Fjodorova, N.; Novič, M.; Venko, K.; Rasulev, B.; Türker Saçan, M.; Tugcu, G.; Sağ Erdem, S.; Toropova, A.P.; Toropov, A.A.
Cheminformatics and Machine Learning Approaches to Assess Aquatic Toxicity Profiles of Fullerene Derivatives. Int. J. Mol. Sci. 2023, 24, 14160.
https://doi.org/10.3390/ijms241814160
AMA Style
Fjodorova N, Novič M, Venko K, Rasulev B, Türker Saçan M, Tugcu G, Sağ Erdem S, Toropova AP, Toropov AA.
Cheminformatics and Machine Learning Approaches to Assess Aquatic Toxicity Profiles of Fullerene Derivatives. International Journal of Molecular Sciences. 2023; 24(18):14160.
https://doi.org/10.3390/ijms241814160
Chicago/Turabian Style
Fjodorova, Natalja, Marjana Novič, Katja Venko, Bakhtiyor Rasulev, Melek Türker Saçan, Gulcin Tugcu, Safiye Sağ Erdem, Alla P. Toropova, and Andrey A. Toropov.
2023. "Cheminformatics and Machine Learning Approaches to Assess Aquatic Toxicity Profiles of Fullerene Derivatives" International Journal of Molecular Sciences 24, no. 18: 14160.
https://doi.org/10.3390/ijms241814160
APA Style
Fjodorova, N., Novič, M., Venko, K., Rasulev, B., Türker Saçan, M., Tugcu, G., Sağ Erdem, S., Toropova, A. P., & Toropov, A. A.
(2023). Cheminformatics and Machine Learning Approaches to Assess Aquatic Toxicity Profiles of Fullerene Derivatives. International Journal of Molecular Sciences, 24(18), 14160.
https://doi.org/10.3390/ijms241814160