Parallel Synthesis of Piperazine Tethered Thiazole Compounds with Antiplasmodial Activity
Abstract
:1. Introduction
2. Research
3. Experimental Procedures
3.1. Materials and General Methods
3.2. P. falciparum Culture and Antiplasmodial Activity Assay
3.3. Cytotoxicity Assay
3.4. Stage-Specific Inhibition Assays
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ESI-MS | electron spray ionization mass spectrometry |
1H NMR | H-nuclear magnetic resonance |
13C NMR | C (isotope 13)-nuclear magnetic resonance |
LC-MS | liquid chromatography coupled to mass spectrometry |
RP-HPLC | reverse phase high-performance liquid chromatography |
TFA | trifluoroacetic acid |
UV | ultraviolet |
DCM | dichloromethane |
THF | tetrahydrofuran |
HF | hydrogen fluoride |
TKI | tyrosine kinase inhibitor |
DMF | dimethylformamide |
DIEA | diisopropylethylamine |
References
- Kennedy, J.P.; Williams, L.; Bridges, T.M.; Daniels, R.N.; Weaver, D.; Lindsley, C.W. Application of combinatorial chemistry science on modern drug discovery. J. Comb. Chem. 2008, 10, 345–354. [Google Scholar] [CrossRef]
- Batool, M.; Ahmad, B.; Choi, S. A Structure-Based Drug Discovery Paradigm. Int. J. Mol. Sci. 2019, 20, 2783. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Breitenbucher, J.G. The impact of combinatorial chemistry on drug discovery. Curr. Opin. Drug Discov. Devel 2003, 6, 494–508. [Google Scholar] [PubMed]
- Pina, A.S.; Hussain, A.; Roque, A.C. An historical overview of drug discovery. Methods Mol. Biol. 2009, 572, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Guido, R.V.; Oliva, G.; Andricopulo, A.D. Modern drug discovery technologies: Opportunities and challenges in lead discovery. Comb. Chem. High. Throughput Screen. 2011, 14, 830–839. [Google Scholar] [CrossRef]
- Labadie, J.W. Polymeric supports for solid phase synthesis. Curr. Opin. Chem. Biol. 1998, 2, 346–352. [Google Scholar] [CrossRef]
- Winkler, D.F.H. Automated Solid-Phase Peptide Synthesis. Methods Mol. Biol. 2020, 2103, 59–94. [Google Scholar] [CrossRef]
- Long, A. Parallel chemistry in the 21st century. Curr. Protoc. Pharmacol. 2012, 58, 9.16.1–9.16.16. [Google Scholar] [CrossRef] [PubMed]
- Meisenbach, M.; Allmendinger, T.; Mak, C.P. Solid-phase supported synthesis: A possibility for rapid scale-up of chemical reactions. Ernst Scher. Found. Symp. Proc. 2006, 2006, 187–203. [Google Scholar] [CrossRef]
- Stockwell, B.R. Exploring biology with small organic molecules. Nature 2004, 432, 846–854. [Google Scholar] [CrossRef]
- Abdildinova, A.; Kurth, M.J.; Gong, Y.D. Heterocycles as a Peptidomimetic Scaffold: Solid-Phase Synthesis Strategies. Pharmaceuticals 2021, 14, 449. [Google Scholar] [CrossRef] [PubMed]
- Nefzi, A.; Dooley, C.; Ostresh, J.M.; Houghten, R.A. Combinatorial chemistry: From peptides and peptidomimetics to small organic and heterocyclic compounds. Bioorg Med. Chem. Lett. 1998, 8, 2273–2278. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Vilar, S.; Tatonetti, N.P. High-throughput methods for combinatorial drug discovery. Sci. Transl. Med. 2013, 5, 205rv201. [Google Scholar] [CrossRef] [PubMed]
- Dombrowski, A.W.; Aguirre, A.L.; Shrestha, A.; Sarris, K.A.; Wang, Y. The Chosen Few: Parallel Library Reaction Methodologies for Drug Discovery. J. Org. Chem. 2022, 87, 1880–1897. [Google Scholar] [CrossRef] [PubMed]
- Wender, P.A.; Quiroz, R.V.; Stevens, M.C. Function through synthesis-informed design. Acc. Chem. Res. 2015, 48, 752–760. [Google Scholar] [CrossRef]
- Agarwal, S.; Kalal, P.; Gandhi, D.; Prajapat, P. Thiazole Containing Heterocycles with CNS Activity. Curr. Drug Discov. Technol. 2018, 15, 178–195. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.F.; Alam, A.; Alshammari, A.A.; Alhazza, M.B.; Alzimam, I.M.; Alam, M.A.; Mustafa, G.; Ansari, M.S.; Alotaibi, A.M.; Alotaibi, A.A.; et al. Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents. Molecules 2022, 27, 3994. [Google Scholar] [CrossRef]
- Chhabria, M.T.; Patel, S.; Modi, P.; Brahmkshatriya, P.S. Thiazole: A Review on Chemistry, Synthesis and Therapeutic Importance of its Derivatives. Curr. Top. Med. Chem. 2016, 16, 2841–2862. [Google Scholar] [CrossRef] [PubMed]
- Khatik, G.L.; Datusalia, A.K.; Ahsan, W.; Kaur, P.; Vyas, M.; Mittal, A.; Nayak, S.K. A Retrospect Study on Thiazole Derivatives as the Potential Antidiabetic Agents in Drug Discovery and Developments. Curr. Drug Discov. Technol. 2018, 15, 163–177. [Google Scholar] [CrossRef]
- Wang, H.; Wang, R.; Lakshmana, M.K.; Nefzi, A. Substituted dithiazole piperazine benzamides as novel amyloid beta peptide reducing agents. Bioorg. Med. Chem. Lett. 2014, 24, 4384–4388. [Google Scholar] [CrossRef]
- Petrou, A.; Fesatidou, M.; Geronikaki, A. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021, 26, 3166. [Google Scholar] [CrossRef] [PubMed]
- Mishra, C.B.; Kumari, S.; Tiwari, M. Thiazole: A promising heterocycle for the development of potent CNS active agents. Eur. J. Med. Chem. 2015, 92, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.V.; Park, S.W. An evolving role of piperazine moieties in drug design and discovery. Mini Rev. Med. Chem. 2013, 13, 1579–1601. [Google Scholar] [CrossRef]
- Romanelli, M.N.; Manetti, D.; Braconi, L.; Dei, S.; Gabellini, A.; Teodori, E. The piperazine scaffold for novel drug discovery efforts: The evidence to date. Expert. Opin. Drug Discov. 2022, 17, 969–984. [Google Scholar] [CrossRef]
- Peng, X.J.; Tian, X.R.; Yu, S.J.; Zhao, T.T.; Bian, Q.; Zhao, W.G. Design, synthesis, and fungicidal activities of novel piperazine thiazole derivatives containing oxime ether or oxime ester moieties. Pest. Manag. Sci. 2023, 79, 1977–1986. [Google Scholar] [CrossRef] [PubMed]
- Yücel, N.T.; Osmaniye, D.; Kandemir, Ü.; Evren, A.E.; Can, Ö.D.; Demir Özkay, Ü. Synthesis and Antinociceptive Effect of Some Thiazole-Piperazine Derivatives: Involvement of Opioidergic System in the Activity. Molecules 2021, 26, 3350. [Google Scholar] [CrossRef] [PubMed]
- Osmaniye, D.; Sağlık, B.N.; Acar Çevik, U.; Levent, S.; Kaya Çavuşoğlu, B.; Özkay, Y.; Kaplancıklı, Z.A.; Turan, G. Synthesis and AChE Inhibitory Activity of Novel Thiazolylhydrazone Derivatives. Molecules 2019, 24, 2392. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Tandon, R.; Dastidar, S.G.; Ray, A. A review on leukotrienes and their receptors with reference to asthma. J. Asthma 2013, 50, 922–931. [Google Scholar] [CrossRef]
- Canadian Medical Association. Ceftizoxime: A third-generation cephalosporin active against anaerobic bacteria. Committee on Antimicrobial Agents, Canadian Infectious Disease Society. Cmaj 1990, 142, 1209–1212. [Google Scholar]
- Rossignol, J.F. Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antivir. Res. 2014, 110, 94–103. [Google Scholar] [CrossRef]
- Lindauer, M.; Hochhaus, A. Dasatinib. Recent. Results Cancer Res. 2018, 212, 29–68. [Google Scholar] [CrossRef] [PubMed]
- Khalil, N.Y.; Aldosari, K.F. Meloxicam. Profiles Drug Subst. Excip. Relat. Methodol. 2020, 45, 159–197. [Google Scholar] [CrossRef]
- Yang, H.; George, S.J.; Thompson, D.A.; Silverman, H.A.; Tsaava, T.; Tynan, A.; Pavlov, V.A.; Chang, E.H.; Andersson, U.; Brines, M.; et al. Famotidine activates the vagus nerve inflammatory reflex to attenuate cytokine storm. Mol. Med. 2022, 28, 57. [Google Scholar] [CrossRef] [PubMed]
- Budetić, M.; Kopf, D.; Dandić, A.; Samardžić, M. Review of Characteristics and Analytical Methods for Determination of Thiabendazole. Molecules 2023, 28, 3926. [Google Scholar] [CrossRef]
- Blyufer, A.; Lhamo, S.; Tam, C.; Tariq, I.; Thavornwatanayong, T.; Mahajan, S.S. Riluzole: A neuroprotective drug with potential as a novel anti-cancer agent (Review). Int. J. Oncol. 2021, 59, 95. [Google Scholar] [CrossRef] [PubMed]
- Tylicki, A.; Siemieniuk, M. Thiamine and its derivatives in the regulation of cell metabolism. Postep. Hig. Med. Dosw. 2011, 65, 447–469. [Google Scholar] [CrossRef] [PubMed]
- Rathi, A.K.; Syed, R.; Shin, H.S.; Patel, R.V. Piperazine derivatives for therapeutic use: A patent review (2010-present). Expert. Opin. Ther. Pat. 2016, 26, 777–797. [Google Scholar] [CrossRef] [PubMed]
- Brito, A.F.; Moreira, L.K.S.; Menegatti, R.; Costa, E.A. Piperazine derivatives with central pharmacological activity used as therapeutic tools. Fundam. Clin. Pharmacol. 2019, 33, 13–24. [Google Scholar] [CrossRef]
- Girase, P.S.; Dhawan, S.; Kumar, V.; Shinde, S.R.; Palkar, M.B.; Karpoormath, R. An appraisal of anti-mycobacterial activity with structure-activity relationship of piperazine and its analogues: A review. Eur. J. Med. Chem. 2021, 210, 112967. [Google Scholar] [CrossRef]
- Jain, A.; Chaudhary, J.; Khaira, H.; Chopra, B.; Dhingra, A. Piperazine: A Promising Scaffold with Analgesic and Anti-inflammatory Potential. Drug Res. 2021, 71, 62–72. [Google Scholar] [CrossRef]
- Dasatinib Approved for Pediatric CML. Cancer Discov. 2018, 8, OF2. [CrossRef]
- Nefzi, A. Hantzsch based macrocyclization approach for the synthesis of thiazole containing cyclopeptides. Methods Mol. Biol. 2013, 1081, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nefzi, A.; Arutyunyan, S.; Fenwick, J.E. Two-Steps Hantzsch Based Macrocyclization Approach for the Synthesis of Thiazole Containing Cyclopeptides. J. Org. Chem. 2010, 75, 7939–7941. [Google Scholar] [CrossRef] [PubMed]
- Duc, D.X.; Chung, N.T. Recent Development in the Synthesis of Thiazoles. Curr. Org. Synth. 2022, 19, 702–730. [Google Scholar] [CrossRef] [PubMed]
- Chesnokov, O.; Visitdesotrakul, P.; Kalani, K.; Nefzi, A.; Oleinikov, A.V. Small Molecule Compounds Identified from Mixture-Based Library Inhibit Binding between Plasmodium falciparum Infected Erythrocytes and Endothelial Receptor ICAM-1. Int. J. Mol. Sci. 2021, 22, 5659. [Google Scholar] [CrossRef] [PubMed]
- Lakshmana, M.K.; Nefzi, A.; Houghten, R.; Minond, D. Compounds and Methods of Treating Neurological Disorders. WO2015168518A1, 30 April 2015. [Google Scholar]
- Behrendt, R.; White, P.; Offer, J. Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci. 2016, 22, 4–27. [Google Scholar] [CrossRef]
- Nayak, S.; Gaonkar, S.L. A Review on Recent Synthetic Strategies and Pharmacological Importance of 1,3-Thiazole Derivatives. Mini Rev. Med. Chem. 2019, 19, 215–238. [Google Scholar] [CrossRef]
- Dellai, A.; Appel, J.; Bouraoui, A.; Croft, S.; Nefzi, A. Antimalarial and cytotoxic activities of chiral triamines. Bioorg. Med. Chem. Lett. 2013, 23, 4579–4582. [Google Scholar] [CrossRef]
- Perry, D.L., Jr.; Roberts, B.F.; Debevec, G.; Michaels, H.A.; Chakrabarti, D.; Nefzi, A. Identification of Bis-Cyclic Guanidines as Antiplasmodial Compounds from Positional Scanning Mixture-Based Libraries. Molecules 2019, 24, 1100. [Google Scholar] [CrossRef]
- Nefzi, A.; Appel, J.; Arutyunyan, S.; Houghten, R.A. Parallel synthesis of chiral pentaamines and pyrrolidine containing bis-heterocyclic libraries. Multiple scaffolds with multiple building blocks: A double diversity for the identification of new antitubercular compounds. Bioorg. Med. Chem. Lett. 2009, 19, 5169–5175. [Google Scholar] [CrossRef]
- Daily, J.P.; Minuti, A.; Khan, N. Diagnosis, Treatment, and Prevention of Malaria in the US: A Review. JAMA 2022, 328, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Varo, R.; Chaccour, C.; Bassat, Q. Update on malaria. Med. Clin. 2020, 155, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Plewes, K.; Leopold, S.J.; Kingston, H.W.F.; Dondorp, A.M. Malaria: What’s New in the Management of Malaria? Infect. Dis. Clin. N. Am. 2019, 33, 39–60. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.S. Malaria. Clin. Lab. Med. 2010, 30, 93–129. [Google Scholar] [CrossRef] [PubMed]
- Milner, D.A., Jr. Malaria Pathogenesis. Cold Spring Harb. Perspect. Med. 2018, 8, a025569. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.A.; Burrows, J.N.; Manyando, C.; van Huijsduijnen, R.H.; Van Voorhis, W.C.; Wells, T.N.C. Malaria. Nat. Rev. Dis. Primers 2017, 3, 17050. [Google Scholar] [CrossRef]
- Siqueira-Neto, J.L.; Wicht, K.J.; Chibale, K.; Burrows, J.N.; Fidock, D.A.; Winzeler, E.A. Antimalarial drug discovery: Progress and approaches. Nat. Rev. Drug Discov. 2023, 22, 807–826. [Google Scholar] [CrossRef]
- Lover, A.A.; Baird, J.K.; Gosling, R.; Price, R.N. Malaria Elimination: Time to Target All Species. Am. J. Trop. Med. Hyg. 2018, 99, 17–23. [Google Scholar] [CrossRef]
- Tschan, S.; Kremsner, P.G.; Mordmüller, B. Emerging drugs for malaria. Expert. Opin. Emerg. Drugs 2012, 17, 319–333. [Google Scholar] [CrossRef]
- Verlinden, B.K.; Louw, A.; Birkholtz, L.M. Resisting resistance: Is there a solution for malaria? Expert. Opin. Drug Discov. 2016, 11, 395–406. [Google Scholar] [CrossRef]
- Aggarwal, S.; Karmakar, A.; Krishnakumar, S.; Paul, U.; Singh, A.; Banerjee, N.; Laha, N.; Roy Ball, G.; Srivastava, S. Advances in Drug Discovery based on Genomics, Proteomics and Bioinformatics in Malaria. Curr. Top. Med. Chem. 2023, 23, 551–578. [Google Scholar] [CrossRef]
- Bennett, T.N.; Paguio, M.; Gligorijevic, B.; Seudieu, C.; Kosar, A.D.; Davidson, E.; Roepe, P.D. Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrob. Agents Chemother. 2004, 48, 1807–1810. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.D.; Dennull, R.A.; Gerena, L.; Lopez-Sanchez, M.; Roncal, N.E.; Waters, N.C. Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening. Antimicrob. Agents Chemother. 2007, 51, 1926–1933. [Google Scholar] [CrossRef] [PubMed]
- Smilkstein, M.; Sriwilaijaroen, N.; Kelly, J.X.; Wilairat, P.; Riscoe, M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob. Agents Chemother. 2004, 48, 1803–1806. [Google Scholar] [CrossRef] [PubMed]
- Nefzi, A.; Ostresh, J.M.; Yu, Y.; Houghten, R.A. Combinatorial chemistry: Libraries from libraries, the art of the diversity-oriented transformation of resin-bound peptides and chiral polyamides to low molecular weight acyclic and heterocyclic compounds. J. Org. Chem. 2004, 69, 3603–3609. [Google Scholar] [CrossRef] [PubMed]
- Hancock, W.S.; Battersby, J.E. A new micro-test for the detection of incomplete coupling reactions in solid-phase peptide synthesis using 2,4,6-trinitrobenzenesulphonic acid. Anal. Biochem. 1976, 71, 260–264. [Google Scholar] [CrossRef]
- Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science 1976, 193, 673–675. [Google Scholar] [CrossRef]
- Gupta, P.B.; Onder, T.T.; Jiang, G.; Tao, K.; Kuperwasser, C.; Weinberg, R.A.; Lander, E.S. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009, 138, 645–659. [Google Scholar] [CrossRef]
- Ribaut, C.; Berry, A.; Chevalley, S.; Reybier, K.; Morlais, I.; Parzy, D.; Nepveu, F.; Benoit-Vical, F.; Valentin, A. Concentration and purification by magnetic separation of the erythrocytic stages of all human Plasmodium species. Malar. J. 2008, 7, 45. [Google Scholar] [CrossRef]
- Lambros, C.; Vanderberg, J.P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J. Parasitol. 1979, 65, 418–420. [Google Scholar] [CrossRef]
- Bouillon, A.; Gorgette, O.; Mercereau-Puijalon, O.; Barale, J.C. Screening and evaluation of inhibitors of Plasmodium falciparum merozoite egress and invasion using cytometry. Methods Mol. Biol. 2013, 923, 523–534. [Google Scholar] [CrossRef] [PubMed]
Entry Library 2291 | R1 | R2 | Yield (mg) a | Purity (%) b |
---|---|---|---|---|
5a | 82 | 92% | ||
5b | 75 | 94% | ||
5c | 70 | 76% | ||
5d | 77 | 100% | ||
5e | 73 | 86% | ||
5f | 80 | 90% | ||
5g | 76 | 71% | ||
5h | 79 | 100% | ||
5i | 87 | 89% | ||
5j | 79 | 88% | ||
5k | 77 | 85% | ||
5l | 74 | 88% | ||
5m | 72 | 100% | ||
5n | 89 | 96% | ||
5o | 81 | 75% | ||
5p | 79 | 100% | ||
5q | 79 | 86% | ||
5r | 82 | 90% | ||
5s | 88 | 86% | ||
5t | 82 | 83% | ||
5u | 83 | 100% | ||
5v | 80 | 95% | ||
5w | 83 | 90% | ||
5x | 76 | 95% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rayala, R.; Chaudhari, P.; Bunnell, A.; Roberts, B.; Chakrabarti, D.; Nefzi, A. Parallel Synthesis of Piperazine Tethered Thiazole Compounds with Antiplasmodial Activity. Int. J. Mol. Sci. 2023, 24, 17414. https://doi.org/10.3390/ijms242417414
Rayala R, Chaudhari P, Bunnell A, Roberts B, Chakrabarti D, Nefzi A. Parallel Synthesis of Piperazine Tethered Thiazole Compounds with Antiplasmodial Activity. International Journal of Molecular Sciences. 2023; 24(24):17414. https://doi.org/10.3390/ijms242417414
Chicago/Turabian StyleRayala, Ramanjaneyulu, Prakash Chaudhari, Ashley Bunnell, Bracken Roberts, Debopam Chakrabarti, and Adel Nefzi. 2023. "Parallel Synthesis of Piperazine Tethered Thiazole Compounds with Antiplasmodial Activity" International Journal of Molecular Sciences 24, no. 24: 17414. https://doi.org/10.3390/ijms242417414
APA StyleRayala, R., Chaudhari, P., Bunnell, A., Roberts, B., Chakrabarti, D., & Nefzi, A. (2023). Parallel Synthesis of Piperazine Tethered Thiazole Compounds with Antiplasmodial Activity. International Journal of Molecular Sciences, 24(24), 17414. https://doi.org/10.3390/ijms242417414