Targeted Mass Spectrometry Reveals Interferon-Dependent Eicosanoid and Fatty Acid Alterations in Chronic Myeloid Leukaemia
Abstract
:1. Introduction
2. Results
2.1. Liquid Chromatography–Dynamic Multiple Reaction Monitoring–Mass Spectrometry (LC-dMRM-MS) Method Optimisation for Bioactive Lipid Standards
2.2. Bioactive Lipid Analysis in Biological Samples
2.3. Analysis of the Bioactive Lipidome after IFN-I Treatment in Cancer Cells
3. Discussion
4. Materials and Methods
4.1. Figures
4.2. Reagents
4.3. Standard Solutions
4.4. Tissue Culture
4.5. Lipid Extraction
4.6. LC-MS Method
4.7. Data Analysis
4.8. Method Validation
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wang, C.; Yang, J.; Zhang, X. Editorial: The Role of Bioactive Lipids in Homeostasis and Pathology. Front. Physiol. 2021, 12, 773632. [Google Scholar] [CrossRef] [PubMed]
- Minhas, P.S.; Latif-Hernandez, A.; McReynolds, M.R.; Durairaj, A.S.; Wang, Q.; Rubin, A.; Joshi, A.U.; He, J.Q.; Gauba, E.; Liu, L.; et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 2021, 590, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, H.M.; Winkvist, A.; Gjertsson, I.; Calder, P.C.; Armando, A.M.; Quehenberger, O.; Coras, R.; Guma, M. Influence of Dietary n-3 Long Chain Polyunsaturated Fatty Acid Intake on Oxylipins in Erythrocytes of Women with Rheumatoid Arthri-tis. Molecules 2023, 28, 717. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.J.; Wang, J.H.; Li, L.; Yang, H.W.; Wen, D.L.; He, Q.C. Expanding expression of the 5-lipoxygenase/leukotriene B4 pathway in atherosclerotic lesions of diabetic patients promotes plaque instability. Biochem. Biophys. Res. Commun. 2007, 363, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Cipollone, F.; Mezzetti, A.; Fazia, M.L.; Cuccurullo, C.; Iezzi, A.; Ucchino, S.; Spigonardo, F.; Bucci, M.; Cuccurullo, F.; Prescott, S.M.; et al. Association between 5-lipoxygenase expression and plaque instability in humans. Arter. Thromb. Vasc. Biol. 2005, 25, 1665–1670. [Google Scholar] [CrossRef]
- Zu, L.; Guo, L.; Zhou, B.; Gao, W. Relationship between metabolites of arachidonic acid and prognosis in patients with acute coronary syndrome. Thromb. Res. 2016, 144, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Chang, N.; Wu, C.; Chen, D.; Yeh, C.; Lin, C. High levels of arachidonic acid and peroxisome proliferator-activated receptor-alpha in breast cancer tissues are associated with promoting cancer cell proliferation. J. Nutr. Biochem. 2013, 24, 274–281. [Google Scholar] [CrossRef]
- Rolland, P.H.; Martin, P.M.; Jacquemier, J.; Rolland, A.M.; Toga, M. Prostaglandin in human breast cancer: Evidence suggesting that an elevated prostaglandin production is a marker of high metastatic potential for neoplastic cells. J. Natl. Cancer Inst. 1980, 64, 1061–1070. [Google Scholar]
- Sipka, S.; Szántó, S.; Szucs, K.; Kovács, I.; Kiss, E.; Antal-Szamás, P.; Lakos, G.; Aleksza, M.; Illés, A.; Gergely, P.; et al. Decreased arachidonic acid release in peripheral blood monocytes of patients with systemic lupus erythematosus. J. Rheu-Matol. 2001, 28, 2012–2017. [Google Scholar]
- Prüss, H.; Rosche, B.; Sullivan, A.B.; Brommer, B.; Wengert, O.; Gronert, K.; Schwab, J.M. Proresolution lipid mediators in multiple sclerosis-differential, disease severity-dependent synthesis—A clinical pilot trial. PLoS ONE 2013, 8, e55859. [Google Scholar] [CrossRef]
- Sacerdoti, D.; Balazy, M.; Angeli, P.; Gatta, A.; McGiff, J.C. Eicosanoid excretion in hepatic cirrhosis. J. Clin. Investig. 1997, 100, 1264–1270. [Google Scholar] [CrossRef]
- Martín-Masot, R.; Galo-Licona, J.D.; Mota-Martorell, N.; Sol, J.; Jové, M.; Maldonado, J.; Pamplona, R.; Nestares, T. Up-Regulation of Specific Bioactive Lipids in Celiac Disease. Nutrients 2021, 13, 2271. [Google Scholar] [CrossRef] [PubMed]
- Kathir, K.; Dennis, J.M.; Croft, K.D.; Mori, T.A.; Lau, A.K.; Adams, M.R.; Stocker, R. Equivalent lipid oxidation profiles in advanced atherosclerotic lesions of carotid endarterectomy plaques obtained from symptomatic type 2 diabetic and nondiabetic subjects. Free Radic. Biol. Med. 2010, 49, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, J.T.; Barnes, N.C.; Piper, P.J.; Costello, J.F. Detection of sputum eicosanoids in cystic fibrosis and in normal saliva by bioassay and radioimmunoassay. Br. J. Clin. Pharmacol. 1987, 23, 19–27. [Google Scholar] [CrossRef]
- Minuz, P.; Jiang, H.; Fava, C.; Turolo, L.; Tacconelli, S.; Ricci, M.; Patrignani, P.; Morganti, A.; Lechi, A.; McGiff, J.C. Altered release of cytochrome p450 metabolites of arachidonic acid in renovascular disease. Hypertension 2008, 51, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- Lundström, S.L.; Levänen, B.; Nording, M.; Klepczynska-Nyström, A.; Sköld, M.; Haeggström, J.Z.; Grunewald, J.; Svartengren, M.; Hammock, B.D.; Larsson, B.; et al. Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure. PLoS ONE 2011, 6, e23864. [Google Scholar] [CrossRef]
- Chiurchiù, V.; Leuti, A.; Maccarrone, M. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within. Front. Immunol. 2018, 9, 38. [Google Scholar] [CrossRef]
- Amine, H.; Benomar, Y.; Taouis, M. Palmitic acid promotes resistin-induced insulin resistance and inflammation in SH-SY5Y human neuroblastoma. Sci. Rep. 2021, 11, 5427. [Google Scholar] [CrossRef]
- Anderson, E.K.; Hill, A.A.; Hasty, A.H. Stearic acid accumulation in macrophages induces toll-like receptor 4/2-independent inflammation leading to endoplasmic reticulum stress-mediated apoptosis. Arter. Thromb. Vasc. Biol. 2012, 32, 1687–1695. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Chen, B.; Liu, A.; Zhu, W.; Yao, S. Liquid chromatography-mass spectrometric multiple reaction monitoring-based strategies for expanding targeted profiling towards quantitative metabolomics. Curr. Drug Metab. 2012, 13, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.E.; De Luca, T.; Ferreira, C.R.; Collins, K.S.; Eadon, M.T.; Benson, E.A.; Sobreira, T.J.P.; Cooks, R.J. Multiple reaction monitoring profiling as an analytical strategy to investigate lipids in extracellular vesicles. J. Mass Spectrom. 2021, 56, e4681. [Google Scholar] [CrossRef]
- Valli, A.; Rodriguez, M.; Moutsianas, L.; Fischer, R.; Fedele, V.; Huang, H.-L.; Van Stiphout, R.; Jones, D.; Mccarthy, M.; Vinaxia, M.; et al. Hypoxia induces a lipogenic cancer cell phenotype via HIF1α-dependent and -independent pathways. Oncotarget 2015, 6, 1920–1941. [Google Scholar] [CrossRef]
- Cajka, T.; Fiehn, O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Anal. Chem. 2014, 61, 192–206. [Google Scholar] [CrossRef] [PubMed]
- Kortz, L.; Dorow, J.; Ceglarek, U. Liquid chromatography-tandem mass spectrometry for the analysis of eicosanoids and related lipids in human biological matrices: A review. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 964, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Deems, R.; Buczynski, M.W.; Bowers-Gentry, R.; Harkewicz, R.; Dennis, E.A. Detection and quantitation of eicosanoids via high performance liquid chromatography-electrospray ionization-mass spectrometry. Methods Enzymol. 2007, 432, 59–82. [Google Scholar] [CrossRef]
- Wang, Y.; Armando, A.M.; Quehenberger, O.; Yan, C.; Dennis, E.A. Comprehensive ultra-performance liquid chromato-graphic separation and mass spectrometric analysis of eicosanoid metabolites in human samples. J. Chromatogr. A 2014, 1359, 60–69. [Google Scholar] [CrossRef]
- Lu, L.; Mai, Z.; Zhou, H.; Guan, W.; Wu, S.; Zou, H.; Shen, M.; Zhan, Y.; Ye, F.; Qiu, M.; et al. Simultaneous profiling and quantification of 25 eicosanoids in human serum by ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem. 2022, 414, 8233–8244. [Google Scholar] [CrossRef]
- Sorgi, C.A.; Peti, A.P.F.; Petta, T.; Meirelles, A.F.G.; Fontanari, C.; de Moraes, L.A.B.; Faccioli, L.H. Comprehensive high-resolution multiple-reaction monitoring mass spectrometry for targeted eicosanoid assays. Sci. Data 2018, 21, 180167. [Google Scholar] [CrossRef]
- Miller, T.M.; Poloyac, S.M.; Anderson, K.B.; Waddell, B.L.; Messamore, E.; Yao, J.K. A rapid UPLC-MS/MS assay for eicosanoids in human plasma: Application to evaluate niacin responsivity. Prostaglandins Leukot. Essent. Fat. Acids 2018, 136, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Raeven, P.; Hagn, G.; Niederstaetter, L.; Brugger, J.; Bayer-Blauensteiner, S.; Domenig, C.; Hoetzenecker, K.; Posch, M.; Leitner, G.; Gerner, C.; et al. Red blood cell transfusion-related eicosanoid profiles in intensive care patients-A prospective, observational feasibility study. Front. Physiol. 2023, 14, 1164926. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Pan, C.; Han, J.; Zhao, Y.; Liu, S.; Li, C.; Yi, Y.; Zhang, Y.; Tang, X.; Liang, A. Involvement of p38 MAPK/cPLA2 and arachidonic acid metabolic pathway in Shengmai injection-induced pseudo-allergic reactions. J. Ethnopharmacol. 2023, 309, 116357. [Google Scholar] [CrossRef] [PubMed]
- Rustam, Y.H.; Reid, G.E. Analytical Challenges and Recent Advances in Mass Spectrometry Based Lipidomics. Anal. Chem. 2018, 90, 374–397. [Google Scholar] [CrossRef]
- Murphy, R.C. Challenges in Mass Spectrometry-based Lipidomics of Neutral Lipids. Trends Anal. Chem. 2018, 107, 91–98. [Google Scholar] [CrossRef]
- Heisterkamp, N.; Stam, K.; Groffen, J.; de Klein, A.; Grosveld, G. Structural organization of the bcr gene and its role in the Ph’ translocation. Nature 1985, 315, 758–761. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.J.; Kubonishi, I.; Miyoshi, I.; Groudine, M.T. Altered transcription of the c-abl oncogene in K-562 and other chronic myelogenous leukemia cells. Science 1984, 225, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; McHale, C.M.; Haider, S.I.; Jung, C.; Zhang, S.; Smith, M.T.; Zhang, L. Identification of Genes That Modulate Susceptibility to Formaldehyde and Imatinib by Functional Genomic Screening in Human Haploid KBM7 Cells. Toxicol. Sci. 2016, 151, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Aricò, E.; Castiello, L.; Capone, I.; Gabriele, L.; Belardelli, F. Type I Interferons and Cancer: An Evolving Story Demanding Novel Clinical Applications. Cancers 2019, 11, 1943. [Google Scholar] [CrossRef] [PubMed]
- Paul, F.; Pellegrini, S.; Uzé, G. IFNA2: The prototypic human alpha interferon. Gene 2015, 567, 132–137. [Google Scholar] [CrossRef]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 2013, 8, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Meng, X.; Ren, T.; Fawcett, J.P.; Wang, H.; Gu, J. Establishment of a Charge Reversal Derivatization Strategy to Improve the Ionization Efficiency of Limaprost and Investigation of the Fragmentation Patterns of Limaprost Derivatives Via Exclusive Neutral Loss and Survival Yield Method. J. Am. Soc. Mass Spectrom. 2018, 29, 1365–1375. [Google Scholar] [CrossRef]
- Kortz, L.; Dorow, J.; Becker, S.; Thiery, J.; Ceglarek, U. Fast liquid chromatography-quadrupole linear ion trap-mass spectrometry analysis of polyunsaturated fatty acids and eicosanoids in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 927, 209–213. [Google Scholar] [CrossRef]
- Song, J.; Liu, X.; Wu, J.; Meehan, M.J.; Blevitt, J.M.; Dorrestein, P.C.; Milla, M.E. A highly efficient, high-throughput lipidomics platform for the quantitative detection of eicosanoids in human whole blood. Anal. Biochem. 2013, 433, 181–188. [Google Scholar] [CrossRef]
- Sanak, M.; Gielicz, A.; Bochenek, G.; Kaszuba, M.; Niżankowska-Mogilnicka, E.; Szczeklik, A. Targeted eicosanoid lipidomics of exhaled breath condensate provide a distinct pattern in the aspirin-intolerant asthma phenotype. J. Allergy Clin. Immunol. 2011, 127, 1141–1147.e2. [Google Scholar] [CrossRef] [PubMed]
- Guzman, M. A new age for MAGL. Chem. Biol. 2010, 17, 4–6. [Google Scholar] [CrossRef]
- Tuo, W.; Leleu-Chavain, N.; Spencer, J.; Sansook, S.; Millet, R.; Chavatte, P. Therapeutic potential of fatty acid amide hydrolase, monoacylglycerol lipase, and N-acylethanolamine acid amidase inhibitors. J. Med. Chem. 2017, 60, 4–46. [Google Scholar] [CrossRef]
- Nomura, D.K.; Long, J.Z.; Niessen, S.; Hoover, H.S.; Ng, S.; Cravatt, B.F. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 2010, 140, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Giles, F.J.; Kantarjian, H.M.; Bekele, B.N.; Cortes, J.E.; Faderl, S.; Thomas, D.A.; Manshouri, T.; Rogers, A.; Keating, M.J.; Talpaz, M.; et al. Bone marrow cyclooxygenase-2 levels are elevated in chronic-phase chronic myeloid leukaemia and are associated with reduced survival. Br. J. Haematol. 2002, 119, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Stenke, L.; Sjolinder, M.; Miale, T.D.; Lindgren, J.A. Novel enzymatic abnormalities in AML and CML in blast crisis: Elevated leucocyte leukotriene C4 synthase activity paralleled by deficient leukotriene biosynthesis from endogenous substrate. Br. J. Haematol. 1998, 101, 728–736. [Google Scholar] [CrossRef]
- Cacho-Diaz, B.; García-Botello, D.R.; Wegman-Ostrosky, T.; Reyes-Soto, G.; Ortiz-Sánchez, E.; Herrera-Montalvo, L.A. Tumor microenvironment differences between primary tumor and brain metastases. J. Transl. Med. 2020, 18, 1. [Google Scholar] [CrossRef]
- Roma-Rodrigues, C.; Mendes, R.; Baptista, P.V.; Fernandes, A.R. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 2019, 20, 840. [Google Scholar] [CrossRef]
- Belli, C.; Trapani, D.; Viale, G.; D’Amico, P.; Duso, B.A.; Vigna, P.D.; Orsi, F.; Curigliano, G. Targeting the microenvironment in solid tumors. Cancer Treat. Rev. 2018, 65, 22–32. [Google Scholar] [CrossRef]
- Nakamura, K.; Smyth, M.J. Targeting cancer-related inflammation in the era of immunotherapy. Immunol. Cell Biol. 2017, 95, 325–332. [Google Scholar] [CrossRef]
- Kim, D.; Garza, L.A. A new target for squamous cell skin cancer? Exp. Dermatol. 2015, 24, 14–15. [Google Scholar] [CrossRef]
- Pabst, T.; Kortz, L.; Fiedler, G.M.; Ceglarek, U.; Idle, J.R.; Beyoğlu, D. The plasma lipidome in acute myeloid leukemia at diagnosis in relation to clinical disease features. BBA Clin. 2017, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Qualtrough, D.; Kaidi, A.; Chell, S.; Jabbour, H.N.; Williams, A.N.; Paraskeva, C. Prostaglandin F(2alpha) stimulates motility and invasion in colorectal tumor cells. Int. J. Cancer 2007, 121, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Griesser, M.; Boeglin, W.E.; Suzuki, T.; Schneider, C. Convergence of the 5-LOX and COX-2 pathways: Heme-catalyzed cleavage of the 5S-HETE-derived di-endoperoxide into aldehyde fragments. J. Lipid Res. 2009, 50, 2455–2462. [Google Scholar] [CrossRef] [PubMed]
- Powell, W.S.; Gravelle, F.; Gravel, S.; Hashefi, M. Metabolism of 5(S)-hydroxyeicosanoids by a specific dehydrogenase in human neutrophils. J. Lipid Mediat. 1993, 6, 361–368. [Google Scholar]
- Bie, Q.; Dong, H.; Jin, C.; Zhang, H.; Zhang, B. 15d-PGJ2 is a new hope for controlling tumor growth. Am. J. Transl. Res. 2018, 10, 648–658. [Google Scholar]
- Fitzpatrick, F.A.; Wynalda, M.A. Albumin-catalyzed metabolism of prostaglandin D2. Identification of products formed in vitro. J. Biol. Chem. 1983, 258, 11713–11718. [Google Scholar] [CrossRef]
- Maxey, K.M.; Hessler, E.; MacDonald, J.; Hitchingham, L. The nature and composition of 15-deoxy-Delta(12,14)PGJ(2). Prostaglandins Other Lipid Mediat. 2000, 62, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Parise, P.; Huybrechts, E.; Grasselli, S.; Falcinelli, F.; Nenci, G.G.; Gresele, P.; Vermylen, J. Generation of arachidonic acid metabolites from stimulated whole blood in patients with chronic myeloproliferative disorders. Acta Haematol. 1991, 85, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Tornhamre, S.; Stenke, L.; Granzelius, A.; Sjölinder, M.; Näsman-Glaser, B.; Roos, C.; Widell, S.; Lindgren, J.A. Inverse relationship between myeloid maturation and leukotriene C4 synthase expression in normal and leukemic myelopoiesis-consistent overexpression of the enzyme in myeloid cells from patients with chronic myeloid leukemia. Exp. Hematol. 2003, 31, 122–130. [Google Scholar] [CrossRef]
- Sjölinder, M.; Stenke, L.; Näsman-Glaser, B.; Widell, S.; Doucet, J.; Jakobsson, P.J.; Lindgren, J.A. Aberrant expression of active leukotriene C(4) synthase in CD16(+) neutrophils from patients with chronic myeloid leukemia. Blood 2000, 95, 1456–1464. [Google Scholar] [CrossRef]
- Roos, C.; Sjölinder, M.; Stenke, L.; Tornhamre, S. Abnormal LTC4 synthase RNA degradation in neutrophils from CML patients. Br. J. Haematol. 2004, 124, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Zovko, A.; Yektaei-Karin, E.; Salamon, D.; Nilsson, A.; Wallvik, J.; Stenke, L. Montelukast, a cysteinyl leukotriene receptor antagonist, inhibits the growth of chronic myeloid leukemia cells through apoptosis. Oncol. Rep. 2018, 40, 902–908. [Google Scholar] [CrossRef]
- Yektaei-Kari, E.; Zovko, A.; Nilsson, A.; Näsman-Glaser, B.; Kanter, L.; Rådmark, O.; Wallvik, J.; Ekblom, M.; Dolinska, M.; Qian, H.; et al. Modulation of leukotriene signaling inhibiting cell growth in chronic myeloid leukemia. Leuk. Lymphoma 2017, 58, 1903–1913. [Google Scholar] [CrossRef]
- Sveinbjörnsson, B.; Rasmuson, A.; Baryawno, N.; Wan, M.; Pettersen, I.; Ponthan, F.; Orrego, A.; Haeggström, J.Z.; Johnsen, J.I.; Kogner, P. Expression of enzymes and receptors of the leukotriene pathway in human neuroblastoma promotes tumor survival and provides a target for therapy. FASEB J. 2008, 22, 3525–3536. [Google Scholar] [CrossRef]
- Dahinden, C.A.; Clancy, R.M.; Gross, M.; Chiller, J.M.; Hugli, T.E. Leukotriene C4 production by murine mast cells: Evidence of a role for extracellular leukotriene A4. Proc. Natl. Acad. Sci. USA 1985, 82, 6632–6636. [Google Scholar] [CrossRef]
- Pinto-Fernandez, A.; Salio, M.; Partridge, T.; Chen, J.; Vere, G.; Greenwood, H.; Olie, C.S.; Damianou, A.; Scott, H.C.; Pegg, H.J.; et al. Deletion of the deISGylating enzyme USP18 enhances tumour cell antigenicity and radiosensitivity. Br. J. Cancer 2021, 124, 817–830. [Google Scholar] [CrossRef] [PubMed]
Lipid | Formula | Molecular Weight (g/mol) | Retention Time (min) | Precursor Ion (m/z) | Precursor Ion Type | Product ion m/z (Qualifiers) | Product CE (Voltage) | Product Ion m/z (Quantifier) | Quantifier CE (Voltage) | LLOQ (on Column Concentration) |
---|---|---|---|---|---|---|---|---|---|---|
5-oxo-ETE | C20H30O3 | 318.22 | 2.5 | 319.2 | [M+H]+ | 91.1 43.1 55.1 | 56 48 68 | 189 | 12 | 500 amol/L |
Aracidonic acid | C20H32O2 | 304.24 | 3.8 | 305.25 | [M+H]+ | 58.3 92.1 65.2 | 28 44 80 | 91.1 | 32 | 20 fmol/L |
2-Arachidonoylglycerol | C23H38O4 | 378.30 | 7.4 | 379.3 | [M+H]+ | 91.1 67.2 79.1 | 72 64 68 | 287.2 | 16 | 100 amol/L |
Palmitic acid | C16H32O2 | 256.43 | 8.3 | 257.25 | [M+H]+ | 43.2 57.2 55.2 | 36 16 48 | 41.2 | 68 | 5 fmol/L |
Prostglandin D2/E2 | C20H32O5 | 350.22 | 8.3 | 391.2 | [M+K]+ | 105 63.1 271 | 24 44 4 | 312.8 | 0 | 5 fmol/L |
Stearic acid | C18H36O2 | 248.27 | 10.3 | 285.28 | [M+H]+ | 57.3 120.9 41.2 | 20 8 72 | 43.3 | 36 | 100 zmol/L |
Prostglandin F2α | C20H34O5 | 354.24 | 10.3 | 377.2 | [M+Na]+ | 57 43.3 342.2 | 48 64 12 | 360.3 | 4 | 5 amol/L |
5-HETE | C20H32O3 | 320.24 | 11.8 | 338.30 | [M+NH4]+/[M+H2O]+ | 55.5 41.3 203.3 | 56 76 20 | 43.2 | 52 | 500 amol/L |
Leukotriene C4 | C30H47N3O9S | 625.3 | 14.9 | 664.26 | [M+K]+ | 57.2 629.5 125 | 72 24 44 | 496.3 | 36 | 500 amol/L |
Chromatography Setting | Parameter |
---|---|
Mobile phase composition | A = 2% IPA, 5mM Ammonium Acetate B = 100% IPA, 5mM Ammonium Acetate |
Mobile phase flow rate (mL/min) | 0.21 |
C18 column temperature (°C) | 40 |
Source setting | Parameter |
Gas temperature (°C) | 280 |
Gas flow (L/min) | 14 |
Nebulizer (psi) | 20 |
Sheath gas temperature (°C) | 250 |
Sheath gas flow (L/min) | 11 |
Capillary: positive and negative polarity (V) | 3000 |
Nozzle:positive and negative polarity (V) | 1500 |
iFunnel setting | Parameter |
High Pressure RF: positive polarity (V) | 150 |
Low pressure RF: positive polarity (V) | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, H.C.; Draganov, S.D.; Yu, Z.; Kessler, B.M.; Pinto-Fernández, A. Targeted Mass Spectrometry Reveals Interferon-Dependent Eicosanoid and Fatty Acid Alterations in Chronic Myeloid Leukaemia. Int. J. Mol. Sci. 2023, 24, 15513. https://doi.org/10.3390/ijms242115513
Scott HC, Draganov SD, Yu Z, Kessler BM, Pinto-Fernández A. Targeted Mass Spectrometry Reveals Interferon-Dependent Eicosanoid and Fatty Acid Alterations in Chronic Myeloid Leukaemia. International Journal of Molecular Sciences. 2023; 24(21):15513. https://doi.org/10.3390/ijms242115513
Chicago/Turabian StyleScott, Hannah C., Simeon D. Draganov, Zhanru Yu, Benedikt M. Kessler, and Adán Pinto-Fernández. 2023. "Targeted Mass Spectrometry Reveals Interferon-Dependent Eicosanoid and Fatty Acid Alterations in Chronic Myeloid Leukaemia" International Journal of Molecular Sciences 24, no. 21: 15513. https://doi.org/10.3390/ijms242115513
APA StyleScott, H. C., Draganov, S. D., Yu, Z., Kessler, B. M., & Pinto-Fernández, A. (2023). Targeted Mass Spectrometry Reveals Interferon-Dependent Eicosanoid and Fatty Acid Alterations in Chronic Myeloid Leukaemia. International Journal of Molecular Sciences, 24(21), 15513. https://doi.org/10.3390/ijms242115513