Heterotypic Stressors Unmask Behavioral Influences of PMAT Deficiency in Mice
Abstract
:1. Introduction
2. Results
2.1. Fear Behavior
2.1.1. Phase 1
Phase 1 Cued Females
Phase 1 Cued Males
Phase 1 Context Females
Phase 1 Context Males
2.1.2. Phase 2
Phase 2 Cued Females
Phase 2 Cued Males
Phase 2 Context Females
Phase 2 Context Males
2.2. Serum Corticosterone
2.2.1. Phase 1 Cued
2.2.2. Phase 1 Context
2.2.3. Phase 2 Cued
2.2.4. Phase 2 Context
2.3. Swim Stress
2.3.1. Phase 1 Cued
2.3.2. Phase 1 Context
2.3.3. Phase 2 Cued
2.3.4. Phase 2 Context
3. Discussion
3.1. Summary of Fear Behavior Findings
3.1.1. Sex-Specific Impacts of PMAT Function on Fear Behavior
3.1.2. Hypotheses and Next Steps—Fear Behavior
3.2. Summary of Log-Transformed Corticosterone (Cort) Findings
3.2.1. Sex-Specific Impacts of PMAT Function and Stressor Exposure on Cort Levels
3.2.2. Hypotheses and Next Steps—Cort Levels
3.3. Summary of Swim Behavior Findings
3.3.1. Sex-Specific Impacts of PMAT Function on Swim Behavior
3.3.2. Hypotheses and Next Steps—Swim Behavior
3.4. Limitations
3.5. Overview
4. Materials and Methods
4.1. Animals
4.2. Genotyping
4.3. Fear Conditioning
4.4. Cued Fear Conditioning
4.5. Context Fear Conditioning
4.6. Swim Stress
4.7. Study Phases
4.8. Tissue Collection
4.9. Data Graphing & Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Animal Care and Use Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puglisi-Allegra, S.; Kempf, E.; Schleef, C.; Cabib, S. Repeated Stressful Experiences Differently Affect Brain Dopamine Receptor Subtypes. Life Sci. 1991, 48, 1263–1268. [Google Scholar] [CrossRef]
- Finlay, J.M.; Zigmond, M.J.; Abercrombie, E.D. Increased Dopamine and Norepinephrine Release in Medial Prefrontal Cortex Induced by Acute and Chronic Stress: Effects of Diazepam. Neuroscience 1995, 64, 619–628. [Google Scholar] [CrossRef]
- Fujino, K.; Yoshitake, T.; Inoue, O.; Ibii, N.; Kehr, J.; Ishida, J.; Nohta, H.; Yamaguchi, M. Increased Serotonin Release in Mice Frontal Cortex and Hippocampus Induced by Acute Physiological Stressors. Neurosci. Lett. 2002, 320, 91–95. [Google Scholar] [CrossRef]
- Matuszewich, L.; Filon, M.E.; Finn, D.A.; Yamamoto, B.K. Altered Forebrain Neurotransmitter Responses to Immobilization Stress Following 3,4-Methylenedioxymethamphetamine. Neuroscience 2002, 110, 41–48. [Google Scholar] [CrossRef]
- Weber, B.L.; Beaver, J.N.; Gilman, T.L. Summarizing Studies Using Constitutive Genetic Deficiency to Investigate Behavioural Influences of Uptake 2 Monoamine Transporters. Basic Clin. Pharmacol. Toxicol. 2023, 133, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Daws, L.C. Organic Cation Transporters in Psychiatric Disorders. In Handbook of Experimental Pharmacology; Springer: Cham, Switzerland, 2021; Chapter 9; pp. 215–239. [Google Scholar] [CrossRef]
- Koepsell, H. Organic Cation Transporters in the Central Nervous System. In Handbook of Experimental Pharmacology; Springer: Cham, Switzerland, 2021; Chapter 1; pp. 1–39. [Google Scholar] [CrossRef]
- Duan, H.; Wang, J. Selective Transport of Monoamine Neurotransmitters by Human Plasma Membrane Monoamine Transporter and Organic Cation Transporter 3. J. Pharmacol. Exp. Ther. 2010, 335, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Bönisch, H. Substrates and Inhibitors of Organic Cation Transporters (OCTs) and Plasma Membrane Monoamine Transporter (PMAT) and Therapeutic Implications. In Handbook of Experimental Pharmacology; Springer: Cham, Switzerland, 2021; Chapter 5; pp. 119–167. [Google Scholar] [CrossRef]
- Gilman, T.L.; George, C.M.; Vitela, M.; Herrera-Rosales, M.; Basiouny, M.S.; Koek, W.; Daws, L.C. Constitutive Plasma Membrane Monoamine Transporter (PMAT, Slc29a4) Deficiency Subtly Affects Anxiety-like and Coping Behaviours. Eur. J. Neurosci. 2018, 48, 1706–1716. [Google Scholar] [CrossRef]
- Beaver, J.N.; Weber, B.L.; Ford, M.T.; Anello, A.E.; Kassis, S.K.; Gilman, T.L. Uncovering Functional Contributions of PMAT (Slc29a4) to Monoamine Clearance Using Pharmacobehavioral Tools. Cells 2022, 11, 1874. [Google Scholar] [CrossRef]
- Bacq, A.; Balasse, L.; Biala, G.; Guiard, B.; Gardier, A.M.; Schinkel, A.; Louis, F.; Vialou, V.; Martres, M.-P.; Chevarin, C.; et al. Organic Cation Transporter 2 Controls Brain Norepinephrine and Serotonin Clearance and Antidepressant Response. Mol. Psychiatr. 2012, 17, 926–939. [Google Scholar] [CrossRef] [PubMed]
- Couroussé, T.; Bacq, A.; Belzung, C.; Guiard, B.; Balasse, L.; Louis, F.; Guisquet, A.-M.L.; Gardier, A.M.; Schinkel, A.H.; Giros, B.; et al. Brain Organic Cation Transporter 2 Controls Response and Vulnerability to Stress and GSK3β Signaling. Mol. Psychiatr. 2015, 20, 889–900. [Google Scholar] [CrossRef]
- Wultsch, T.; Grimberg, G.; Schmitt, A.; Painsipp, E.; Wetzstein, H.; Breitenkamp, A.F.S.; Gründemann, D.; Schömig, E.; Lesch, K.-P.; Gerlach, M.; et al. Decreased Anxiety in Mice Lacking the Organic Cation Transporter 3. J. Neural. Transm. 2009, 116, 689–697. [Google Scholar] [CrossRef]
- Vialou, V.; Balasse, L.; Callebert, J.; Launay, J.; Giros, B.; Gautron, S. Altered Aminergic Neurotransmission in the Brain of Organic Cation Transporter 3-deficient Mice. J. Neurochem. 2008, 106, 1471–1482. [Google Scholar] [CrossRef]
- Clauss, N.J.; Koek, W.; Daws, L.C. Role of Organic Cation Transporter 3 and Plasma Membrane Monoamine Transporter in the Rewarding Properties and Locomotor Sensitizing Effects of Amphetamine in Male andFemale Mice. Int. J. Mol. Sci. 2021, 22, 13420. [Google Scholar] [CrossRef]
- Logue, S.F.; Paylor, R.; Wehner, J.M. Hippocampal Lesions Cause Learning Deficits in Inbred Mice in the Morris Water Maze and Conditioned-Fear Task. Behav. Neurosci. 1997, 111, 104–113. [Google Scholar] [CrossRef]
- Huff, N.C.; Rudy, J.W. The Amygdala Modulates Hippocampus-Dependent Context Memory Formation and Stores Cue-Shock Associations. Behav. Neurosci. 2004, 118, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Zelikowsky, M.; Hersman, S.; Chawla, M.K.; Barnes, C.A.; Fanselow, M.S. Neuronal Ensembles in Amygdala, Hippocampus, and Prefrontal Cortex Track Differential Components of Contextual Fear. J. Neurosci. 2014, 34, 8462–8466. [Google Scholar] [CrossRef]
- Maren, S. Pavlovian Fear Conditioning as a Behavioral Assay for Hippocampus and Amygdala Function: Cautions and Caveats. Eur. J. Neurosci. 2008, 28, 1661–1666. [Google Scholar] [CrossRef]
- Farrell, M.R.; Sengelaub, D.R.; Wellman, C.L. Sex Differences and Chronic Stress Effects on the Neural Circuitry Underlying Fear Conditioning and Extinction. Physiol. Behav. 2013, 122, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Chaaya, N.; Battle, A.R.; Johnson, L.R. An Update on Contextual Fear Memory Mechanisms: Transition between Amygdala and Hippocampus. Neurosci. Biobehav. Rev. 2018, 92, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Yanagida, S.; Motomura, K.; Ohashi, A.; Hiraoka, K.; Miura, T.; Kanba, S. Effect of Acute Imipramine Administration on the Pattern of Forced Swim-Induced c-Fos Expression in the Mouse Brain. Neurosci. Lett. 2016, 629, 119–124. [Google Scholar] [CrossRef]
- Duncan, G.E.; Inada, K.; Farrington, J.S.; Koller, B.H.; Moy, S.S. Neural Activation Deficits in a Mouse Genetic Model of NMDA Receptor Hypofunction in Tests of Social Aggression and Swim Stress. Brain Res. 2009, 1265, 186–195. [Google Scholar] [CrossRef]
- Liu, Y.F.; Bertram, K.; Perides, G.; McEwen, B.S.; Wang, D. Stress Induces Activation of Stress-activated Kinases in the Mouse Brain. J. Neurochem. 2004, 89, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Dawed, A.Y.; Zhou, K.; van Leeuwen, N.; Mahajan, A.; Robertson, N.; Koivula, R.; Elders, P.J.M.; Rauh, S.P.; Jones, A.G.; Holl, R.W.; et al. Variation in the Plasma Membrane Monoamine Transporter (PMAT, Encoded in SLC29A4) and Organic Cation Transporter 1 (OCT1, Encoded in SLC22A1) and Gastrointestinal Intolerance to Metformin in Type 2 Diabetes: An IMI DIRECT Study. Diabetes Care 2019, 42, dc182182. [Google Scholar] [CrossRef] [PubMed]
- Moeez, S.; Khalid, S.; Shaeen, S.; Khalid, M.; Zia, A.; Gul, A.; Niazi, R.; Khalid, Z. Clinically Significant Findings of High-Risk Mutations in Human SLC29A4 Gene Associated with Diabetes Mellitus Type 2 in Pakistani Population. J. Biomol. Struct. Dyn. 2021, 40, 12660–12673. [Google Scholar] [CrossRef]
- Christensen, M.M.H.; Brasch-Andersen, C.; Green, H.; Nielsen, F.; Damkier, P.; Beck-Nielsen, H.; Brosen, K. The Pharmacogenetics of Metformin and Its Impact on Plasma Metformin Steady-State Levels and Glycosylated Hemoglobin A1c. Pharmacogenet. Genom. 2011, 21, 837–850. [Google Scholar] [CrossRef]
- Pérez-Gómez, N.; Fernández-Ortega, M.D.; Elizari-Roncal, M.; Santos-Mazo, E.; de la Maza-Pereg, L.; Calvo, S.; Alcaraz, R.; Sanz-Solas, A.; Vinuesa, R.; Saiz-Rodríguez, M. Identification of Clinical and Pharmacogenetic Factors Influencing Metformin Response in Type 2 Diabetes Mellitus. Pharmacogenomics 2023, 24, 651–663. [Google Scholar] [CrossRef]
- Yohn, N.L.; Blendy, J.A. Adolescent Chronic Unpredictable Stress Exposure Is a Sensitive Window for Long-Term Changes in Adult Behavior in Mice. Neuropsychopharmacology 2017, 42, 1670–1678. [Google Scholar] [CrossRef]
- Sillivan, S.E.; Joseph, N.F.; Jamieson, S.; King, M.L.; Chévere-Torres, I.; Fuentes, I.; Shumyatsky, G.P.; Brantley, A.F.; Rumbaugh, G.; Miller, C.A. Susceptibility and Resilience to Posttraumatic Stress Disorder–like Behaviors in Inbred Mice. Biol. Psychiatry 2017, 82, 924–933. [Google Scholar] [CrossRef]
- Romeo, R.D.; Bellani, R.; Karatsoreos, I.N.; Chhua, N.; Vernov, M.; Conrad, C.D.; McEwen, B.S. Stress History and Pubertal Development Interact to Shape Hypothalamic-Pituitary-Adrenal Axis Plasticity. Endocrinology 2006, 147, 1664–1674. [Google Scholar] [CrossRef] [PubMed]
- Romeo, R.D.; Karatsoreos, I.N.; McEwen, B.S. Pubertal Maturation and Time of Day Differentially Affect Behavioral and Neuroendocrine Responses Following an Acute Stressor. Horm. Behav. 2006, 50, 463–468. [Google Scholar] [CrossRef]
- Hare, B.D.; Beierle, J.A.; Toufexis, D.J.; Hammack, S.E.; Falls, W.A. Exercise-Associated Changes in the Corticosterone Response to Acute Restraint Stress: Evidence for Increased Adrenal Sensitivity and Reduced Corticosterone Response Duration. Neuropsychopharmacology 2014, 39, 1262–1269. [Google Scholar] [CrossRef] [PubMed]
- McClennen, S.J.; Cortright, D.N.; Seasholtz, A.F. Regulation of Pituitary Corticotropin-Releasing Hormone-Binding Protein Messenger Ribonucleic Acid Levels by Restraint Stress and Adrenalectomy. Endocrinology 1998, 139, 4435–4441. [Google Scholar] [CrossRef] [PubMed]
- Alele, P.E.; Devaud, L.L. Sex Differences in Steroid Modulation of Ethanol Withdrawal in Male and Female Rats. J. Pharmacol. Exp. Ther. 2007, 320, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Beaver, J.N.; Weber, B.L.; Ford, M.T.; Anello, A.E.; Ruffin, K.M.; Kassis, S.K.; Gilman, T.L. Generalization of Contextual Fear Is Sex-Specifically Affected by High Salt Intake. PLoS ONE 2023, 18, e0286221. [Google Scholar] [CrossRef]
- Gilman, T.L.; George, C.M.; Andrade, M.A.; Mitchell, N.C.; Toney, G.M.; Daws, L.C. High Salt Intake Lowers Behavioral Inhibition. Front. Behav. Neurosci. 2019, 13, 271. [Google Scholar] [CrossRef]
- Uarquin, D.G.; Meyer, J.S.; Cardenas, F.P.; Rojas, M.J. Effect of Overcrowding on Hair Corticosterone Concentrations in Juvenile Male Wistar Rats. J. Am. Assoc. Lab. Anim. Sci. 2016, 55, 749–755. [Google Scholar]
- Teilmann, A.C.; Kalliokoski, O.; Sørensen, D.B.; Hau, J.; Abelson, K.S.P. Manual versus Automated Blood Sampling: Impact of Repeated Blood Sampling on Stress Parameters and Behavior in Male NMRI Mice. Lab. Anim. 2014, 48, 278–291. [Google Scholar] [CrossRef]
- Albrechet-Souza, L.; Schratz, C.L.; Gilpin, N.W. Sex Differences in Traumatic Stress Reactivity in Rats with and without a History of Alcohol Drinking. Biol. Sex Differ. 2020, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, M.C.; Dominguez, S.; Dong, H. Sex Differences in Hypothalamic–Pituitary–Adrenal Axis Regulation after Chronic Unpredictable Stress. Brain Behav. 2020, 10, e01586. [Google Scholar] [CrossRef]
- Shors, T.J.; Chua, C.; Falduto, J. Sex Differences and Opposite Effects of Stress on Dendritic Spine Density in the Male Versus Female Hippocampus. J. Neurosci. 2001, 21, 6292–6297. [Google Scholar] [CrossRef] [PubMed]
- Aoki, M.; Shimozuru, M.; Kikusui, T.; Takeuchi, Y.; Mori, Y. Sex Differences in Behavioral and Corticosterone Responses to Mild Stressors in ICR Mice Are Altered by Ovariectomy in Peripubertal Period. Zool. Sci. 2010, 27, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Goel, N.; Workman, J.L.; Lee, T.T.; Innala, L.; Viau, V. Comprehensive Physiology. Compr. Physiol. 2021, 4, 1121–1155. [Google Scholar] [CrossRef]
- Aikey, J.L.; Nyby, J.G.; Anmuth, D.M.; James, P.J. Testosterone Rapidly Reduces Anxiety in Male House Mice (Mus Musculus). Horm. Behav. 2002, 42, 448–460. [Google Scholar] [CrossRef] [PubMed]
- van Honk, J.; Peper, J.S.; Schutter, D.J.L.G. Testosterone Reduces Unconscious Fear but Not Consciously Experienced Anxiety: Implications for the Disorders of Fear and Anxiety. Biol. Psychiatry 2005, 58, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-S.; Tzeng, W.-Y.; Chuang, J.-Y.; Cherng, C.G.; Gean, P.-W.; Yu, L. Roles of Testosterone and Amygdaloid LTP Induction in Determining Sex Differences in Fear Memory Magnitude. Horm. Behav. 2014, 66, 498–508. [Google Scholar] [CrossRef]
- Wei, R.; Gust, S.L.; Tandio, D.; Maheux, A.; Nguyen, K.H.; Wang, J.; Bourque, S.; Plane, F.; Hammond, J.R. Deletion of Murine Slc29a4 Modifies Vascular Responses to Adenosine and 5-hydroxytryptamine in a Sexually Dimorphic Manner. Physiol. Rep. 2020, 8, e14395. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, N.; Zhu, S.; Lu, S.; Jiang, H.; Zhou, H. Estradiol Reduced 5-HT Reuptake by Downregulating the Gene Expression of Plasma Membrane Monoamine Transporter (PMAT, Slc29a4) through Estrogen Receptor β and the MAPK/ERK Signaling Pathway. Eur. J. Pharmacol. 2022, 924, 174939. [Google Scholar] [CrossRef]
- Daviu, N.; Andero, R.; Armario, A.; Nadal, R. Sex Differences in the Behavioural and Hypothalamic–Pituitary–Adrenal Response to Contextual Fear Conditioning in Rats. Horm. Behav. 2014, 66, 713–723. [Google Scholar] [CrossRef]
- Xia, J.; Wang, H.; Zhang, C.; Liu, B.; Li, Y.; Li, K.; Li, P.; Song, C. The Comparison of Sex Differences in Depression-like Behaviors and Neuroinflammatory Changes in a Rat Model of Depression Induced by Chronic Stress. Front. Behav. Neurosci. 2023, 16, 1059594. [Google Scholar] [CrossRef]
- Rodgers, R.J.; Haller, J.; Holmes, A.; Halasz, J.; Walton, T.J.; Brain, P.F. Corticosterone Response to the Plus-Maze High Correlation with Risk Assessment in Rats and Mice. Physiol. Behav. 1999, 68, 47–53. [Google Scholar] [CrossRef]
- Kokras, N.; Krokida, S.; Varoudaki, T.Z.; Dalla, C. Do Corticosterone Levels Predict Female Depressive-like Behavior in Rodents? J. Neurosci. Res. 2021, 99, 324–331. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Bertin, A.; Blavet, N.; Deniel, M.; Jalfre, M. Immobility Induced by Forced Swimming in Rats: Effects of Agents Which Modify Central Catecholamine and Serotonin Activity. Eur. J. Pharmacol. 1979, 57, 201–210. [Google Scholar] [CrossRef]
- Ehlinger, D.G.; Commons, K.G. Cav1.2 L-Type Calcium Channels Regulate Stress Coping Behavior via Serotonin Neurons. Neuropharmacology 2019, 144, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Koolhaas, J.M.; de Boer, S.F.; Coppens, C.M.; Buwalda, B. Neuroendocrinology of Coping Styles: Towards Understanding the Biology of Individual Variation. Front. Neuroendocrin. 2010, 31, 307–321. [Google Scholar] [CrossRef]
- Commons, K.G.; Cholanians, A.B.; Babb, J.A.; Ehlinger, D.G. The Rodent Forced Swim Test Measures Stress-Coping Strategy, Not Depression-Like Behavior. ACS Chem. Neurosci. 2017, 8, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Trunnell, E.R.; Carvalho, C.D.P.O. The Forced Swim Test Has Poor Accuracy for Identifying Novel Antidepressants. Drug Discov. Today 2021, 26, 2898–2904. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Wang, J. Impaired Monoamine and Organic Cation Uptake in Choroid Plexus in Mice with Targeted Disruption of the Plasma Membrane Monoamine Transporter (Slc29a4) Gene. J. Biol. Chem. 2013, 288, 3535–3544. [Google Scholar] [CrossRef]
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Gilman, T.L.; DaMert, J.P.; Meduri, J.D.; Jasnow, A.M. Grin1 Deletion in CRF Neurons Sex-Dependently Enhances Fear, Sociability, and Social Stress Responsivity. Psychoneuroendocrinology 2015, 58, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Radford, K.D.; Berman, R.Y.; Jaiswal, S.; Kim, S.Y.; Zhang, M.; Spencer, H.F.; Choi, K.H. Enhanced Fear Memories and Altered Brain Glucose Metabolism (18F-FDG-PET) Following Subanesthetic Intravenous Ketamine Infusion in Female Sprague–Dawley Rats. Int. J. Mol. Sci. 2022, 23, 1922. [Google Scholar] [CrossRef]
- Wang, C.-M.; Zhang, Y.-F.; Lin, Z.-Q.; Cai, Y.-F.; Fu, X.-Y.; Lin, Z.-H. Pre-Extinction Activation of Hippocampal AMPK Prevents Fear Renewal in Mice. Pharmacol. Res. 2020, 161, 105099. [Google Scholar] [CrossRef]
- Jasnow, A.M.; Ehrlich, D.E.; Choi, D.C.; Dabrowska, J.; Bowers, M.E.; McCullough, K.M.; Rainnie, D.G.; Ressler, K.J. Thy1-Expressing Neurons in the Basolateral Amygdala May Mediate Fear Inhibition. J. Neurosci. 2013, 33, 10396–10404. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.F.; Winiecki, P.; Gilman, T.L.; Adkins, J.M.; Jasnow, A.M. Hippocampal GABAB(1a) Receptors Constrain Generalized Contextual Fear. Neuropsychopharmacology 2017, 42, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Russell, W.; Burch, R. The Principles of Humane Experimental Technique. Nature 1959, 184, 1675–1676. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, B.L.; Nicodemus, M.M.; Hite, A.K.; Spalding, I.R.; Beaver, J.N.; Scrimshaw, L.R.; Kassis, S.K.; Reichert, J.M.; Ford, M.T.; Russell, C.N.; et al. Heterotypic Stressors Unmask Behavioral Influences of PMAT Deficiency in Mice. Int. J. Mol. Sci. 2023, 24, 16494. https://doi.org/10.3390/ijms242216494
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, et al. Heterotypic Stressors Unmask Behavioral Influences of PMAT Deficiency in Mice. International Journal of Molecular Sciences. 2023; 24(22):16494. https://doi.org/10.3390/ijms242216494
Chicago/Turabian StyleWeber, Brady L., Marissa M. Nicodemus, Allianna K. Hite, Isabella R. Spalding, Jasmin N. Beaver, Lauren R. Scrimshaw, Sarah K. Kassis, Julie M. Reichert, Matthew T. Ford, Cameron N. Russell, and et al. 2023. "Heterotypic Stressors Unmask Behavioral Influences of PMAT Deficiency in Mice" International Journal of Molecular Sciences 24, no. 22: 16494. https://doi.org/10.3390/ijms242216494