Danieli, A.; Colombo, E.; Raitano, G.; Lombardo, A.; Roncaglioni, A.; Manganaro, A.; Sommovigo, A.; Carnesecchi, E.; Dorne, J.-L.C.M.; Benfenati, E.
The VEGA Tool to Check the Applicability Domain Gives Greater Confidence in the Prediction of In Silico Models. Int. J. Mol. Sci. 2023, 24, 9894.
https://doi.org/10.3390/ijms24129894
AMA Style
Danieli A, Colombo E, Raitano G, Lombardo A, Roncaglioni A, Manganaro A, Sommovigo A, Carnesecchi E, Dorne J-LCM, Benfenati E.
The VEGA Tool to Check the Applicability Domain Gives Greater Confidence in the Prediction of In Silico Models. International Journal of Molecular Sciences. 2023; 24(12):9894.
https://doi.org/10.3390/ijms24129894
Chicago/Turabian Style
Danieli, Alberto, Erika Colombo, Giuseppa Raitano, Anna Lombardo, Alessandra Roncaglioni, Alberto Manganaro, Alessio Sommovigo, Edoardo Carnesecchi, Jean-Lou C. M. Dorne, and Emilio Benfenati.
2023. "The VEGA Tool to Check the Applicability Domain Gives Greater Confidence in the Prediction of In Silico Models" International Journal of Molecular Sciences 24, no. 12: 9894.
https://doi.org/10.3390/ijms24129894
APA Style
Danieli, A., Colombo, E., Raitano, G., Lombardo, A., Roncaglioni, A., Manganaro, A., Sommovigo, A., Carnesecchi, E., Dorne, J.-L. C. M., & Benfenati, E.
(2023). The VEGA Tool to Check the Applicability Domain Gives Greater Confidence in the Prediction of In Silico Models. International Journal of Molecular Sciences, 24(12), 9894.
https://doi.org/10.3390/ijms24129894