receptor binding. Real sites, Ghost sites. J. Biol. Chem. 1984, 259, 10060–10062. [Google Scholar] [CrossRef]
- Windholz, M. The Merk Index, 10th ed.; Merk & Co. Inc.: Rahway, NJ, USA, 1983. [Google Scholar]
- Yang, S.Y.; He, X.Y.; Schulz, H. Glutamate 139 of the large α-subunit is the catalytic base in the dehydration of both D- and L-3-hydroxyacyl-coenzyme A but not in the isomerization of Δ3, Δ2- enoyl coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli. Biochemistry 1995, 34, 6441–6447. [Google Scholar] [CrossRef]
- Churchill, P.; Hempel, J.; Romovacek, H.; Zhang, W.W.; Churchill, S.; Brennan, M. Primary structure of rat liver D-beta-hydroxybutyrate dehydrogenase from cDNA and protein analyses: A short-chain alcohol dehydrogenase. Biochemistry 1992, 31, 3793–3799. [Google Scholar] [CrossRef]
- Ayan, D.; Maltais, R.; Poirier, D. Identification of a 17β-hydroxysteroid dehydrogenase type 10 steroidal inhibitor: A tool to investigate the role of type 10 in Alzheimer’s disease and prostate cancer. ChemMedChem 2012, 7, 1181–1184. [Google Scholar] [CrossRef]
- Xie, J.; Liang, R.; Wang, Y.; Huang, J.; Cao, X.; Niu, B. Progress in Target Drug Molecules for Alzheimer’s Disease. Curr. Top. Med. Chem. 2020, 20, 4–36. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.W.; Lee, J.; Pae, A.N. Mitochondrial dysfunction and Alzheimer’s disease: Prospects for therapeutic intervention. BMB Rep. 2020, 53, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Benek, O.; Vaskova, M.; Miskerikova, M.; Schmidt, M.; Andrys, R.; Rotterova, A.; Musilek, K. Development of Submicromolar 17β-HSD10 inhibitors and their in vitro and in vivo evaluation. Eur. J. Med. Chem. 2023, 258, 115593. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Vaskova, M.; Rotterova, A.; Fiandova, P.; Miskerikova, M.; Zemanova, L.; Musilek, K. Physiologically relevant fluorescent assay for identification of 17β-hydroxy-steroid dehydrogenase type 10 inhibitors. J. Neurochem. 2023, 167, 154–167. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Wegiel, J.; Yang, S.Y. Intracellular oxidation of allopregnanolone by human brain type 10 17β-hydroxysteroid dehydyrogenase. Brain Res. 2005, 1040, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Frackoviak, J.; Mazur-Kolecka, B.; Kazmarski, W.; Dickson, D. Deposition of Alzheimer’s vascular amyloid-beta is associated with decreased expression of brain L-3-hydroxyacyl-coenzyme A dehydrogenase (ERAB). Brain Res. 2001, 907, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Akwa, Y. Steroid and Alzheimer’s disease: Changes associated with pathology and therapeutic potential. Int. J. Mol. Sci. 2020, 21, 4812. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Dobkin, C.; He, X.Y.; Brown, W.T. Transcription start sites and epigenetic analysis of the HSD17B10 proximal promoter. BMC Biochem. 2013, 14, 17. [Google Scholar] [CrossRef]
- Yang, S.Y.; Dobkin, C.; He, X.Y.; Philipp, M.; Brown, W.T. A 5-methylcytosine hotspot responsible for the prevalent HSD17B10 mutation. Gene 2013, 515, 380–33384. [Google Scholar] [CrossRef]
- Miller, A.P.; Willard, H.F. Chromosomal basis of X chromosome inactivation: Identification of a multigene domain in Xp11.21-p.11.22 that escapes X inactivation. Proc. Natl. Acad. Sci. USA 1998, 95, 8709–8714. [Google Scholar] [CrossRef]
- Ortez, C.; Villar, C.; Fons, C.; Duarte, S.T.; Pérez, A.; García-Villoria, J.; García-Cazorla, A. Undetectable levels of CSF amyloid-beta peptide in a patient with 17β-hydroxysteroid dehydrogenase deficiency. J. Alzheimer Dis. 2011, 27, 253–257. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Dobkin, C.; Yang, S.Y. Does the HSD17B10 gene escape from X-inactivation? Eur. J. Hum. Genet. 2011, 19, 123–124. [Google Scholar] [CrossRef] [PubMed]
- Zigman, W.B.; Schupf, N.; Devenny, D.A.; Miezejeski, C.; Ryan, R.; Urv, T.K.; Silverman, W. Incidence and prevalence of dementia in elderly adults with mental retardation without down syndrome. Am. J. Ment. Retard. 2004, 109, 126–141. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-Y.; He, X.-Y.; Olpin, S.E.; Sutton, V.R.; McMenamin, J.; Philipp, M.; Denman, R.B.; Malik, M. Mental retardation linked to mutations in the HSD17B10 gene. Proc. Natl. Acad. Sci. USA 2009, 106, 14735–14736. [Google Scholar] [CrossRef]
Year | Accession Number | Name | Acronym | Comments | Ref. | |
---|---|---|---|---|---|---|
cDNA | Gene | |||||
1997–1998 | AF035555 AF037438 [11/21/97] [12/9/97] Deposited into the Genbank respectively | Short-chain 3-hydroxyacyl CoA dehydrogenase | SCHAD | MW = 108 kDa, composed of 1044 residues. Homotetrameric enzyme exhibits HAD activity and proposed to reside in mitochondria | [1] | |
U96132 n/a | Endoplasmic reticulum-associated Aβ-binding protein | ERAB | MW = 27 kDa, composed of 262 amino acid residues and associated with endoplasmic reticulum (ER) | [18] | ||
1999 | Novel 17β-Hydroxysteroid dehydrogenase | Novel 17β-HSD | Mitochondrial, multifunctional protein inactivates 17β-estradiol to estrone | [2] | ||
Amyloid β-peptide binding alcohol dehydrogenase | ABAD | Substitution for ERAB but it still associated with ER and to further convey incongruous data of generalized alcohol dehydrogenase (C2-C10) activities | [21] | |||
2000 | 2-methyl-3-hydroxyacyl-CoA dehydrogenase | MHBD | Appropriate for the isoleucine metabolism | [8] | ||
2001 | OMIM300256: 17beta-Hydroxy- steroid dehydrogenase X | Type 10 17β-Hydroxy-steroid dehydrogenase | 17β-HSD10 | Identification of its N-terminal mitochondrial targeting signal | [3] | |
2004 | Amyloid β-peptide binding alcohol dehydrogenase | ABAD | Claimed to change the ER-associated ABAD to be a mitochondrial ABAD without any citations of 17β-HSD10/SCHAD literature | [23] | ||
2007 | NM_004493, Gene symbol: HSD17B10 * | 3-Hydroxyacyl-CoA dehydrogenase type 2 | HADH2 | A silent mutation was found in MRXS10 ** patients | [80] | |
2008 | Mitochondrial RNase P protein 2 | MRPP2 | In RNA-free RNase P complex | [59] | ||
2013 | Short-chain dehydrogenase/reductase 5C1 | SDR5C1 | From a short-chain de-hydrogenase/reductase (SDR) evolution tree | [37] |
Substrate | 17β-HSD10 * | ABAD/ERAB ¶ | ||||
---|---|---|---|---|---|---|
kcat (s −1) | Km (µM) | kcat/Km (s−1/µM) | kcat (S−1) | Km (µM) | kcat/Km (s−1/µM) | |
Reduction by NADH: | ||||||
S-Acetoacetyl-CoA | 37 | 89 | 0.42 | 190 | 68 | 2.8 |
Oxidation by NAD+: | ||||||
D-β-hydroxy-butyrate | Not detectable | ― | 0.40 × 10−6 | 4500 | 8.9 × 10−12 | |
Ethanol | Not detectable | ― | 0.82 × 10−6 | 1.21 × 106 | 6.8 × 10−13 | |
(−)-2-octanol ‡ | ND | ― | 1.3 × 10−3 | 43 × 103 | 3.0 × 10−8 | |
17β-Estradiol | 11 × 10−3 | 43 | 2.6 × 10−4 | 100 | 14 | 7.1 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.-Y.; Frackowiak, J.; Dobkin, C.; Brown, W.T.; Yang, S.-Y. Involvement of Type 10 17β-Hydroxysteroid Dehydrogenase in the Pathogenesis of Infantile Neurodegeneration and Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 17604. https://doi.org/10.3390/ijms242417604
He X-Y, Frackowiak J, Dobkin C, Brown WT, Yang S-Y. Involvement of Type 10 17β-Hydroxysteroid Dehydrogenase in the Pathogenesis of Infantile Neurodegeneration and Alzheimer’s Disease. International Journal of Molecular Sciences. 2023; 24(24):17604. https://doi.org/10.3390/ijms242417604
Chicago/Turabian StyleHe, Xue-Ying, Jannusz Frackowiak, Carl Dobkin, William Ted Brown, and Song-Yu Yang. 2023. "Involvement of Type 10 17β-Hydroxysteroid Dehydrogenase in the Pathogenesis of Infantile Neurodegeneration and Alzheimer’s Disease" International Journal of Molecular Sciences 24, no. 24: 17604. https://doi.org/10.3390/ijms242417604
APA StyleHe, X.-Y., Frackowiak, J., Dobkin, C., Brown, W. T., & Yang, S.-Y. (2023). Involvement of Type 10 17β-Hydroxysteroid Dehydrogenase in the Pathogenesis of Infantile Neurodegeneration and Alzheimer’s Disease. International Journal of Molecular Sciences, 24(24), 17604. https://doi.org/10.3390/ijms242417604